34,321 research outputs found

    Data Minimisation in Communication Protocols: A Formal Analysis Framework and Application to Identity Management

    Full text link
    With the growing amount of personal information exchanged over the Internet, privacy is becoming more and more a concern for users. One of the key principles in protecting privacy is data minimisation. This principle requires that only the minimum amount of information necessary to accomplish a certain goal is collected and processed. "Privacy-enhancing" communication protocols have been proposed to guarantee data minimisation in a wide range of applications. However, currently there is no satisfactory way to assess and compare the privacy they offer in a precise way: existing analyses are either too informal and high-level, or specific for one particular system. In this work, we propose a general formal framework to analyse and compare communication protocols with respect to privacy by data minimisation. Privacy requirements are formalised independent of a particular protocol in terms of the knowledge of (coalitions of) actors in a three-layer model of personal information. These requirements are then verified automatically for particular protocols by computing this knowledge from a description of their communication. We validate our framework in an identity management (IdM) case study. As IdM systems are used more and more to satisfy the increasing need for reliable on-line identification and authentication, privacy is becoming an increasingly critical issue. We use our framework to analyse and compare four identity management systems. Finally, we discuss the completeness and (re)usability of the proposed framework

    Cryptographic techniques for personal communication systems security

    Get PDF
    The advent of personal communication systems within the last decade has depended upon the utilization of advanced digital schemes for source and channel coding and for modulation. The inherent digital nature of the communications processing has allowed the convenient incorporation of cryptographic techniques to implement security in these communications systems. There are various security requirements, of both the service provider and the mobile subscriber, which may be provided for in a personal communications system. Such security provisions include the privacy of user data, the authentication of communicating parties, the provision for data integrity, and the provision for both location confidentiality and party anonymity. This thesis is concerned with an investigation of the private-key and public-key cryptographic techniques pertinent to the security requirements of personal communication systems and an analysis of the security provisions of Second-Generation personal communication systems is presented. Particular attention has been paid to the properties of the cryptographic protocols which have been employed in current Second-Generation systems. It has been found that certain security-related protocols implemented in the Second-Generation systems have specific weaknesses. A theoretical evaluation of these protocols has been performed using formal analysis techniques and certain assumptions made during the development of the systems are shown to contribute to the security weaknesses. Various attack scenarios which exploit these protocol weaknesses are presented. The Fiat-Sharmir zero-knowledge cryptosystem is presented as an example of how asymmetric algorithm cryptography may be employed as part of an improved security solution. Various modifications to this cryptosystem have been evaluated and their critical parameters are shown to be capable of being optimized to suit a particular applications. The implementation of such a system using current smart card technology has been evaluated

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique

    A Novel Authentication and Key Agreement Scheme for Countering MITM and Impersonation Attack in Medical Facilities

    Get PDF
    Authentication is used to enfold the privacy of the patient to implement security onto the communication between patients and service providers. Several types of research have proposed support for anonymity for contextual privacy in medical systems that are still vulnerable to impersonation attack and Man-in-the-middle attack. By using powerful technology that is used in medical facilities, it can help in building an advanced system. However, the same powerful tools can also be used by the attackers to gain personal profits and to cause chaos. The proposed countermeasure that is to be taken to prevent this kind of attacks is by implementing mutual authentication between users, their devices/mobile devices, and the system’s cloud server, and also a key agreement scheme together with the help of Elliptic Curve Cryptography (ECC). A novel authentication scheme which consists of two phases, a signature generation, and authentication process. The ECC implementation is to ensure that the keys are thoroughly secured and is not copy- able, together with a Key generation scheme that shields the system against impersonation attacks. The usage of Elliptic Curve Digital Signature Algorithm (ECDSA), in a signature generation, on the other hand, provides users more secure way to hide the user private key and bring additional security layer before proceeding to authentication phase due to the existence of extra elements of domain parameters. Authentication is still considered as a crucial component in maintaining the security of any critical facilities that require the CIA tried and non- repudiation as a need to maintain their data. It does not only apply to medical centers, but any organizations that possess valuable data that is needed to be protected also requires strong authentication protocols. Thus, the trend for the need of novel authentication protocols will keep on rising as technology gets fancier and fancier

    A Survey of RFID Authentication Protocols Based on Hash-Chain Method

    Get PDF
    Security and privacy are the inherent problems in RFID communications. There are several protocols have been proposed to overcome those problems. Hash chain is commonly employed by the protocols to improve security and privacy for RFID authentication. Although the protocols able to provide specific solution for RFID security and privacy problems, they fail to provide integrated solution. This article is a survey to closely observe those protocols in terms of its focus and limitations.Comment: Third ICCIT 2008 International Conference on Convergence and Hybrid Information Technolog

    Formal security analysis of registration protocols for interactive systems: a methodology and a case of study

    Full text link
    In this work we present and formally analyze CHAT-SRP (CHAos based Tickets-Secure Registration Protocol), a protocol to provide interactive and collaborative platforms with a cryptographically robust solution to classical security issues. Namely, we focus on the secrecy and authenticity properties while keeping a high usability. In this sense, users are forced to blindly trust the system administrators and developers. Moreover, as far as we know, the use of formal methodologies for the verification of security properties of communication protocols isn't yet a common practice. We propose here a methodology to fill this gap, i.e., to analyse both the security of the proposed protocol and the pertinence of the underlying premises. In this concern, we propose the definition and formal evaluation of a protocol for the distribution of digital identities. Once distributed, these identities can be used to verify integrity and source of information. We base our security analysis on tools for automatic verification of security protocols widely accepted by the scientific community, and on the principles they are based upon. In addition, it is assumed perfect cryptographic primitives in order to focus the analysis on the exchange of protocol messages. The main property of our protocol is the incorporation of tickets, created using digests of chaos based nonces (numbers used only once) and users' personal data. Combined with a multichannel authentication scheme with some previous knowledge, these tickets provide security during the whole protocol by univocally linking each registering user with a single request. [..]Comment: 32 pages, 7 figures, 8 listings, 1 tabl
    corecore