4,377 research outputs found

    Extending AMCW lidar depth-of-field using a coded aperture

    Get PDF
    By augmenting a high resolution full-field Amplitude Modulated Continuous Wave lidar system with a coded aperture, we show that depth-of-field can be extended using explicit, albeit blurred, range data to determine PSF scale. Because complex domain range-images contain explicit range information, the aperture design is unconstrained by the necessity for range determination by depth-from-defocus. The coded aperture design is shown to improve restoration quality over a circular aperture. A proof-of-concept algorithm using dynamic PSF determination and spatially variant Landweber iterations is developed and using an empirically sampled point spread function is shown to work in cases without serious multipath interference or high phase complexity

    Nonlinear limits to the information capacity of optical fiber communications

    Get PDF
    The exponential growth in the rate at which information can be communicated through an optical fiber is a key element in the so called information revolution. However, like all exponential growth laws, there are physical limits to be considered. The nonlinear nature of the propagation of light in optical fiber has made these limits difficult to elucidate. Here we obtain basic insights into the limits to the information capacity of an optical fiber arising from these nonlinearities. The key simplification lies in relating the nonlinear channel to a linear channel with multiplicative noise, for which we are able to obtain analytical results. In fundamental distinction to the linear additive noise case, the capacity does not grow indefinitely with increasing signal power, but has a maximal value. The ideas presented here have broader implications for other nonlinear information channels, such as those involved in sensory transduction in neurobiology. These have been often examined using additive noise linear channel models, and as we show here, nonlinearities can change the picture qualitatively.Comment: 1 figure, 7 pages, submitted to Natur

    Pulses and Snakes in Ginzburg--Landau Equation

    Get PDF
    Using a variational formulation for partial differential equations (PDEs) combined with numerical simulations on ordinary differential equations (ODEs), we find two categories (pulses and snakes) of dissipative solitons, and analyze the dependence of both their shape and stability on the physical parameters of the cubic-quintic Ginzburg-Landau equation (CGLE). In contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. Numerical simulations reveal very interesting bifurcations sequences as the parameters of the CGLE are varied. Our predictions on the variation of the soliton amplitude, width, position, speed and phase of the solutions using the variational formulation agree with simulation results.Comment: 30 pages, 14 figure

    Laser Guide Star for Large Segmented-Aperture Space Telescopes, Part I: Implications for Terrestrial Exoplanet Detection and Observatory Stability

    Full text link
    Precision wavefront control on future segmented-aperture space telescopes presents significant challenges, particularly in the context of high-contrast exoplanet direct imaging. We present a new wavefront control architecture that translates the ground-based artificial guide star concept to space with a laser source aboard a second spacecraft, formation flying within the telescope field-of-view. We describe the motivating problem of mirror segment motion and develop wavefront sensing requirements as a function of guide star magnitude and segment motion power spectrum. Several sample cases with different values for transmitter power, pointing jitter, and wavelength are presented to illustrate the advantages and challenges of having a non-stellar-magnitude noise limited wavefront sensor for space telescopes. These notional designs allow increased control authority, potentially relaxing spacecraft stability requirements by two orders of magnitude, and increasing terrestrial exoplanet discovery space by allowing high-contrast observations of stars of arbitrary brightness.Comment: Submitted to A

    Topographical coloured plasmonic coins

    Full text link
    The use of metal nanostructures for colourization has attracted a great deal of interest with the recent developments in plasmonics. However, the current top-down colourization methods based on plasmonic concepts are tedious and time consuming, and thus unviable for large-scale industrial applications. Here we show a bottom-up approach where, upon picosecond laser exposure, a full colour palette independent of viewing angle can be created on noble metals. We show that colours are related to a single laser processing parameter, the total accumulated fluence, which makes this process suitable for high throughput industrial applications. Statistical image analyses of the laser irradiated surfaces reveal various distributions of nanoparticle sizes which control colour. Quantitative comparisons between experiments and large-scale finite-difference time-domain computations, demonstrate that colours are produced by selective absorption phenomena in heterogeneous nanoclusters. Plasmonic cluster resonances are thus found to play the key role in colour formation.Comment: 9 pages, 5 figure
    corecore