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Pulses and Snakes in Ginzburg–Landau Equation

Stefan C. Mancas∗

Department of Mathematics,
Embry-Riddle Aeronautical University,

Daytona-Beach, FL. 32114-3900, U.S.A.

Roy S. Choudhury
Department of Mathematics, University of Central Florida,

Orlando, FL. 32816-1364, U.S.A†

Using a variational formulation for partial differential equations (PDEs) combined with numerical
simulations on ordinary differential equations (ODEs), we find two categories (pulses and snakes) of
dissipative solitons, and analyze the dependence of both their shape and stability on the physical pa-
rameters of the cubic-quintic Ginzburg-Landau equation (CGLE). In contrast to the regular solitary
waves investigated in numerous integrable and non-integrable systems over the last three decades,
these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type
structures whose envelopes exhibit complicated temporal dynamics. Numerical simulations reveal
very interesting bifurcations sequences as the parameters of the CGLE are varied. Our predictions
on the variation of the soliton amplitude, width, position, speed and phase of the solutions using
the variational formulation agree with simulation results.

First, we develop a variational formalism which explores the various classes of dissipative solitons.
Given the complex dynamics the trial functions have been generalized considerably over conventional
ones to keep the shape relatively simple, and the trial function integrable while allowing arbitrary
temporal variation of the amplitude, width, position, speed and phase of the pulses and snakes.

In addition, the resulting Euler-Lagrange (EL) equations from the variational formulation are
treated in a completely novel way. Rather than consider the stable fixed points which correspond
to the well-known stationary solitons, we use dynamical systems theory to focus on more com-
plex attractors viz. periodic (pulses) and quasiperiodic (snakes). Periodic evolution of the trial
function parameters on stable periodic attractors yield solitons whose amplitudes and widths are
non-stationary or time dependent.

Secondly, we investigate the dissipative solitons of the CGLE and analyze its qualitative behavior
by using numerical methods for ODEs. To solve numerically the nonlinear systems of ODEs that
represent EL equations obtained from variational technique, we use an explicit Runge-Kutta fourth
order method (RK4).

Finally, we elucidate the Hopf bifurcation mechanism responsible for the various pulsating solitary
waves, as well as its absence in Hamiltonian and integrable systems where such structures are absent
due to the lack of dissipation.

I. INTRODUCTION

The cubic-quintic Ginzburg-Landau equation is the canonical equation governing the weakly nonlinear behavior
of dissipative systems in a wide variety of disciplines [13]. In fluid mechanics, it is also often referred to as the
Newell-Whitehead equation after the authors who derived it in the context of Bénard convection [13, 18].

Many basic properties of the equation and its solutions are reviewed in [5, 8, 42], together with applications to a
vast variety of phenomena including nonlinear waves, second-order phase transitions, superconductivity, superfluidity,
Bose-Einstein condensation, liquid crystals and string theory. Numerical studies by Brusch et. al. [9, 10] which
primarily consider periodic traveling wave solutions of the cubic CGLE, together with secondary pitchfork bifurcations
and period doubling cascades into disordered turbulent regimes, also give comprehensive summaries of other work
on this system. Early numerical studies [28, 29] and theoretical investigations [34, 35] of periodic solutions and
secondary bifurcations are also of general interest for our work here. This has proved to be a rich system with very
diverse solution behaviors. In particular, a relatively early and influential review by van Saarloos and Hohenberg [42],
also recently extended to two coupled cubic CGLE equations [4, 41], considered phase-plane counting arguments for
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traveling wave coherent structures, analytic and perturbative solutions, limited comparisons to numerics, and so-called
“linear marginal stability analysis” to select the phase speed of the traveling waves.

In this article we will only refer to two sets of studies which will directly pertain to our work. The first class of papers
[14–16, 19, 22] used dynamical systems techniques to prove that CGLE admits periodic and quasi-periodic traveling
wave solutions, while the second class of papers [6, 9, 10], primarily involving numerical simulations of the full CGLE
in the context of nonlinear optics, revealed various branches of plane wave solutions which are referred to as continuous
wave (CW) solutions. More importantly, these latter studies also found various spatially confined coherent structures
with envelopes which exhibit complicated temporal dynamics [2, 31, 39, 40]. All indications are that these classes of
solutions, all of which have amplitudes that vary in time, do not exist as stable structures in Hamiltonian systems.
Even if excited initially, amplitude modulated solitons restructure into regular stationary solutions. Exceptions to this
rule are the integrable models where the pulsating structures are nonlinear superpositions or fundamental solutions
[37]. Therefore, these classes of solutions are novel and they exist only in the presence of dissipation.

In this context, we note that numerous attempts have been made to extend the well-developed concept of soliton
interactions in integrable, conservative systems [12, 17, 36] to more realistic active or dissipative media which are
governed by non-integrable model equations. The reason is that the complicated spatio-temporal dynamics of coherent
structures are governed by systems of ODEs, or low-dimensional dynamical systems, rather than by the original
complex nonlinear PDE model. Hence, various theoretical approaches may be brought to bear on these ODEs. This
is appropriate, particularly where the dynamics of dissipative systems is primarily governed by localized coherent
structures such as pulses (solitary waves) and kinks (fronts or shocks) [7, 17, 32, 42]. Since these structures correspond
to spatial modulations, they are also often referred to spatially-localized “patterns”, and they may be information
carriers such as in optics. The speeds and locations of them may vary in a complex manner as they interact, but their
spatial coherence is preserved. Coherent structures may be transitory when they are unstable to small disturbances
in some neighborhood of the existence.

In the language of the Los Alamos school, the fully spatiotemporal approach [12] followed here may be said to
be the “collective coordinates” formulation. In other words, we consider a pulse or solitary wave at any time as
a coherent collective entity (or coordinate). This solitary wave is then temporally modulated. The main spatial
approach proposed, and explored, in this paper is the variational method, while the temporal approach is based on
solving numerically the complicated system of ODEs resulting from the EL equations. We would like to particularly

cite Kaup and Malomed’s work [24–27] in constructing regular and embedded solitons of various complicated χ2−χ3

systems. These were instrumental in focusing our attention on this method, and attempting to extend its use to new
classes of dissipative solitons.

Given this setting, Section II outlines the generalized variational formulation including novel trial functions to be
employed in modeling the pulsating and snaking solitary waves. In Section III we firstly elucidate the new mechanism
responsible for the various classes of pulsating solitary wave solutions in dissipative systems, viz. the possibility of
Hopf bifurcations. This also explains the absence of pulsating and snakes solitary waves in Hamiltonian and integrable
systems. Periodic evolution of the trial function parameters on stable periodic attractors resulting from supercritical
Hopf bifurcations, when substituted back into the trial function, yield pulsating solitary waves. Fourth order Runge-
Kutta (RK4) method [43] is used to solve numerically he nonlinear EL equations. In Section IV we developed a
generalized multiple scales analysis to construct analytical approximations for the periodic orbits arising through
Hopf bifurcation of the fixed point of the EL equations (24) or (27). Sections V and VI provide numerical results
for the pulsating and snakes solitons. Section VII summarizes the results.

II. THE GENERALIZED VARIATIONAL FORMULATION

We develop a general variational formulation [20, 24, 27] to address the pulses on all parameter ranges. As mentioned
earlier, we shall need to generalize previous variational approaches in several crucial ways.

We shall consider the CGLE in the form [42]

∂tA = εA+ (b1 + ic1)∂2
xA− (b3 − ic3)|A|2A− (b5 − ic5)|A|4A, (1)

in which we chose a frame without the linear Ax term, and without imaginary linear term ic0A, which implies that
all parameters are real, including the gain/loss coefficient ε. Note that any of the three of the coefficients (no two
of which are in the same term) may be set to unity by appropriate scalings of time, space and A(x, t), but that will
possibly cause a loss in physical interpretation of the parameters of the system.

The interpretation of the system’s parameters in (1) depends on the particular field of work. In optics, A(x; t)
is the normalized envelope of the field, x is the transversal coordinate, t is the propagation distance or the cavity
number. The system’s parameters of (1) are: ε linear loss/gain, b1- angular spectral filtering, c1 = 0.5- second-order
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diffraction coefficient, b3- nonlinear gain/loss, c3 = 1- nonlinear dispersion, b5- saturation of the nonlinear gain/loss,
and c5- saturation of the nonlinear refractive index.

Proceeding as in [24], the pseudo-Lagrangian (Lagrangian for dissipative systems) of (1) may be written as

L = r∗
[
∂tA− εA− (b1 + ic1)∂2

xA+ (b3 − ic3)|A|2A+ (b5 − ic5)|A|4A
]

+ r
[
∂tA

∗ − εA∗ − (b1 − ic1)∂2
xA
∗ + (b3 + ic3)|A|2A∗ + (b5 + ic5)|A|4A∗

]
(2)

Here r is the usual variable which is the auxiliary field employed in [24] and it satisfies a perturbative evolution
equation dual to the CGLE with all non-Hamiltonian terms reversed in sign.

The second key assumption involves the trial functions A(t) and r(t) which have been generalized considerably
over conventional ones to keep the shape relatively simple and the trial functions integrable. To this end, we choose
Gaussian ansatz of the form:

A(x, t) = A1(t)e−σ1(t)2[x−φ1(t)]2eiα1(t) (3)

r(x, t) = e−σ2(t)2[x−φ2(t)]2eiα2(t)

where A1(t) is the amplitude, σi(t)’s are the inverse widths, φi(t)’s are the positions (with φ̇i(t) the phase speed),
and αi(t)’s are the phases of the solitons, and are all allowed to vary arbitrarily in time. For now, the chirp terms
eiβ(x) are omitted for simplicity. Substituting (3) in (2) the effective or averaged Lagrangian is

LEFF =

∫ ∞
−∞

Ldx = 2
√
π

{
− e
−σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

σ1(t)2+σ2(t)2

[σ1(t)2 + σ2(t)2]
1
2

εA1(t) cos[α1(t)− α2(t)]

+
e
− 3σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

3σ1(t)2+σ2(t)2[
3σ1(t)2 + σ2(t)2

] 1
2

A1(t)3

[
b3 cos[α1(t)− α2(t)] + c3 sin[α1(t)− α2(t)]

]

+
e
− 5σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

5σ1(t)2+σ2(t)2[
5σ1(t)2 + σ2(t)2

] 1
2

A1(t)5

[
b5 cos[α1(t)− α2(t)] + c5 sin[α1(t)− α2(t)]

]

+
e
−σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

σ1(t)2+σ2(t)2[
σ1(t)2 + σ2(t)2

] 5
2

[
cos[α1(t)− α2(t)][σ1(t)2 + σ2(t)2]2Ȧ1(t)

+A1(t)

(
− 2σ1(t)2σ2(t)2

[
b1 cos[α1(t)− α2(t)]− c1 sin[α1(t)− α2(t)]

][
− σ2(t)2

+σ1(t)2[−1 + 2σ2(t)2[φ1(t)− φ2(t)]2]
]
− α̇1(t) sin[α1(t)− α2(t)][σ1(t)2 + σ2(t)2]2

−σ1(t)σ̇1(t) cos[α1(t)− α2(t)]
[
σ1(t)2 + σ2(t)2 + 2σ2(t)4[φ1(t)− φ2(t)]2

]
−2φ̇1(t)σ1(t)2σ2(t)2[φ1(t)− φ2(t)][σ1(t)2 + σ2(t)2] cos[α1(t)− α2(t)]

)]}
(4)

Since (4) reveals that only the relative phase α(t) = α1(t)− α2(t) of A(x, t) and r(x, t) is relevant, we henceforth
take

α1(t) = α(t)

α2(t) = 0 (5)

with no loss of generality. Also, for algebraic tractability, we have found it necessary to assume

σ2(t) = mσ1(t) ≡ mσ(t). (6)

While this ties the widths of the A(x, t) and r(x, t) fields together, the loss of generality is acceptable since the field
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r(x, t) has no real physical significance. For reasons of algebraic simplicity, we may also scale the positions according
to:

φ1(t) = φ(t)

φ2(t) = 0, (7)

although this assumption may easily be relaxed. In fact, we may expect that it may be necessary to relax (7) for
certain classes of dissipative solitons.

Hence, using all assumptions, (i.e. (5)- (7) in (4)), the effective Lagrangian (4) may be written in a simpler but
still general form

LEFF = 2
√
π

{
A1(t)

σ(t)

[
− e
−m

2σ(t)2φ(t)2

1+m2

[1 +m2]
1
2

ε cosα(t)

+
e
− 3m2σ(t)2φ(t)2

3+m2

[3 +m2]
1
2

A1(t)2
[
b3 cosα(t) + c3 sinα(t)

]

+
e
− 5m2σ(t)2φ(t)2

5+m2

[5 +m2]
1
2

A1(t)4
[
b5 cosα(t) + c5 sinα(t)

]]

+
e
−m

2σ(t)2φ(t)2

1+m2

[1 +m2]
5
2σ(t)2

[
(1 +m2)2 cosα(t)σ(t)Ȧ1(t)

−A1(t)

(
4m4σ(t)5φ(t)2

[
b1 cosα(t)− c1 sinα(t)

]
+(1 +m2)2σ(t)α̇(t) sinα(t) + (1 +m2)σ̇(t) cosα(t)

−2m2(1 +m2)σ(t)3
[
b1 cosα(t)− c1 sinα(t)

]
+2m4σ̇(t)σ(t)2φ(t)2 + φ̇(t)φ(t) cosα(t)

)]}
(8)

III. FRAMEWORK FOR INVESTIGATION OF EULER-LAGRANGE EQUATIONS FOR PULSATING
AND SNAKE SOLITONS

It is widely reported [1, 6] and generally accepted that Hamiltonian systems, as well as integrable systems which are
a subclass, do not admit pulsating solitary wave solutions. If excited initially, pulsating solitons in Hamiltonian and
integrable systems re-shape themselves and evolve into regular stationary waves. The only exceptions are pulsating
structures comprising nonlinear superpositions of stationary solitons in integrable systems [37].

In addition, the regimes of the pulsating solitons in the CGLE are very far from the integrable nonlinear Schrödinger
equation limit. This fact, and the great diversity of pulsating solitons in the CGLE, both indicate a new mechanism
which is operative in dissipative systems in the creation of these pulsating structures.

The primary point of this paper is that Hopf bifurcations are the new mechanism responsible for the occurrence
of these pulsating solitons in dissipative systems, and we shall analyze both plain pulsating solitons and snakes via
this mechanism. However, in order to establish that Hopf bifurcations are indeed the operative mechanism creating
the various pulsating solitons in dissipative systems, we first proceed to prove their absence in Hamiltonian systems.
This will also explain the above-mentioned absence of pulsating solitons in Hamiltonian and integrable systems.

For a Hamiltonian system with Hamiltonian H, the particular evolution equations may be represented in canonical
form as [21].

iΨζ =
δH

δΨ?

iΨ?
ζ = −δH

δΨ
. (9)
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These may be further combined into

i~̇x = L∇~xH(~x) (10)

where ˙ denotes δ/δζ,

~x = [Ψ,Ψ?], (11)

I is the n× n unit matrix, and L is the symplectic gradient of H(~x)

L =

(
0 I
−I 0

)
. (12)

Equation (10) follows from

i

(
Ψ̇

Ψ̇?

)
=

(
0 I
−I 0

)(
∇ΨH
∇Ψ?H

)
which is identical to (9).

The fixed (or equilibrium or critical ) points of (10) satisfy

∇~xH(~x) = 0, (13)

or equivalently

δH

δΨ?
= 0,

δH

δΨ
= 0.

Using the standard representation

H =
1

2
〈Ψζ ,Ψζ〉+ V (Ψ) (14)

for the Hamiltonian, this implies

~∇ΨV = 0

or

δV

δΨ
= 0. (15)

At a fixed point ~x0 = [Ψ0,Ψ0
?], the Jacobian matrix of (10) is

J(~x0) = LH (16)

where

H ≡

[
δ2H

δxiδxj

]
~x0

=

(
V 0
0 I

)
(17)

from (14). Here

V =

[
δ2V

δΨiδΨj

]
~x0

(18)

Hence, we have
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J(~x0) =

(
0 I
−I 0

)(
V 0
0 I

)
=

(
0 I
−V 0

)
(19)

whose eigenvalues λ satisfy the characteristic equation

|V + λ2I| = 0 (20)

Since the matrix V is symmetric, its eigenvalues are real and the solutions λ of (20) are thus either real or purely
imaginary. Thus, as claimed earlier, Hopf bifurcations cannot occur in Hamiltonian systems. The introduction of
dissipation allows the occurrence of Hopf bifurcation and introduces the various pulsating solitary wave structures
which occur in the CGLE.

A. Variational equations

1. Pulsating solitons

Pulsating solitons are localized structures with profile that pulsates along the propagation direction They exist as
isolated structures in space and they repeat periodically along t direction. They have been investigated before in the
context of nonlinear optics by [2, 3, 30, 38]. This paper is an extention of our previous work [30] where we analyzed in
detail the plain pulsation soliton using a variational mechanism developed by Kaup and Malomed [24–27]. For plain
pulsating solitons, the speed is always zero and we take

φ1(t) = φ2(t) = 0. (21)

Therefore, the trial functions (3) become

A(x, t) = A1(t)e−σ(t)2x2

eiα(t) (22)

r(x, t) = e−σ(t)2x2

Substituting into (8), and by choosing m = 1, the simplified effective Lagrangian becomes

LEFF =

√
π

6σ(t)2

[
6A1(t)3σ(t)

(
b3 cosα(t) + c3 sinα(t)

)
+
√

2

(
2
√

3A1(t)5σ(t)
(
b5 cosα(t) + c5 sinα(t)

)
+6Ȧ1(t)σ(t) cosα(t)− 6A1(t)σ(t) sinα(t)

(
c1σ(t)2 + α̇(t)

)
−3A1(t) cosα(t)

(
σ̇(t) + 2εσ(t)− 2b1σ(t)3

))]
(23)

We are left with three ansatz parameters A1(t), σ(t) and α(t) in LEFF for which we will write the EL variational
equations

∂LEFF
∂ ? (t)

− d

dt

(∂LEFF
∂?̇(t)

)
= 0,

where ? refers to A1, σ, or α. Solving for ?̇(t) it yields to a 3D dynamical system

Ȧ1(t) = f1[A1(t), σ(t), α(t)]

σ̇(t) = f2[A1(t), σ(t), α(t)]

α̇(t) = f3[A1(t), σ(t), α(t)], (24)

where fi, i = 1, 2, 3 are complicated nonlinear functions of the arguments, see Fig. 1 in Appendix.
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TABLE I: Parameters of the CGLE

Solitons ε b1 c1 b3 c3 b5 c5
pulses -0.100 0.080 0.500 -0.660 1.000 0.100 -0.100
snakes -0.100 0.080 0.500 -0.835 1.000 0.110 -0.080

2. Snake solitons

For this class of solutions, we require the position φ1(t) (and phase) to vary [2], and we choose choose m = 1 and
σ(t) = 2

φ(t) , for the 3D dynamical systems. Thus, (3) become

A(x, t) = A1(t)e
− 4
φ(t)2

[x−φ(t)]2

eiα(t) (25)

r(x, t) = e
− 4
φ(t)2

x2

Substituting into (8), the simplified effective Lagrangian becomes

LEFF =

√
π

12e
10
3 φ(t)

[
6e

1
3A1(t)3φ(t)2

(
b3 cosα(t) + c3 sinα(t)

)
+2
√

6A1(t)5φ(t)2
(
b5 cosα(t) + c5 sinα(t)

)
−3
√

2e−
4
3

(
− 2A1(t) sinα(t)

(
− 12c1 + φ(t)2 ˙α(t)

)
+ cosα(t)

(
− 2φ2(t)α̇(t) +A1(t)(24b1 + 2εφ2(t) + 3φ(t)φ̇(t))

))]
(26)

As in the previous case, we are left with three parameters A1(t), φ(t) and α(t) in LEFF . Varying them we obtain

∂LEFF
∂ ? (t)

− d

dt

(∂LEFF
∂?̇(t)

)
= 0,

where ? refers to A1, φ, or α. Solving for ?̇(t) the 3D system is,

Ȧ1(t) = f4[A1(t), φ(t), α(t)]

φ̇(t) = f5[A1(t), φ(t), α(t)]

α̇(t) = f6[A1(t), φ(t), α(t)], (27)

where fi, i = 4, 5, 6 are complicated nonlinear functions of the arguments, see Fig. 2 in Appendix.

B. Numerical simulations

Using the variational formulation, and by varying the parameters of the ansatz (22), (25), we obtain two systems
of highly nonlinear ODEs, (24), (27) which can be written in compact form as

d~u
dt = ~F (~u, ~p) , t ∈ [0, T ]; ~u(0) = ~u0, (28)

where ~u = (A1, σ, α), ~F = (f1, f2, f3) for pulses, ~u = (A1, φ, α), ~F = (f4, f5, f6) for snakes, and ~p =
(b1, b3, b5, c1, c3, c5, ε) is a constant vector that depends on the system parameters listed in the Table I.

For our purposes the ODEs have been solved numerically for different parameters ~p using RK4 method with constant
initial conditions: A1(0) = A0, σ(0) = σ0, α(0) = α0 for pulses and A1(0) = A0, φ(0) = φ0, α(0) = α0 for snakes.
The initial conditions ~u0 used were the fixed points of the EL equations that we found numerically by solving the

algebraic system ~F (~u, ~p) = ~0 of transcendental equations.
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C. Hopf bifurcations

We derive the conditions for the temporal Hopf bifurcations of the fixed points. The conditions for supercritical
temporal Hopf bifurcations, leading to stable periodic orbits of A1(t), σ(t) or φ(t), and α(t) are evaluated using the
method of multiple scales from Sect. IV. These are the conditions or parameter regimes where they exhibit stable
periodic oscillations, and hence stable pulsating solitons and snakes will exist within our variational formulation. Note
that periodic oscillations of A1(t), σ(t) or φ(t), and α(t), correspond to a spatiotemporal pulsating soliton structure
of the |A(x, t)|.

For a typical fixed point ~u0 , the characteristic polynomial of the Jacobian matrix of (24), (27) is

λ3 + δ1λ
2 + δ2λ+ δ3 = 0 (29)

where δi with i = 1, 2, 3 depend on both the system parameters ~p and the fixed points ~u0 . To be a stable fixed point
within the linearized analysis, all the eigenvalues must have negative real parts. Using the Routh-Hurwitz criterion,
the necessary and sufficient conditions for (29) to have Re(λ1,2,3) < 0 are:

δ1 > 0, δ3 > 0, δ1δ2 − δ3 > 0. (30)

On the contrary, one may have the onset of instability of the plane wave solution occurring in one of two ways. In
the first case, one eigenvalue of the Jacobian becomes non-hyperbolic by going through zero when

δ3 = 0. (31)

Equation (31) is thus the condition for the onset of “static” instability of the plane wave. Whether this bifurcation
is a pitchfork or transcritical one, and its subcritical or supercritical nature, may be readily determined by deriving
an appropriate canonical system in the vicinity of (31) using any variety of normal forms or perturbation methods.

The second dynamic instability is when a pair of eigenvalues of the Jacobian become purely imaginary. The
consequent Hopf bifurcation at

δ1δ2 − δ3 = 0 (32)

leads to the onset of periodic solutions of the dynamical systems (24), (27) (dynamic instability or “flutter”).

D. Effects of system parameters on the shape of the solitons

Within the regimes of stable periodic solutions, we investigate:
a) the effects of the system’s parameters on the shape and structure of the solitons, and
b) the period doubling sequences as the above system parameters are varied.

To study the effects of system parameters on the shape and the stability of the solitons, we integrate (24), (27)
numerically for different sets of the various system parameters within the regime of stable periodic solutions. The
resulting periodic time series for A1(t), σ(t) or φ(t) and α(t) are substituted in (22), and (25) whose spatiotemporal
structure is plotted. As the various system parameters within the stable regime are varied, the effects of the soliton
amplitude, width, and phase are studied.

IV. STABILITY ANALYSIS OF PERIODIC ORBITS

We develop a generalized 3D multiple scales method to construct analytical approximations for the periodic orbits
[11] arising through Hopf bifurcation of the fixed point of the EL equations (24), (27). For both systems the limit
cycle is determined by expanding the amplitude A1(t), width σ(t) or speed φ(t), and phase α(t), using progressively
slower spatial scales.

In the standard way, we write the various or multiple scales as z = Z0, Z1 = δZ0, Z2 = δ2Z0, · · · , where δ is the
usual multiple scales expansion parameter. We shall expand in powers of δ, to separate the various scales, and then
set δ = 1 at the end. We chose the cubic gain parameter b3, as the control or bifurcation parameter. The expansion
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takes the form (throughout the section for snakes one shall use expansion in φ instead of σ)

A1 = A11(Z0, Z1, Z2) + δA12(Z0, Z1, Z2) + δ2A13(Z0, Z1, Z2) · · · , (33)

σ = σ1(Z0, Z1, Z2) + δσ2(Z0, Z1, Z2) + δ2σ3(Z0, Z1, Z2) · · · , (34)

α = α1(Z0, Z1, Z2) + δα2(Z0, Z1, Z2) + δ2α3(Z0, Z1, Z2) · · · . (35)

Using the chain rule, the spatial derivative becomes

d

dZ
= D0 + δD1 + δ2D2 + · · · , (36)

where Dn = ∂
∂Zn

. The delay parameter b3 is ordered as

b3 = b30 + δ2b32, (37)

where b30 is the critical value such that (30) is not satisfied, (i.e. b30 is a solution of (32). This is standard for this
method [13], as it allows the influence from the nonlinear terms and the control parameter to occur at the same order.

Using (33)- (37) and equating like powers of δ yields equations at O(δi) of the form:

d

dZ0
~xi +

 f1v f2v f3v

f1w f2w f3w

f1z f2z f3z

 ~xi = ~Si,j (38)

where, i = 1, 2, 3, represents the order, j = 1, 2, 3 represents the equations’ number, and ~Si,j is the source or
inhomogeneous term for the jth equation at O(δi),

~xi =

 A1i(Z0, Z1, Z2)
σi(Z0, Z1, Z2)
αi(Z0, Z1, Z2)

 .

Here,  f1v f2v f3v

f1w f2w f3w

f1z f2z f3z

 = J
[∂f1, ∂f2, ∂f3

∂A1, ∂σ, ∂α

]
(39)

where J is the Jacobian matrix of (24), (27), evaluated numerically at the fixed points ~u0. For all orders, the

structure of the equations is the same, only the source terms ~Si,j are different, and they are represented below order
by order.

O(δ1) :

S1,j = 0 (40)

O(δ2) :
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S2,1 =
1

2
(f1vvA

2
11 + f1wwσ

2
1 + f1zzα

2
1) (41)

+ f1vwA11σ1 + f1vzA11α1 + f1wzσ1α1 − 2D1A11

S2,2 =
1

2
(f2vvA

2
11 + f2wwσ

2
1 + f2zzα

2
1) (42)

+ f2vwA11σ1 + f2vzA11α1 + f2wzσ1α1 − 2D1σ1

S2,3 =
1

2
(f3vvA

2
11 + f3wwσ

2
1 + f3zzα

2
1) (43)

+ f1vwA31σ1 + f3vzA11α1 + f3wzσ1α1 − 2D1α1

O(δ3) :

S3,1 =
1

6
(f1vvvA

3
11 + f1wwwσ

3
1 + f1zzzα

3
1) (44)

+
1

2
(f1vvwA

2
11σ1 + f1vvzA

2
11α1 + f1wwzσ

2
1α1 + f1vzzA11α

2
1 + f1wzzσ1α

2
1 + f1vwwA11σ

2
1)

+ g1vA11 + g1wσ1 + g1zα1 + f1vvA11A12 + f1wwσ1σ2 + f1zzα1α2

+ f1vz(A11α2 +A12α1) + f1vw(A11σ2 +A12σ1) + f1wz(σ1α2 + σ2α1)

+ f1wzA11σ1α1 −D2A11 −D1A12

S3,2 =
1

6
(f2vvvA

3
11 + f2wwwσ

3
1 + f2zzzα

3
1) (45)

+
1

2
(f2vvwA

2
11σ1 + f2vvzA

2
11α1 + f2wwzσ

2
1α1 + f2vzzA11α

2
1 + f2wzzσ1α

2
1 + f2vwwA11σ

2
1)

+ g2vA11 + g2wσ1 + g2zα1 + f2vvA11A12 + f2wwσ1σ2 + f2zzα1α2

+ f2vz(A11α2 +A12α1) + f2vw(A11σ2 +A12σ1) + f2wz(σ1α2 + σ2α1)

+ f2wzA11σ1α1 −D2σ1 −D1σ2

S3,3 =
1

6
(f3vvvA

3
11 + f3wwwσ

3
1 + f3zzzα

3
1) (46)

+
1

2
(f3vvwA

2
11σ1 + f3vvzA

2
11α1 + f3wwzσ

2
1α1 + f3vzzA11α

2
1 + f3wzzσ1α

2
1 + f3vwwA11σ

2
1)

+ g3vA11 + g1wσ1 + g3zα1 + f3vvA11A12 + f3wwσ1σ2 + f3zzα1α2

+ f3vz(A11α2 +A12α1) + f3vw(A11σ2 +A12σ1) + f3wz(σ1α2 + σ2α1)

+ f3wzA11σ1α1 −D2α1 −D1α2

Here, the gi functions are obtained by using (37) in fi as this variation will introduce additional terms of higher
order. i.e. fi → fi + δ2gi. So the new fi will contain b30 terms and represents the fact that we are situated on the
Hopf bifurcation curve, while gi’s contain b32 terms, and shows how far we are from the curve.

Now we will proceed to solve (38) order by order. Since the sources for the first order system are identically zero,
we may assume the first order solution of (38) to be

~x1 =

 β1

γ1

η1

 e−iω0Z0 + c.c., (47)

and substituting back this solution into (38), we obtain the eigenvalue ω0, with corresponding eigenvector ~x1. By
looking at the characteristic polynomial of the Jacobian matrix of (29) we obtain

δ2 = ω2
0 = −f1wf2v + f1vf2w − f1zf3v + f1vf3z + f2wf3z. (48)
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Hence, the first order solution of (38), ~x1 can be written as

A11 = (a+ ib)θ(Z1, Z2)eiω0Z0 + (a− ib)θ̄(Z1, Z2)e−iω0Z0 (49)

σ1 = (c+ id)θ(Z1, Z2)eiω0Z0 + (c− id)θ̄(Z1, Z2)e−iω0Z0 (50)

α1 = θ(Z1, Z2)eiω0Z0 + θ̄(Z1, Z2)e−iω0Z0 , (51)

where η1 is taken to be 1, β1 ≡ a+ ib, and γ1 ≡ c+ id. Now, since the first order solutions (49), (50), and (51) are
known, the second order sources S2,j are evaluated via (41)- (43) which take the form

~S2,j =

 S
(0)
2,1

S
(0)
2,2

S
(0)
2,3

+

 S
(1)
2,1

S
(1)
2,2

S
(1)
2,3

 eiω0Z0 +

 S
(2)
2,1

S
(2)
2,2

S
(2)
2,3

 e2iω0Z0 + c.c., (52)

Setting the coefficients of the secular first harmonic or eiω0Z0 terms (which are the solutions of the homogeneous

equation) to zero, i.e. ~S
(1)
2,j = ~0 yields

D1θ =
∂θ

∂Z1
= 0 (53)

D1θ̄ =
∂θ̄

∂Z1
= 0.

Using (53), (49)- (52), and the second order sources (52), and by assuming a second order particular solution of
(38) of the type

~x2 =

 A
(0)
12

σ
(0)
2

α
(0)
2

+

 A
(2)
12

σ
(2)
2

α
(2)
2

 e2iω0Z0 + c.c., (54)

we solve the system (38) for the unknowns A
(0)
12 , σ

(0)
2 , and α

(0)
2 , by looking at the homogeneous system, and for the

unknowns A
(2)
12 , σ

(2)
2 , and α

(2)
2 , by looking at the inhomogeneous system (38). Using the full second order solution

~x2, which includes the DC terms and the second harmonic terms, and the previously found first order solution ~x1, we
can find the third order sources via (44)- (46). By writing the third order sources as

~S3,j =

 S
(0)
3,1

S
(0)
3,2

S
(0)
3,3

+

 S
(1)
3,1

S
(1)
3,2

S
(1)
3,3

 eiω0Z0 + (55)

 S
(2)
3,1

S
(2)
3,2

S
(2)
3,3

 e2iω0Z0 +

 S
(3)
3,1

S
(3)
3,2

S
(3)
3,3

 e3iω0Z0 + c.c., (56)

we can find the coefficient of the secular terms eiω0Z0 terms, i.e. ~S
(1)
3,j . Now, the evolution equation can be found by

solving (57).  f1v + iω0 f2v f3v

f1w f2w + iω0 f3w

f1z f2z f3z + iω0

 ~x3 = ~S
(1)
3,j (57)

This system can be written in the compact form

(A− λI)~x3 = ~S
(1)
3,j , (58)

where λ = ±iω0 are the eigenvalues of A. By the Fredholm alternative, (58) has solution iff ~S
(1)
3,j ∈ Range(A− λI).
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The final evolution equation for the coefficients [33] in the linear solutions of (38) is obtained from∣∣∣∣∣∣∣
S

(1)
3,1 f2v f3v

S
(1)
3,2 f2w + iω0 f3w

S
(1)
3,3 f2z f3z + iω0

∣∣∣∣∣∣∣ = 0 (59)

From (59), we have the evolution equation on the slow second order Z2 scale

∂θ

∂Z2
= S1θ

2θ̄ + S2θ. (60)

Writing θ = 1
2Ae

iζ and separating (59) into real and imaginary parts, yields

∂A

∂Z2
=
S1rA

3

4
+ S2rA, (61)

where S1r and S2r represent the real parts of S1 and S2 respectively. In the usual way, the fixed points of (59),
(A1, A2,3) where

A1 = 0,

A2,3 = ±2

√
−S2r

S1r
(62)

give the amplitude of the solution θ = 1
2Ae

iζ , with A2,3 corresponding to the bifurcation periodic orbits. Clearly A2,3

are real fixed points whenever

S2r

S1r
< 0, (63)

and the Jacobian of the right hand side of (63) evaluated at A2,3 is J |A2,3 = −2S2r, where J(A) =
∂(
S1rA

3

4 +S2rA)

∂A .
Clearly, a necessary condition for stability is to have S2r > 0, and for instability S2r < 0. Thus, the system undergoes:

a) supercritical Hopf bifurcations when

S2r > 0, S1r < 0, (64)

b) subcritical Hopf bifurcations when

S2r < 0, S1r > 0. (65)

We use (64) next to identify regimes of supercritical bifurcations where the solutions of the EL equations (24) or
(27) for pulsating or snake solitons will result in oscillations of A1(t), σ(t) or φ(t) and α(t) that when substituted into
ansatz will lead to pulsating and snake solitons.

V. RESULTS FOR THE PLANE PULSATING SOLITON

An example of a plain pulsating solitonobtained using the RK4 method on (28) in Fortran is shown in Fig. 3 using
the ansatz (22). It has a different shape at each time t, since it evolves, but it recovers its exact initial shape after a
period.

To derive the conditions for occurrence of stable periodic orbits of A1(t), σ(t), and α(t), first we fix a set of system
parameters b1 = 0.08, b5 = 0.1, c1 = 0.5, c3 = 1, c5 = −0.1, see line 1 of Table I. Then, we find numerically the fixed
points of 24. By the Ruth-Hurwitz conditions, the Hopf curve is defined as δ1δ2− δ3 = 0. This condition, along with
the equations of the fixed points leads to onset of periodic solutions of (24).

On the Hopf bifurcation curve we find that b3 = −0.216825, and ε = −0.345481, while the fixed points are
~u0 = (A1(0), σ(0), α(0)) = (0.954712, 0.917093,−0.181274) Using these values of b3 and ε, Hopf bifurcations occur in
this system leading to periodic orbits [11].
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Next, we plot the time series of the periodic orbit for the amplitude A1(t), and as expected, we noticed that the
amplitude was very small, since it is proportional to the square root of the distance from the Hopf curve.

To construct pulsating solitons with amplitudes large enough, one has move away from the Hopf curve while staying
inside of the parameters ranges for the existence of the pulsating soliton. First, we varied ε slowly away from the
Hopf curve. Repeating the above procedure to construct a pulsating soliton, we noticed that it still had very small
amplitudes A1(t), of magnitude only of 10−4. Hence, we decided to also vary the bifurcation parameter b3 instead. We
found that the domain of existence for the pulsating soliton as b3 varied was [−0.2531943,−0.1424], passing through
the Hopf curve value of b3Hopf = −0.216825. Within this range, we studied the effects on the shape and the stability,
as well as the various bifurcations that lead potentially to period doubling and quadrupling. For the largest value of
b3, i.e. b3 = −0.1424, we numerically integrate using RK4 method on (24), and we plot the periodic orbit, which is
shown in Fig. 5.

The resulting periodic time series for A1(t), σ(t), and α(t) from Fig. 5 are substituted in (22) whose spatiotemporal
structure is plotted in Fig. 5. We continued with the rest of the parameters c1, c3, c5, b1, b5 within the stable regime
and the effects on amplitude, width, position, phase speed (and, less importantly, phase) were analyzed. We also
showed the orbit and the plane pulsating soliton for the smallest value of b3 = −0.2531943 in Fig. 6.

Next, we consider the detailed effects of varying the parameter b3. For the chosen values of the system parameters of
b1 = 0.08, b5 = 0.1, c1 = 0.5, c3 = 1, c5 = −0.1, and ε = −0.345481, the Hopf bifurcation occurs at b3Hopf = −0.216825

First, let us consider values of b3 > b3Hopf . There is a stable and robust periodic orbit to this side which becomes
larger and deforms as b3 is increased up to −0.1424. A representative periodic orbit is in Fig. 5.

Next, moving to values smaller than b3Hopf , we see a clean, periodic orbit which slowly grows in size as b3 is made
more negative. The periodic orbit, time series, and solitary waves are qualitatively similar to those for b3 > b3Hopf .

However, more interesting dynamics is seen as b3 is decreased further. The periodic orbit goes unstable via a very
rapid, complete cascade of period-doubling bifurcations between b3 = −0.25, and b3 = −0.2516. In Fig. 7 we show
the period doubled orbit for b3 = −0.2516. The orbit at b3 = −0.2531943 after many more period doublings is shown
in Fig. 6. The corresponding solitary wave solution is shown in Fig. 6. Note also that one may track the complete
cascade of period doublings using software such AUTO or DERPER, or using the schemes of Holodniok and Kubicek
[23].

Next, we explain effect of all the various parameters in the CGLE (1) on the shape (amplitude, width, period) and
stability of the pulsating solitary wave. In considering the parameter effects on the solitary wave shape and period,
note that the wave is a spatially coherent structure (or a “collective coordinate” given by the trial function) whose
parameters oscillate in time. Hence, the temporal period of the pulsating soliton is the same as the period T of the
oscillations of A1(t), σ(t), and α(t) on their limit cycle. As for the peak amplitude and peak width of the pulsating
wave, these are determined by the peak amplitude A1p of A1(t), and the reciprocal of the peak amplitude σp of σ(t)
respectively, i.e. at any time t when the amplitude is maximum, the width will be minimum, and vice versa.

Keeping the above in mind, we varied the parameters of the CGLE in turn and observed the resulting effects on
A1p (the peak amplitude), σp (the inverse width), and T (the temporal period) of the pulsating soliton:
(i) For increased b1, the values of A1p, σp, and T all increase.
(ii) Increasing b5 augments all of A1p, σp, and T .
(iii) Raising c1 increases A1p, σp, and T .
(iv) Incrementing c3 decreases all of A1p, σp, and T .
(v) Augmenting c5 causes a decrease in A1p, σp, and T .
(vi) Raising ε causes A1p, σp, and T to fall. These results can be seen in Figs.8,9. The results in cases (a),(c),(e) of
Figs. 8, 9 are to be compared with the plane pulsating soliton obtained by numerical simulations from Fig. 3. The
results in cases (b),(d),(f) of Figs. 8, 9 are to be compared with the plane pulsating soliton obtained by variational
approximation from Fig. 6. The above analysis constitutes our detailed predictions of the various parameters in the
CGLE on the amplitude, inverse width, and temporal width of the pulsating solitons. We have verified that each set
of predictions (a)-(f) above agree when the corresponding parameter is varied in the solitary wave simulation shown
in Fig. 3. Note also that A1(t) and σ(t) are always in phase, so that A1p and σp occur simultaneously. Thus, the
pulsating solitons are tallest where they have least width. This is also consistent with the simulations of [2, 6, 38].

VI. RESULTS FOR THE SNAKE SOLITONS

An example of a snake soliton is shown in Fig. 4 using the trial functions (25). The soliton would now “snake”
or wiggle as its position varies periodically. Note that the amplitude of the field |A(x, t)| varies periodically as A1(t)
varies, but there would be additional amplitude modulation due to the periodic variation of φ(t).

To derive the conditions for occurrence of stable periodic orbits of A1(t), φ(t), and α(t), we proceeded as follows.
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First, we fixed the set of parameters b1 = 0.08, b5 = 0.11, c1 = 0.5, c3 = 1, c5 = −0.08. Then, we solved numerically
the system of transcendental equations (27). On the Hopf bifurcation curve we got that b3Hopf = −1.89646, and
ε = −0.297393, while the fixed points were ~u0 = (A1(0), φ(0), α(0)) = (0.583236, 1.05969, 0.185515). To construct
snake solitons with amplitudes large enough, we had to move again away from the Hopf curve. For the value of
b3 = −0.835, and ε = −0.1 we numerically integrate using RK4 method the three differential equations (27). The
resulting periodic time series for A1(t), φ(t), and α(t) were inserted in (25) whose spatiotemporal structure is plotted.
Fig. 10 shows the periodic time series for amplitude A1(t), position φ(t), and phase α(t) for b3 = −0.835. When we
increase b3 to −0.61 the oscillations are slightly increasing while the period is decreasing, so the snakes wiggles more,
see Fig. 11. Furthermore, when we increase ε to −0.08 we see an accentuated decrease in period, see Fig. 12.

In considering the parameter effects on snake shape and period, note that the snake is a spatially coherent structure
(or a “collective coordinate” given by the trial function) whose parameters oscillate in time. Hence, the temporal
period of the snake is the same as the period T of the oscillations of A1(t), φ(t), and α(t) on their limit cycle. As for
the peak amplitude and peak position of the snake, these are determined by the peak amplitude A1p of A1(t), and the
peak position φp of φ(t) respectively. Notice that from (25) we can regard the width and the amplitude of the snake
as being inverse proportional with position φ(t) for the snake i.e., at any time t when the amplitude is minimum,
the width will be minimum, so the position is maximum and vice versa. So, maximum deflection from the horizontal
position x = const. is obtained when the position of the snake is maximum, and hence the width and amplitude are
minimum. This can be clearly seen in Figs. 13, 14.

Keeping the above in mind, we varied the parameters of the CGLE and we observed the resulting effects on A1p

(the peak amplitude), φp (the position), and T (the temporal period) of the snake soliton:
(vii) For increased b1, the values of A1p, φp, and T all increase.
(viii) Increasing b3 augments all of A1p, φp, and T .
(ix) Increasing b5 increases all of A1p, φp, and T .
(x) Raising c1 increases A1p, φp, but decreases T .
(xi) Incrementing c3 decreases all of A1p, φp, and T .
(xii) Augmenting c5 causes a decrease in A1p, φp, and increases T .
(xiii) Raising ε causes A1p, σp to rise, but T to fall.

The above above analysis constitutes our detailed predictions of the various parameters in the CGLE on the
amplitude, position, and temporal width of the snake solitons. We have verified that each set of predictions (g)-(m)
above agree when the corresponding parameter is varied in the solitary wave simulation shown in Fig. 4. Note also
that A1(t) and φ(t) are always in phase, so that A1p and φp occur simultaneously. Thus, the pulsating solitons are
tallest where they have most width. This is completely consistent with our simulation in Fig. 4, as well as those in
[6].

VII. CONCLUSIONS

In this article we have developed a comprehensive theoretical framework for analyzing the full spatiotemporal
structure of both pulsating and snake solitary waves in the complex cubic-quintic Ginzburg-Landau equation. This
includes elucidating the mechanism operative in creating these new classes of solitons in dissipative systems, as well as
their absence in Hamiltonian and integrable systems where only stationary solitons are observed to occur. The results
obtained analytically using the variational approximation for the snaking soliton is compared with the numerical
simulations of the CCQGLE using the RK4 method.

The specific theoretical modeling includes the use of a variational formulation and significantly generalized trial
function for the solitary waves solutions. In addition, the resulting Euler-Lagrange equations are treated in an entirely
different way by looking at their stable periodic solutions (or limit cycles) resulting from supercritical Hopf bifurcations.
Oscillations of their trial function parameters on these limit cycles provide the pulsations of the amplitude, width,
and phase of the solitons. The model also allows for detailed predictions regarding the other issue of central interest
for the pulsating and snake solitons, viz. the effect of each of the system parameters on the amplitude, width, period,
and stability of the solitary waves.

Also, given the generality of the theoretical framework developed in this paper, it provides a platform for the
detailed modeling of chaotic, creeping and erupting solitary waves, which are focus of current work in this area.

VIII. APPENDIX

1. For the pulsating solitons, the nonlinear functions fi, i = 1, 2, 3 from (24) are shown in Fig. 1.
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FIG. 1: Nonlinear functions fi, i = 1, 2, 3 from (24)

2. For the snaking solitons, the nonlinear functions fi, i = 4, 5, 6 from (27) are shown in Fig. 2.
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FIG. 2: Nonlinear functions fi, i = 4, 5, 6 from (27)
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FIG. 3: Plain pulsating soliton for b3 = −0.66 and ε = −0.1, b1 = 0.08, b5 = 0.1, c1 = 0.5, c3 = 1, c5 = −0.1
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FIG. 4: Snake soliton for b3 = −0.66 and ε = −0.1, b1 = 0.08, b5 = 0.11, c1 = 0.5, c3 = 1, c5 = −0.08
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(a) Numerical simulations b1 = 0.2
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(a) Numerical simulations c3 = 1.05

-2
0

2x
0

5

10

15

t
0

0.25
0.5

0.75
ÈA@x,tDÈ

-2
0

2x

(b) Variational approximation c3 = 1.05

(c) Numerical simulations c5 = −0.075

-2
0

2x
0

5

10

15

t
0

0.25
0.5

0.75
ÈA@x,tDÈ

-2
0

2x

(d) Variational approximation c5 = −0.08

(e) Numerical simulations ε = −0.08

-2
0

2x
0

5

10

15

t
0

0.25
0.5

0.75
ÈA@x,tDÈ

-2
0

2x

(f) Variational approximation ε = −0.06

FIG. 9: Predictions for the plane pulsating soliton cases (iv)-(vi)



26

0.52
0.54

0.56
0.58Φ@tD

0.9

0.95

1

1.05

Α@tD

0.14

0.16

0.18

A1@tD

0.52
0.54

0.56
0.58Φ@tD

0.9

0.95

1

1.05

Α@tD

0 10 20 30 40 50
t

0

0.2

0.4

0.6

0.8

1

1
A

@
t

D
,

Φ
@

t
D

,
Α

@
t

D

-10123

x

0

2

4

6

8

10

t

0

0.2

0.4

0.6

ÈA@x,tDÈ

-10123

x

0

2

4

6

8

10

t

FIG. 10: Periodic orbit, periodic time series, and snake soliton for b3 = −0.835 and ε = −0.1, b1 = 0.08, b5 = 0.11,
c1 = 0.5, c3 = 1, c5 = −0.08



27

0.6
0.65

0.7
0.75

0.8
Φ@tD

1.1

1.2

1.3

1.4

1.5

Α@tD

0.1

0.15

0.2

A1@tD

0.6
0.65

0.7
0.75

0.8
Φ@tD

1.1

1.2

1.3

1.4

1.5

Α@tD

0 10 20 30 40 50
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1
A

@
t

D
,

Φ
@

t
D

,
Α

@
t

D

-101234

x

0

2

4

6

8

10

t

0

0.2

0.4

0.6

0.8

ÈA@x,tDÈ

-101234

x

0

2

4

6

8

10

t

FIG. 11: Periodic orbit, periodic time series, and snake soliton for b3 = −0.61 and ε = −0.1, b1 = 0.08, b5 = 0.11,
c1 = 0.5, c3 = 1, c5 = −0.08



28

0.4
0.45

0.5
0.55Φ@tD

0.7

0.8

0.9

1

Α@tD

0.1

0.15

0.2

A1@tD

0.4
0.45

0.5
0.55Φ@tD

0.7

0.8

0.9

1

Α@tD

0 10 20 30 40 50
t

0

0.2

0.4

0.6

0.8

1

1
A

@
t

D
,

Φ
@

t
D

,
Α

@
t

D

-10123

x

0

2

4

6

8

10

t

0

0.2

0.4

ÈA@x,tDÈ

-10123

x

0

2

4

6

8

10

t

FIG. 12: Periodic orbit, periodic time series, and snake soliton for b3 = −0.66 and ε = −0.08, b1 = 0.08, b5 = 0.11,
c1 = 0.5, c3 = 1, c5 = −0.08



29

(a) Numerical simulations b1 = 0.1
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(a) Numerical simulations c3 = 1.135
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FIG. 14: Predictions for snake solitons cases (xi)-(xiii)
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