2,869 research outputs found

    Psychopower and Ordinary Madness: Reticulated Dividuals in Cognitive Capitalism

    Get PDF
    Despite the seemingly neutral vantage of using nature for widely-distributed computational purposes, neither post-biological nor post-humanist teleology simply concludes with the real "end of nature" as entailed in the loss of the specific ontological status embedded in the identifier "natural." As evinced by the ecological crises of the Anthropocene—of which the 2019 Brazil Amazon rainforest fires are only the most recent—our epoch has transfixed the “natural order" and imposed entropic artificial integration, producing living species that become “anoetic,” made to serve as automated exosomatic residues, or digital flecks. I further develop Gilles Deleuze’s description of control societies to upturn Foucauldian biopower, replacing its spacio-temporal bounds with the exographic excesses in psycho-power; culling and further detailing Bernard Stiegler’s framework of transindividuation and hyper-control, I examine how becoming-subject is predictively facilitated within cognitive capitalism and what Alexander Galloway terms “deep digitality.” Despite the loss of material vestiges qua virtualization—which I seek to trace in an historical review of industrialization to postindustrialization—the drive-based and reticulated "internet of things" facilitates a closed loop from within the brain to the outside environment, such that the aperture of thought is mediated and compressed. The human brain, understood through its material constitution, is susceptible to total datafication’s laminated process of “becoming-mnemotechnical,” and, as neuroplasticity is now a valid description for deep-learning and neural nets, we are privy to the rebirth of the once-discounted metaphor of the “cybernetic brain.” Probing algorithmic governmentality while posing noetic dreaming as both technical and pharmacological, I seek to analyze how spirit is blithely confounded with machine-thinking’s gelatinous cognition, as prosthetic organ-adaptation becomes probabilistically molded, networked, and agentially inflected (rather than simply externalized)

    Affective affordances and psychopathology

    Get PDF
    Self-disorders in depression and schizophrenia have been the focus of much recent work in phenomenological psychopathology. But little has been said about the role the material environment plays in shaping the affective character of these disorders. In this paper, we argue that enjoying reliable (i.e., trustworthy) access to the things and spaces around us — the constituents of our material environment — is crucial for our ability to stabilize and regulate our affective life on a day-today basis. These things and spaces often play an ineliminable role in shaping what we feel and how we feel it; when we interact with them, they contribute ongoing feedback that " scaffolds " the character and temporal development of our affective experiences. However, in some psychopathological conditions, the ability to access to these things and spaces becomes disturbed. Individuals not only lose certain forms of access to the practical significance of the built environment but also to its ​ regulative​ significance, too — and the stability and organization of their affective life is compromised. In developing this view, we discuss core concepts like " affordance spaces " , " scaffolding " , and " incorporation ". We apply these concepts to two case studies, severe depression and schizophrenia, and we show why these cases support our main claim. We conclude by briefly considering implications of this view for developing intervention and treatment strategies

    Spotlight on dream recall. The ages of dreams

    Get PDF
    Brain and sleep maturation covary across different stages of life. At the same time, dream generation and dream recall are intrinsically dependent on the development of neural systems. The aim of this paper is to review the existing studies about dreaming in infancy, adulthood, and the elderly stage of life, assessing whether dream mentation may reflect changes of the underlying cerebral activity and cognitive processes. It should be mentioned that some evidence from childhood investigations, albeit still weak and contrasting, revealed a certain correlation between cognitive skills and specific features of dream reports. In this respect, infantile amnesia, confabulatory reports, dream-reality discerning, and limitation in language production and emotional comprehension should be considered as important confounding factors. Differently, growing evidence in adults suggests that the neurophysiological mechanisms underlying the encoding and retrieval of episodic memories may remain the same across different states of consciousness. More directly, some studies on adults point to shared neural mechanisms between waking cognition and corresponding dream features. A general decline in the dream recall frequency is commonly reported in the elderly, and it is explained in terms of a diminished interest in dreaming and in its emotional salience. Although empirical evidence is not yet available, an alternative hypothesis associates this reduction to an age-related cognitive decline. The state of the art of the existing knowledge is partially due to the variety of methods used to investigate dream experience. Very few studies in elderly and no investigations in childhood have been performed to understand whether dream recall is related to specific electrophysiological pattern at different ages. Most of all, the lack of longitudinal psychophysiological studies seems to be the main issue. As a main message, we suggest that future longitudinal studies should collect dream reports upon awakening from different sleep states and include neurobiological measures with cognitive performance

    Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    Get PDF
    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders

    Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    Get PDF
    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain-behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders

    The Visual Social Distancing Problem

    Get PDF
    One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this manuscript and they are listed by alphabetical order. Under submissio

    Integrative visual augmentation content and its optimization based on human visual processing

    Get PDF
    In many daily visual tasks, our brain is remarkably good at prioritizing visual information. Nonetheless, it is undoubtedly not always capable of performing optimally, and all the more so in the ever-evolving demanding world. Supplementary visual guidance could enrich our lives from many perspectives on the individual and population scales. Through rapid technological advancements such as VR and AR systems, diverse visual cues demonstrate a powerful potential to deliberately guide attention and improve users’ performance in daily tasks. Currently, existing solutions are confronting the challenge of overloading and overruling the natural strategy of the user with excessive visual information once digital content is superimposed on the real-world environment. The subtle nature of augmentation content, which considers human visual processing factors, is an essential milestone towards developing adaptive, supportive, and not overwhelming AR systems. The focus of the present thesis was, thus, to investigate how the manipulation of spatial and temporal properties of visual cues affects human performance. Based on the findings of three studies published in peer-reviewed journals, I consider various everyday challenging settings and propose perceptually optimal augmentation solutions. I furthermore discuss possible extensions of the present work and recommendations for future research in this exciting field

    Acute stress affects peripersonal space representation in cortisol stress responders.

    Get PDF
    Peripersonal space is the representation of the space near the body. It is implemented by a dedicated multisensory-motor network, whose purpose is to predict and plan interactions with the environment, and which can vary depending on environmental circumstances. Here, we investigated the effect on the PPS representation of an experimentally induced stress response and compared it to a control, non-stressful, manipulation. We assessed PPS representation in healthy humans, before and after a stressful manipulation, by quantifying visuotactile interactions as a function of the distance from the body, while monitoring salivary cortisol concentration. While PPS representation was not significantly different between the control and experimental group, a relation between cortisol response and changes in PPS emerged within the experimental group. Participants who showed a cortisol stress response presented enhanced visuotactile integration for stimuli close to the body and reduced for far stimuli. Conversely, individuals with a less pronounced cortisol response showed a reduced difference in visuotactile integration between the near and the far space. In our interpretation, physiological stress resulted in a freezing-like response, where multisensory-motor resources are allocated only to the area immediately surrounding the body
    • 

    corecore