6 research outputs found

    Human performance in the task of port placement for biosensor use

    Full text link
    Background We conducted a study of participants' abilities to place a laparoscopic port for in vivo biosensor use. Biosensors have physical limitations that make port placement crucial to proper data collection. A new port placement algorithm enabled evaluation of port locations, using segmented patient data in a virtual environment. Methods Port placement scoring algorithms were integrated into an image-guided surgery system. Virtual test scenes were created to evaluate various scenarios encountered during biosensor use. Participants were scored based on their ability to choose a port location from which points of interest could be scanned with a biosensor. Participants' scores were also compared to those of a port placement algorithm. Results The port placement algorithm consistently outscored participants by 10–25%. Participants were inconsistent from trial to trial and from participant to participant. Conclusion Port placement for biosensor procedures could be improved through training or augmentation. Copyright © 2010 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75793/1/300_ftp.pd

    Augmented Reality for Port Placement and Navigation in Robotically Assisted Minimally Invasive Cardiovascular Surgery

    No full text
    Optimal port placement and intra-operative navigation in robotically assisted minimally invasive cardiovascular surgery are essential for the improvement and success of a teleoperator based heart operation. A new system incorporating both port placement planning and intraoperative navigation was established. Offline the optimal port placement is planned on a threedimensional virtual reconstruction of the patient's computed tomography scan. Using this planned data an accurate in-vivo port placement can be performed, which is achieved by augmented reality techniques superimposing virtual models of the thorax and the teleoperator arms on their real world counterparts. A significant reduction of operation time may be obtained by a precise and collision-free planning and placement of teleoperator arms. Collision detection techniques are expected to allow for avoidance of consecutive new port placement by detecting intersections of instruments among each other and with the patient's anatomy. Endoscopic failure or switching to open surgery may be evaded

    Design-centric Method for an Augmented Reality Robotic Surgery

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Optimal Port Placement And Automated Robotic Positioning For Instrumented Laparoscopic Biosensors

    Get PDF
    OPTIMAL SURGICAL PORT PLACEMENT AND AUTOMATED ROBOTIC POSITIONING FOR RAMAN AND OTHER BIOSENSORS by BRADY KING January 2011 Advisors: Dr. Abhilash Pandya, Dr. Darin Ellis, Dr. Le Yi Wang, and Dr. Greg Auner Major: Computer Engineering Degree: Doctor of Philosophy Medical biosensors can provide new information during minimally invasive and robotic surgical procedures. However, these biosensors have significant physical limitations that make it difficult to find optimal port locations and place them in vivo. This dissertation explores the application of robotics and virtual/augmented reality to biosensors to enable their optimal use in vivo. In the first study, human performance in the task of port placement was evaluated to determine if computer intervention and assistance was needed. Using a virtual surgical environment, we present a number of targets on one or more tissue surfaces. A human factors study was conducted with 20 subjects that analyzed the subject\u27s placement of a port with the goal of scanning as many targets as possible with a biosensor. The study showed performance to be less than optimal with significant degradation in several specific scenarios. In the second study, an automated intelligent port placement system for biosensor use was developed. Patient data was displayed in an environment in which a surgeon could indicate areas of interest. The system utilized biosensor physical limitations and provided the best port location from which the biosensor could reach the targets on a collision-free path. The study showed that it is possible to find an optimal port location for proper biosensor data capture. In the final study, a surgical robot was investigated for potential use in holding and positioning a biosensor in vivo. A full control suite was developed for an AESOP 1000, enabling the positioning of the biosensor without hand manipulation. It was found that the robot lacks the accuracy needed for proper biosensor utilization. Specific causes for the inaccuracies were identified for analysis and consideration in future robotic platforms. Overall, the results show that the application of medical robotics and virtual/augmented reality is able to overcome of the significant physical limitations inherent to biosensor design that currently limit their use in surgery. We conjecture that a complete system, with a more accurate robot, could be used in vivo. We believe that results taken from the individual studies will result in improvements to pre-operative port placement and robotic design

    Ανάπτυξη τεχνολογιών επαυξημένης πραγματικότητας στην ιατρική εκπαίδευση με προσομοιωτές

    Get PDF
    Στην παρούσα διδακτορική διατριβή παρουσιάζουμε ένα πρωτοπόρο σύστημα εκπαίδευσης και αξιολόγησης βασικών δεξιοτήτων λαπαροσκοπικής χειρουργικής σε περιβάλλον Επαυξημένης Πραγματικότητας (ΕΠ). Το προτεινόμενο σύστημα αποτελεί μια πλήρως λειτουργική πλατφόρμα εκπαίδευσης η οποία επιτρέπει σε χειρουργούς να εξασκηθούν χρησιμοποιώντας πραγματικά λαπαροσκοπικά εργαλεία και αλληλεπιδρώντας με ψηφιακά αντικείμενα εντός ενός πραγματικού περιβάλλοντος εκπαίδευσης. Το σύστημα αποτελείται από ένα τυπικό κουτί λαπαροσκοπικής εκπαίδευσης, πραγματικά χειρουργικά εργαλεία, κάμερα και συστοιχία αισθητήρων που επιτρέπουν την ανίχνευση και καταγραφή των κινήσεων του χειρουργού σε πραγματικό χρόνο. Χρησιμοποιώντας το προτεινόμενο σύστημα, σχεδιάσαμε και υλοποιήσαμε σενάρια εκπαίδευσης παρόμοια με τις ασκήσεις του προγράμματος FLS®, στοχεύοντας σε δεξιότητες όπως η αίσθηση βάθους, ο συντονισμός χεριού-ματιού, και η παράλληλη χρήση δύο χεριών. Επιπλέον των βασικών δεξιοτήτων, το προτεινόμενο σύστημα χρησιμοποιήθηκε για τον σχεδιασμό σεναρίου εξάσκησης διαδικαστικών δεξιοτήτων, οι οποίες περιλάμβανουν την εφαρμογή χειρουργικών clips καθώς και την απολίνωση εικονικής αρτηρίας, σε περιβάλλον ΕΠ. Τα αποτελέσματα συγκριτικών μελετών μεταξύ έμπειρων και αρχαρίων χειρουργών που πραγματοποιήθηκαν στα πλαίσια της παρούσας διατριβής υποδηλώνουν την εγκυρότητα του προτεινόμενου συστήματος. Επιπλέον, εξήχθησαν σημαντικά συμπεράσματα σχετικά με την πιθανή χρήση της ΕΑ στην λαπαροσκοπική προσομοίωση. Η συγκεκριμένη τεχνολογία προσφέρει αυξημένη αίσθηση οπτικού ρεαλισμού και ευελιξία στον σχεδιασμό εκπαιδευτικών σεναρίων, παρουσιάζοντας σημαντικά μικρότερες απαιτήσεις από πλευράς εξοπλισμού σε σύγκριση με τις υπάρχουσες εμπορικές πλατφόρμες. Βάσει των αποτελεσμάτων της παρούσας διατριβής μπορεί με ασφάλεια να εξαχθεί το συμπέρασμα πως η ΕΠ αποτελεί μια πολλά υποσχόμενη τεχνολογία που θα μπορούσε να χρησιμοποιηθεί για τον σχεδιασμό προσομοιωτών λαπαροσκοπικής χειρουργικής ως εναλλακτική των υπαρχόντων τεχνολογιών και συστημάτων.In this thesis we present what is, to the best of our knowledge, the first framework for training and assessment of fundamental psychomotor and procedural laparoscopic skills in an interactive Augmented Reality (AR) environment. The proposed system is a fully-featured laparoscopic training platform, allowing surgeons to practice by manipulating real instruments while interacting with virtual objects within a real environment. It consists of a standard laparoscopic box-trainer, real instruments, a camera and a set of sensory devices for real-time tracking of surgeons’ actions. The proposed framework has been used for the implementation of AR-based training scenarios similar to the drills of the FLS® program, focusing on fundamental laparoscopic skills such as depth-perception, hand-eye coordination and bimanual operation. Moreover, this framework allowed the implementation of a proof-of-concept procedural skills training scenario, which involved clipping and cutting of a virtual artery within an AR environment. Comparison studies conducted for the evaluation of the presented framework indicated high content and face validity. In addition, significant conclusions regarding the potentials of introducing AR in laparoscopic simulation training and assessment were drawn. This technology provides an advanced sense of visual realism combined with a great flexibility in training task prototyping, with minimum requirements in terms of hardware as compared to commercially available platforms. Thereby, it can be safely stated that AR is a promising technology which can indeed provide a valuable alternative to the training modalities currently used in MIS
    corecore