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CHAPTER 1: INTRODUCTION AND MOTIVATION 

Medical biological sensors (biosensors) are a relatively new area of research.  Even more 

novel are sensors affixed to surgical tools, capable of gathering a multitude of types of data, 

obtaining information from inside the body.  Many different types of sensors are being 

developed such as various compound detectors, temperature measurement, ultrasound, 

optical spectroscopy, thermo imaging, and more [1-4].  For instance, biosensors based on 

Raman spectroscopy (a light-based sensing technique) have been shown to be very effective at 

identifying various forms of cancer [5-8].  Raman spectroscopy biosensors are now made in a 

probe form, similar to a laparoscopic camera, for use in vivo. 

An application where biosensors can play a significant role is surgical resection of 

cancerous tissue.  Cancer kills over 500,000 people each year in the U.S. alone [9, 10].  In many 

cases, a surgical resection is the most effective way of treating it.  However, there is no 

definitive way of determining the amount of tissue that should be excised.  A typical resection 

procedure consists of two phases.  The first, the intraoperative gross examination, involves the 

surgeon removing obvious tumor tissue.  The second phase, the postoperative histologic 

examination, is done by a pathologist who determines the margins of the tumor.  This process 

generally takes 24–48 hours, and it may result in a positive margin, indicating an incomplete 

resection.  Thus, a second procedure is required to remove cancer at the margins, further 

risking the patient’s life.  Research has shown that if negative margins (indicating a lack of 

cancer in the surrounding tissues) can be achieved, the need for follow-up procedures is greatly 

reduced [11, 12].  A frozen section analysis attempts to achieve this during the operation by 
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taking a small slice of the excised tissue and looking for evidence of tumor tissue at the margins.  

However, this is not a complete analysis due to its discrete approach.  Moreover, it can still take 

20 minutes per specimen tested, possibly adding hours to the operation.  During this process, 

the patient is still on the operating table, under the risk of infection and other complications. 

Recently, robotic surgery is increasingly being used in medical procedures [13].  With 

advantages such as motion scaling, tremor filtration, and dexterity enhancement, robotics is 

proving its ability to augment a surgeon’s performance.  Medical robots manipulate 

laparoscopic tools through small ports in the patient’s skin.  These smaller incisions lead to less 

trauma for the patient and faster recoveries.  Although still frequently slower than laparoscopic 

surgery, the robot’s advantages can outweigh the extra time.  For example, with robotics it is 

possible to use more than two ports/arms, enabling the surgeon to use the additional arms to 

hold tissue or carry sensors for monitoring.  These robots can be tracked very accurately and 

visualized within a virtual 3D workspace, allowing the surgeons to visualize what they can’t 

directly see with their eyes [14].  These virtual environments can be realized in either virtual or 

augmented reality. 

There is potential to further enhance a surgeon’s performance by combining biosensors 

with the rigid platform of medical robotics.  For example, by leveraging Raman spectroscopic 

probes, it may be possible to map tumor margins.  Some other techniques have been 

developed to aid in margin assessment, including optical mammography analysis and methods 

using optical tomography.  However, as of yet, none have achieved widespread use [15-17].  

Utilizing the positioning and tracking abilities of robotics in conjunction with the diagnostic 

abilities of Raman spectroscopy could enable for accurate margin assessment.  Technology 
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capable of ensuring a complete resection would prevent secondary procedures and reduce the 

risk to patients’ lives. 

The overall goal of this research is to provide techniques that best leverage biosensors’ 

diagnostic capabilities.  Because it is representative of many biosensors and the subject of 

current research, a Raman probe is used as the proof of concept biosensor.  Therefore, the aim 

is to create a system capable of defining a tumor’s margin quickly and accurately during a 

patient’s first procedure.  A medical biosensor capable of distinguishing between normal and 

malignant cells is integrated with an image-guided surgery visualization system and robotic 

surgery hardware.  The robotic hardware could enable safe and accurate positioning of the 

biosensor within the body, while information derived from the sensor could be displayed in an 

image-guided surgery system to aid in the visualization of lesions.  This information would allow 

the surgeon to visualize the margins of a tumor before removing any tissue. 

1.1 Motivation and Problem Statement 

In order to use a biosensor in vivo, several problems must be addressed.  First, the 

biosensor must be threaded into the body through a port.  The port is a hole in the patient’s 

skin through which tools, sensors, or cameras can be threaded, allowing access to the internal 

structures with little trauma.  Port placement in laparoscopic procedures is currently done by a 

surgeon based on previous knowledge and experience.  The port represents a pivot point, 

which adds significant limits on the reachable target surfaces within the body due to physical 

constraints.  In addition, most biosensors have particular configurations in which they can be 

manipulated (degrees of freedom) and limited distance or angles (angles of incidence) in which 

they can operate.  When limits such as the angle of incidence are reached or exceeded, data 
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collection will be poor or impossible.  Because of these physical limitations, the surgeon must 

be able to visualize the target areas in relation to the pivot point (port) to ensure total target 

accessibility, which is quite challenging. 

Second, many current biosensors only obtain data from a very small area (e.g. 150 

microns in diameter), and future incarnations may collect from even smaller areas.  This 

requires the sensor to be placed at many target points in order to map tumor margins, which is 

challenging and compounds the first problem.  For this reason, manually holding and moving 

the biosensor may not be possible as stability (due to hand tremors) and accuracy are not 

within acceptable limits for the sensor. 

Third, the surgeon needs to be able to define the areas of interest for scanning and see 

the possible port locations required for the particular sensor that is being used.  Current image-

guided surgery systems use CT, MRI, and ultrasound data to generate virtual reality 3D views, 

while augmented reality 3D views are less common.  However, these systems currently do not 

provide any type of control of biosensors or presentation of biosensor data. 

1.2 Research Objectives and Specific Aims 

This section outlines work towards creating techniques and tools to enable biosensors 

to be best utilized in the surgical environment.  Each area of research is described below as a 

separate specific aim. 

The port location the biosensor is threaded through determines the quality of data it 

obtains.  As stated above, this task is non-trivial.  My first specific aim was the development of a 

program to aid the surgeon in planning of the best possible port placement for proper 

biosensor use.  This program is abstracted for use with any biosensor, but tested with the 
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Raman probe.  It uses 3D data obtained from pre-operative imaging and calculates the best 

port location on the patient’s skin, facilitating the biosensor’s operation.  In addition, visual 

control of this software is integrated with an image-guided surgery system. 

The port placement system has functions for evaluating the quality of a user selected 

port location.  Until now, this type of determination was impossible.  My second specific aim 

was to use this system to determine cases where human port placement is diminished.  By 

identifying these scenarios, it will be possible to create training programs and further enhance 

the port placement system. 

Precise positioning of the biosensor and scanning techniques are needed to move the 

biosensor to cover a large area of interest.  A biosensor probe is attached to a robot 

manipulator to enable positioning it at a specific site, holding it steady, and taking 

measurements.  A reasonable choice for this robot is the AESOP 1000 (Intuitive Surgical, Inc., 

Sunnyvale, CA) robotic manipulator.  This robot is medically approved but has no accessible 

interface to control specific joint angles and positions.  My third specific aim was to develop 

control algorithms to position the AESOP’s end-effector (the tip of the attached tool, which in 

this case is the biosensor) at a desired location.  The robot is evaluated for accuracy.  Specific 

factors contributing to its accuracy are identified for future consideration in robotic systems.  In 

addition, control over movements and data capture is integrated into an image-guided surgery 

system. 

In Figure 1-1 we can see the interconnection of the separate components.  In this 

configuration, the port placer, visualization system, and robot control software exist as 
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separate entities.  In this way, it is possible to integrate additional software and hardware if 

desired. 

 

Figure 1-1:  Data flow in the conceived system 

1.3 Outline of the Dissertation 

The outline of the dissertation is as follows:  Chapter 2: provides background 

information on medical robotics and image guided surgery.  A section is also provided on 

Raman spectroscopy, since it is the biosensor of choice for implementation and testing. 

Chapter 3: describes the implementation details of an automated port placement 

system.  This system indicates the best possible port location, which maximizes the data 

collection potential of a particular biosensor based on patient data and biosensor limitations.  

In this chapter, biosensor-specific limitations are based on a Raman spectroscopy probe. 

Chapter 4: describes a human factors study in which the major question is: “What is 

typical human performance in the task of port placement for biosensor use?”  A secondary 

question is “Are there scenarios in which human performance is degraded?” 
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Chapter 5: describes the technology necessary to automate the placement of a 

biosensor in vivo.  This chapter includes implementations details and a discussion of the 

accuracy of a current robotic platform. 

Chapter 6: summarizes the findings in this dissertation, discusses possible applications 

including preliminary investigations, and suggests future work. 
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CHAPTER 2: BACKGROUND 

In this chapter the definitions of the technology used to develop this dissertation are 

given.  First, biosensors are described along with a description of a particular biosensor chosen 

for demonstration of this work.  Second, a literature survey of the advantages and 

disadvantages of medical robotics and port placement are given.  Finally, image-guided surgery 

is defined with respect to both virtual and augmented reality. 

2.1 Biosensors 

In the medical field, “biosensors” can refer to any type of device that detects the 

biological makeup of some target, gathering any of a multitude of types of data in the process.  

Many of these devices are small sensors that gather the data from within the body [1-4].  These 

sensors can be affixed to the end of surgical instruments and threaded into the body.  

Monitoring such things as glucose levels, blood flow, and even disease stages, biosensors lead 

to more informed decisions and accurate analyses of patients. 

Related to the field of biosensors is that of treatment delivery tools.  These tools are 

also threaded into the body, affixed to the end of surgical instruments.  However, these tools 

treat disease instead of detecting it.  Examples include microwave ablation, cryoablation, and 

radiofrequency ablation.  It is conceivable to have both a detection and treatment system 

mounted on the same tool.  In this case, the port placement issues would be similar, and 

detection and treatment could occur simultaneously. 
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2.1.1 Raman Spectroscopy 

Raman spectroscopy is a non-invasive technique for analyzing the molecular makeup of 

substances [18].  Coherent laser light (at a particular frequency) is shined onto a specimen, and 

the scattered light is analyzed.  Most of the light coming back is Rayleigh-scattered, meaning it 

has the same energy as the excitation beam.  A small amount of light is Raman-scattered, a 

process where a molecule absorbs a photon while simultaneously giving off another photon at 

a different energy level.  This photon scatters with a different wavelength than the excitation 

source.  The amount of light shifted and the wavelengths of the light correspond to the 

frequency of the vibrating modes of the molecules in the target.  A Raman spectrum is made up 

of the number of photons scattered, referred to as intensity, and the specific wavelengths at 

which they are scattered (see Figure 2-1).  By studying the amount of photons scattered in this 

manner and the wavelength which they scatter, Raman spectroscopy allows us to analyze the 

molecular makeup of a target. 
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Figure 2-1:  Raman spectra for various tissue types.  The y-axis represents the amount of photons observed.  Image provided 
with permission from authors of [8]. 

2.1.2 Why Use Raman Spectroscopy? 

Cancer, at its most basic form, modifies the molecular makeup of cells.  Therefore, by 

looking for specific features in a Raman spectrum, one can distinguish normal and malignant 

cells [5-8].  This classification is now done by computer using various techniques such as 

principal component analysis, support vector machines, and neural networks [19-21].  The 

promise of this technology is threefold.  First, this technique can collect and classify a spectrum 

in near real time, meaning a diagnosis can be done within minutes rather than the 20 minutes 

for frozen section analysis or the hours for a postoperative histologic exam [22].  Second, 

because of its non-destructive nature, the risk of removing more tissue than is needed (for 

histology) is eliminated because a diagnosis can be done in vivo [22-24].  And third, the 

sensitivity of Raman spectroscopy allows for the assessment of tumor grades [25, 26]. 
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Due to these properties, a Raman spectrometer may be ideal for in vivo cancer 

detection.  There are many groups adapting Raman spectrometer technology for use on human 

tissue [3, 27, 28].  Raman probes are fiber optic devices attached to a Raman spectrometer that 

facilitate the collection of Raman spectra from human tissue.  These Raman probes are capable 

of being threaded into the body in the same fashion as cameras and laparoscopic tools for 

minimally invasive surgery (see Figure 2-2).  Raman spectroscopic probes are also 

representative of typical biosensors.  Current Raman probes are rigid in design and gather data 

from a single small point on the surface of tissue.  For these reasons a Raman probe is a 

sensible choice of an example for this research. 

 

Figure 2-2:  A Raman probe attached to an InPhotonics portable Raman spectrometer 
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2.2 Medical Robotics 

In general, there are two types of surgery.  Open surgery involves a large incision in the 

patient and allows the surgeon to use tools and his hands directly on the target site.  Minimally 

invasive surgery involves small ports through which instruments are threaded.  The benefits of 

this compared to open surgery are reduced trauma to the patient and faster recovery time [29-

31].  Currently the most common form of minimally invasive surgery is laparoscopy.  

Laparoscopic tools are long, tube-like instruments with mechanical manipulators on the end 

(see Figure 2-3).  The surgeon positions and manipulates these tools by hand.  A camera called 

an endoscope, similar in design to the tools, is inserted through another port, enabling the 

surgeon to see the surgical site on a monitor. 
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Figure 2-3:  Laparoscopic tools 

Medical robotic surgery is a new form of minimally invasive surgery that uses robots 

under the surgeon’s control.  In this type of surgery, tools similar to laparoscopic ones are used 

in a comparable fashion, but they are held, positioned, and manipulated by a robot.  The 

surgeon controls the robot from a remote console with hand controllers (see Figure 2-4). 
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Figure 2-4:  The da Vinci surgical system.  The surgeon sits at the control station on the left, while the tools are inserted into 
the patient on the right.  Image © 2011 Intuitive Surgical, Inc. 

While laparoscopy adds benefits for the patient, the surgeon’s work is more difficult 

[32].  The surgeon’s vision of the surgical site is limited by the camera view.  Because the tools 

are inserted through ports, all movements at the end-effector (the tip of the tool) are reversed 

in direction.  That is, because there is now a pivot point between the surgeon’s hands and the 

tool tip, an upward motion of the surgeon’s hands results in a downwards movement at the 

end-effector.  In addition, tremors and inaccuracies are amplified due the length of the tools. 

Medical robotics addresses some of the limitations of laparoscopic surgery while adding 

some useful features.  Robotically actuated joints provide far greater accuracy than any human 

in positioning a tool [33].  The hand controller interface enables motion scaling, whereby 

movements at the surgeon’s hands can be scaled down to smaller movements at the surgical 
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site.  The hand controller interface also enables the filtration of tremors in the surgeon’s hands.  

In addition, the surgeon no longer has to be standing and possibly arched over the patient for 

the entire length of the surgery.  Current robotic surgery systems have an interface whereby 

the surgeon sits in a comfortable chair with ergonomic hand controls. 

There are numerous examples of medical robots.  One such example is the AESOP 1000 

(Intuitive Surgical, Inc., Sunnyvale, CA), a medical robot designed to position and hold 

endoscopic cameras (see Figure 2-5).  This robot is controlled through either voice, hand, or 

foot controls and frees the surgeon from having an assistant control the camera.  Another 

example is the Zeus medical system (Intuitive Surgical, Inc., Sunnyvale, CA).  Built on the basics 

of the AESOP architecture, Zeus adds manipulation of tools similar to laparoscopic ones.  With 

this system, the surgeon sits at a console and controls two robotic arms through hand controls 

and a camera through voice control.  Finally, the newest example is the da Vinci (Intuitive 

Surgical, Inc.).  This medical robot is very similar to Zeus, but adds better dexterity at the tool-

tip, 3D camera views, better ergonomic controls, and other improvements. 
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Figure 2-5:  The AESOP medical robot holding an endoscope for a surgeon.  Image © 2011 Intuitive Surgical, Inc. 

2.2.1 Why Do We Need Medical Robotics? 

Current biosensors are positioned and held by hand.  Because these probes are capable 

of data collection from such a small area, hand stability and positional accuracy are critical to 

obtaining data from the targeted area.  For example, many Raman probes collect spectra from 

an area on the order of microns in diameter.  Furthermore, because of the small sampling area 

of a Raman probe, margin assessment involves spectra collection from many points.  Hand 

control is inadequate for the selection of these points of interest [33]. 

Medical robotics provides a stable platform for both positioning and holding medical 

tools.  The enhanced accuracy and tremor filtration provided by a robot can be applied to the 

use of a Raman probe and other biosensors.  A robotic manipulator can facilitate Raman 

spectra collection by enabling precise, stable positioning and assisting in the scanning of areas 

of tissue.  Moreover, many medical robots were designed with the ability to use many different 
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types of tools (scissors, cauterization tools, hooks, etc.).  This ability to swap tools will allow 

easy integration of a Raman probe onto a medical robot.  Finally, medical robots are already 

used in the operating room.  By leveraging a medical robot, biosensors will be easier to 

integrate with current medical procedures. 

2.3 The Importance of Port Placement in Laparoscopic Surgery 

Port locations for laparoscopic surgery are chosen to create the “golden triangle” 

orientation (see Figure 2-6).  This orientation places the surgeon’s hands on either side of the 

surgical site while placing their vision (through the endoscope) in the center.  This orientation 

mimics natural viewing and working envelopes during open surgery to maximize visualization, 

dexterity, and comfort.  These locations are most commonly chosen by the surgeon based on 

experience and selected during the surgery.  Some automated techniques for port placement 

have been developed [34-40].  These techniques focus on creating the triangle of ports such 

that when the tools meet at the surgical site in vivo, they are positioned at certain angles with 

respect to each other.  Most of these techniques focus on specific surgical procedures since the 

requirements for each of these procedures are different. 
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Figure 2-6:  Laparoscopic tools and endoscope in the “Golden Triangle” arrangement.  The triangle here refers to 
the location of the ports on the patient’s skin. 

2.4 What is Image-Guided Surgery? 

Recent advancements in medical technology have led to the use of image guidance in 

surgical procedures [14, 41].  Image-guided surgery is any procedure where the surgeon uses 

some type of device to gain an indirect image of the target site.  Some examples of these 

devices include flexible endoscopes, fiber optic guides, and ultrasound machines.  The use of 

these devices gives a surgeon a better view of the inside of a patient. 

With more powerful computers, it is now possible to generate full 3D views of a patient 

to use as an additional source for image guidance.  These 3D views are typically generated from 

pre-operative images such as CT or MRI data [14, 42].  The 3D data is then “registered” to the 

patient, allowing tools whose movements are tracked in real time to been seen in the virtual 
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environment [43, 44].  This type of technology is now used in minimally invasive surgery [45, 

46], enabling the surgeon to visualize the relative locations of targets and tools inside a patient 

without actually being able to see them. 

Augmented and virtual reality can be used to display these 3D views (see Figure 2-7).  In 

a virtual reality environment, the 3D models of the patient and tools are rendered on a 

computer screen.  Augmented reality , an extension of virtual reality, overlays the 3D data on 

top of real-time camera images [14, 47].  This mix of real and computer-generated views allows 

for a host of interesting new types of data to be presented to the surgeon.  For example, it can 

be used to provide a view similar to the popular notion of “x-ray vision”, allowing the surgeon 

to see through occluding structures [47, 48].  This technology can also be used to show tool 

trajectories and visualize port placements. 

 

Figure 2-7:  A virtual reality view (left) and augmented reality view (right) of a phantom skull 

The tracking of tools can be accomplished in many different ways [49].  The use of 

medical robots allows tools to be tracked by measuring the individual joint angles of the robot.  

If the location of the base of the robot in relation to the patient is known, simple calculations 

using the joint angles can be performed to locate the end-effector of the robot in relation to 
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the patient [50].  Another type of tracking uses optical infrared reflection.  Special hardware is 

used to precisely locate infrared reflecting material that is attached to the tools.  Again, if the 

location of the special hardware in relation to the patient is known, calculations can be done to 

find the location of the tool relative to the patient.  These concepts are further explained in 

Chapter 5: . 

2.4.1 Why is Image-Guided Surgery Important? 

Biosensors require precise positioning in order to collect a data from a target.  In 

addition, biosensors can only capture high-quality data within specific physical limitations, such 

as the angle of incidence from the target for a Raman probe.  These requirements place a 

significant challenge on the surgeon: proper port placement.  The selection of a port location, 

through which the probe is inserted, is critical in ensuring total target accessibility.  An image-

guided surgery system, which is already set up to display patient data in 3D, would allow the 

surgeon to visualize the reachable targets inside the body before a port location is selected. 

Once a biosensor is threaded into the body, the tip of the sensor is no longer in view.  

Laparoscopic instruments suffer from the same problem.  Image-guided surgery systems 

provide navigation abilities for a surgeon by showing the relative locations of instruments and 

targets inside the patient.  Because the biosensor can be treated as another instrument, the 

same navigation abilities can be applied to the probe.  In addition, the 3D views of a patient 

enable us to present other information to the surgeon.  As discussed above, the biosensor 

requires precision placement beyond the capabilities of human hand control, and we wish to 

automate the placement of the sensor.  An image-guided surgery system could provide path-

planning and port placement information to the surgeon.  Although the system does not 
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directly control the movement of the sensor, this information would enable the surgeon to 

ensure the probe does not impinge on vital areas, such as the heart. 

Once data is collected and analyzed, the results must be presented to the surgeon so he 

can make advised decisions.  The data from the target tissue is location-specific.  Because an 

image-guided surgery system provides configurable views of patient data, it is possible to 

display the results directly over patient data.  This provides the surgeon with location-specific 

data about the target tissue and the ports that need to be placed on the surface of the patient. 
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CHAPTER 3: OPTIMIZED PORT PLACEMENT 

Laparoscopic procedures involve the use of minimally invasive tools, which are inserted 

into the patient through small ports in the skin.  Biosensors, such as a Raman probe, will also 

operate through these same ports.  This chapter covers the design, implementation, and testing 

of an automated system to optimize the placement of these ports with respect to patient 

anatomy and biosensor configuration. 

3.1 Background 

Many of the most effective biosensor technologies (Raman spectroscopy, surface 

acoustic wave, electroencephalography, etc.) require near or direct contact with tissue in order 

to collect optimal data.  Biosensors may also scan a localized region, requiring the sensor to be 

placed in multiple positions within a volume of interest.  In addition, the angle between the 

probe and the tissue may be important, limiting its effectiveness when outside some operating 

envelope.  In Figure 3-1, the data collected at a 45° angle produces a drastically weaker signal as 

compared to the orthogonal placement.  For spectroscopic sensors, the maximum performance 

is typically attained when the probe is perpendicular to the tissue [3].  In addition, the size and 

limited degrees of freedom (flexibility) of the probe can make it difficult to achieve optimal 

sensor positioning.  The complexity of tissue surfaces and the presence of obstructions inside 

the body also make the task nontrivial. 
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Figure 3-1:  Raman spectra of naphthalene captured with a Raman probe at angles of 45° and 90° (perpendicular) 

In minimally invasive medical procedures, surgeons operate through small ports in the 

patient’s skin.  Thus, any biosensor that is used during these procedures must be inserted and 

used through one of these ports.  The biosensor must therefore pivot at a single location on the 

skin surface, severely limiting the positions and orientations that it can reach.  Consequently, 

the choice of a port’s location is critical to the performance of a biosensor. 

An automated port placement algorithm can be used to help select an optimal location 

through which a probe can be threaded into the body.  Some automated techniques for port 

placement have been developed [34-40].  In general, these techniques were designed to place 

two surgical instruments and a camera for laparoscopic procedures in a manner that makes the 

surgeon more comfortable while ensuring working accessibility.  Different techniques focus on 

specific surgical procedures for their specific needs.  For example, rib avoidance, or dexterity 

optimization for the surgeon during heart surgeries can be taken into account.  As the 
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requirements for different surgeries are quite diverse, the creation of a single optimized port 

placement system has been difficult.  Unfortunately these automated techniques do not 

address the needs of optimal biosensor placement. 

Many of the techniques place the surgical instruments in a “golden triangle” 

arrangement.  In this arrangement, the camera port is placed on the top of the triangle with the 

two surgical arm ports on either side.  For biosensor placement, only a single port is required.  

The goal, depending on the type of sensor, is to maximize the surface area that can be scanned, 

or to achieve the highest quality reading.  Thus, the golden triangle is not applicable for a 

biosensor placement.  However, the golden triangle can still be used to place the endoscope 

and surgical tools as needed.  While this work does not take into account other tools within the 

surgical site at the time of biosensor placement, it would be possible to consider the other tools 

in the collision avoidance algorithms discussed later. 

Evaluating the quality of a biosensor’s port placement requires different metrics than 

the existing port placement techniques.  Many of the existing port placement techniques focus 

on a specific surgical procedure (e.g. coronary artery bypass) and its outcome as a measure of 

its performance.  In contrast, the evaluation of biosensor effectiveness focuses on its ability to 

achieve high quality scans of target areas.  The quality of scans is directly affected by the port 

placement.  Therefore, surgical outcome is not a good metric for proper port placement.  

Instead, the area of coverage and probability of successful scans are better metrics for a 

biosensor application. 

The automated system described in this chapter addresses restrictions in biosensor 

probe placement, such as the incident angle, as well as inadequacies of existing port placement 
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solutions.  The system is capable of being used with any laparoscopic biosensor but was 

implemented with a Raman probe for the purposes of testing.  The system allows the surgeon 

to select a region of tissue he wishes to scan within the patient’s body, for which an optimized 

port location is computed.  The system avoids unsafe port locations by avoiding collisions 

between the probe and anatomical structures.  It also maximizes the performance of the 

biosensor by allowing proper orientation of the probe at the target location.  Optimized port 

placement minimizes the risk to the patient while ensuring the most effective use of biosensor 

technology. This will enable a surgeon to make more informed and timely decisions during 

interventions. 

3.2 Methods 

The implementation of the system consists of two computer algorithms.  One algorithm 

(the Reachable Point Algorithm) is used to determine points that are reachable from a given 

port location, and another (the algorithm for identifying the best port) is used to determine an 

optimal port location.  A visualization interface has also been created to allow easier use of the 

system and interpretation of its results. 

From a user’s perspective, the system is designed to operate in the following manner.  

First, 3D models of a patient must be created (via segmentation) from medical imaging, e.g. CT 

or MRI scans.  Next, areas of interest (biosensor scan locations) are chosen on the 3D models.  

Note that because the 3D coordinates of the two systems are the same, it is possible to select 

points of interest on the CT/MRI imaging.  The system then determines an optimized port 

location based on the 3D information and the limitations of the biosensor (Figure 3-2).  
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Alternatively, the surgeon may select a port location, and the system determines all possible 

valid targets.  This information is presented to the user in a virtual reality interface. 

 

Figure 3-2:  Data flow within the system 

To prove the feasibility of the system, the implementation has been designed with 

respect to a Raman spectroscopy probe called the Process RamanProbe (InPhotonics, Norwood, 

MA).  However, the system is intended to generalize to other types of biosensors.  There are 

parameters and functions that can be changed in our algorithms to accommodate biosensors of 

different designs, such as probes of different dimensions or having angle-dependent response 

functions. 

The Raman probe used in the design and validation of the system is a cylinder that is 

approximately 27 cm in length and 1 cm in diameter (Figure 3-3).  It is non-flexible, and, like 

most optical sensors, the probe achieves the best scan when it is placed perpendicular to the 

tissue of interest. 
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Figure 3-3:  Raman spectroscopy probe 

The algorithms detailed in this section are designed to work with 3D representations 

(models) of patient data.  These 3D models are made up of triangles, which are themselves 

defined by points.  Each point in a 3D model has a corresponding normal vector that indicates a 

direction approximately perpendicular to the surface at that point.  Specifically, the normal 

vector for each point is the average of the normal vectors for all triangles that share the point.  

Each point in the model can be considered a possible point for biosensor data capture, referred 

to as target points.  Therefore, if a model has less detail (points), the algorithms will execute 

faster, but there will be a reduced number of targets a surgeon may choose to scan.  The port 
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placement system supports whatever level of model detail is required by the surgical 

application or is possible within time constraints and computing power.  If the provided models 

lack sufficient detail, a pre-processing stage can be used to increase the number of points. 

A special “skin” model, which contains all potential port locations, must be defined.  This 

model is thin (i.e. just the surface of the patient’s skin and not its thickness), which aids the 

collision detection algorithm (described in the following section).  Each point in the skin model 

can be a possible port location.  Thus, the model should be as detailed as necessary for an 

application. 

3.2.1 Reachable Point Algorithm 

An algorithm was created to test if a point is reachable from a given port location 

(Figure 3-5).  The algorithm tests three critical criteria to determine if a point is reachable.  If a 

point fails any test, it is determined to be unreachable.  Thus, it is not subjected to any further 

tests, which shortens the execution time of the system.  The three tests are described in the 

following subsections. 

3.2.1.1 Biosensor Length Test 

The first test is a simple biosensor length test, which ensures the biosensor is long 

enough to reach the target from the port location.  If the target point is farther from a port 

location than the length of the biosensor, it is considered to be unreachable.  This test is 

performed first because it is computationally the fastest and eliminates many unreachable 

targets.  For some applications it may also be desirable to eliminate points that are too close to 

the port location.  In this case, if the distance to the target from the port location is below some 
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defined threshold, the point is considered unreachable.  In testing, this threshold was set at 10 

mm. 

3.2.1.2 Collision Test 

The second test is a collision algorithm that ensures the biosensor does not collide with 

any other point while moving the probe towards the given target.  The algorithm was designed 

to be extremely fast for the port placement application with a rigid probe.  To handle a 

biosensor probe with a flexible or multi-jointed design, the algorithm could be modified.  For 

example, if the probe had extra joints, the collision test could be done in separate stages (i.e.  

treating each link between the joints as a separate entity). 

The first step of the collision test is to create a vector from the given port location point 

to the target point.  In addition, vectors from the port location to all other geometry points 

(potential points of collision) are created (Figure 3-4). 

The second step is to determine the distance from the port location to each of the 

potential points of collision.  Any point that is farther away than the target point is eliminated 

as a point of collision, as the biosensor will never have to reach far enough to intersect with 

that point. 

Any remaining potential collision points are now known to be closer to the port location 

than the target point.  The third and final step determines if any of these points are within the 

radius of the biosensor.  If the shortest distance between a potential collision point and the 

vector between the port location and the target point (representing the biosensor) is less than 

the radius of the biosensor, then the biosensor would collide with that point while trying to 
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reach the target point (see Equation 3-1 and Figure 3-4).  If even a single collision is determined 

to occur, the target point is deemed unreachable. 
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Figure 3-4:  Diagram of the collision test algorithm.  A collision occurs when ||v2|| < ||v1|| and x is less than the radius of 
the biosensor. 

3.2.1.3 Biosensor-Specific Scoring Function 

The final test is a biosensor-specific scoring function.  This test is used to determine the 

quality of a scan the biosensor will obtain from a given target.  A score of zero is treated as a 

non-reachable point, while a score of one is considered a perfect scan.  For our Raman probe, 

we used a relatively simple scoring function (Equation 3-2). 
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In Equation 3-2, θ represents the angular deviation of the probe to the tissue surface.  

The equation returns a 1 for a perfectly perpendicular orientation (θ equal to 90° from the 

surface) and decreases linearly to 0 as the probe approaches 45° from perpendicular.  Although 

Raman biosensors are known to have a nonlinear response function [3], this linear equation 

reasonably approximates the same response.  It was chosen for its simplicity and to illustrate 

the functionality of the port placement algorithm detailed below.  Nonlinear functions or 

functions with angles other than 45° could be used to work with other biosensor probes. 

Figure 3-5 shows the flow chart of the Reachable Point Algorithm.  All target points are 

tested separately.  First the biosensor length test is done because of its computation speed and 

ability to eliminate many target points as possibilities.  A target point that passes this test is 

then checked with the collision test.  If it is determined that the biosensor would not collide 

with any other points in reaching the target point, it is finally scored with the biosensor specific 

scoring function.  If the point has a nonzero score after this test, it is deemed to be reachable. 
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Figure 3-5:  Flowchart of the Reachable Point Algorithm 
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3.2.2 Identifying the Best Port Location 

The best port location is one that enables the best coverage of the target area by the 

biosensor.  To find this location, the system evaluates each point in the skin model (or a user-

selected subset of the skin) for its suitability as a port location (Figure 3-6).  The evaluation of 

each skin point is carried out by executing the Reachable Point Algorithm with the skin point 

and all target points.  This process provides the number or percentage of reachable target 

points and the average biosensor-specific score for each potential port location. 

For the test application (Raman cancer detection), priority is given to the number of 

reachable points rather than to the biosensor-specific scoring function when determining the 

best port location.  This is because it is critical to ensure that as many reachable points are 

scanned as possible, due to the importance of not leaving any cancerous cells behind during 

resection.  Therefore, the best port location enables the maximum number of target points to 

be reached.  If two or more port locations allow the same number of target points to be 

reached, the best port is chosen using the average result of the biosensor-specific scoring 

function.  For example, if two ports can reach the same number of target points with a Raman 

biosensor, the port location that provides the smallest average angular deviation from 

perpendicular will be chosen. 

It is possible that other biosensors may need a different priority or some combination of 

the scoring function and number/percentage of reachable points to determine a best port 

location.  In this case, a weighted decision function could be used, allowing a combination of 

the number of reachable points and the scoring function to be used to determine which port is 

best. 
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Figure 3-6:  Flowchart for selection of best possible port location.  This method is optimized for cancer detection using Raman 
spectroscopy (maximizing the number of reachable points).  Other methods can be utilized as necessary. 

3.2.3 Visualization 

A 3D virtual reality display is used for the interface of the port placement system.  It is 

based on 3D Slicer [51], an open source application for visualizing medical data.  3D Slicer 

displays the 3D models derived from segmentation as well as the various interface elements 

used by the system.  To accommodate graphics and interactivity needed for the port placement 

application, a custom module was added to 3D Slicer.  The module handles target area 

selection, port placement, and the presentation of the system’s results. 

Target area selection is carried out in the following fashion.  First, the user selects a 

point in the center of a volume he wishes to scan, causing a “volume of interest” box to appear 
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around that point.  The point selected belongs to a specific 3D model, therefore indicating 

which model is the target surface.  Then the user adjusts the size of the box to enclose the 

desired target surface area.  Once the region is finalized, small markers appear at each of the 

points that are both within the region and on the target surface (Figure 3-7).  These points are 

considered to be the target points. 

 

Figure 3-7:  Target volume selection (red box) within the visualization system 

Once the target points have been selected, the system can find an optimized port 

location.  It can evaluate every point on the skin model, or the search can be restricted to a 

subset of the skin model.  Selecting a subset of the skin model is accomplished in exactly the 

same fashion as choosing target points, consisting of a box being placed and the size adjusted.  
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The chosen subset of points is also highlighted with markers of a different color than the 

targets. 

After the port placement algorithms are executed, a marker is placed at the optimized 

port location.  This enables the user to see the port location relative to other body structures.  

In addition, a pop-up box displays the percentage of reachable points and the average 

biosensor-specific score for that location. 

In addition to the computer-generated optimal port location, the user can choose a 

specific port location for the system to evaluate.  This simply requires the user to click at a 

desired location on the skin model.  If target points have been selected, the percentage of 

reachable points and average biosensor-specific score for the chosen port are calculated and 

presented.  If a target region has not been selected, the system calculates all reachable points 

(points that pass all three tests within the Reachable Point Algorithm) from the chosen port.  

These points are highlighted with markers on the 3D models. 

3.3 Results 

To verify the operation of the port placement system, a number of test scenes were 

created.  These scenes contained simple objects (planes, cylinders, etc.) with geometrically 

provable solutions for the optimal port locations.  Using these scenes, the various components 

of the system were validated.  It was shown that the algorithms are able to find optimal port 

locations, find all reachable target locations, and avoid collisions.  Figure 3-8 demonstrates the 

test scenarios that were used to validate the system. 
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Figure 3-8:  Cross-sectional views of five test scenarios used to validate the performance of the system 

Part (a) in Figure 3-8 shows a cross-section of two parallel planes.  The top plane 

represents the skin surface, whose points are potential port locations.  The bottom plane is 

identical to the top plane but shifted downwards.  It represents a target surface, whose points 

must be reached by the biosensor.  In this scenario, the algorithms were executed with a single 

point selected at a time as the target.  From the diagram, it is clear that the skin point directly 

above each target point is the best location for a port.  This is because the approach vector 

from the skin surface to the target point is perpendicular to the target surface, which 

maximizes the Raman scoring function.  This scenario was designed to verify that the system 

would function properly under very simple conditions. 

The test scenario in part (b) is very similar to the one in part (a).  The only difference is 

that the algorithms were executed with multiple points selected at a time as the targets.  The 



38 
 

 
 

 

selected target points were always odd in quantity, centered below one of the skin points, and 

uniformly spaced.  Under these constraints, the best port location is the skin point above the 

center of the group of target points.  For any other skin point, the average value of the 

biosensor scoring function is lower because the average angle from the approach vector to the 

target surface at each target point is further from perpendicular.  The purpose of this scenario 

was to validate the system’s operation when multiple target points are selected. 

Part (c) shows a cross-section of two concentric cylinders.  The outer cylinder represents 

the skin surface, and the inner cylinder represents the target surface.  The cylinders are made 

from the same model with the same points, but they were scaled to different radii.  The 

algorithms were executed with a single point selected at a time as the target.  As in test 

scenario (a), the best port location for each target point is the skin point directly across from it.  

This test was used to verify that the system would work with non-planar (curved) surfaces. 

In part (d), there is another cross-section of two planes.  The top and bottom planes 

represent the skin and target surfaces, respectively.  In this scenario, the algorithms were 

executed with a single point selected at a time as the target.  Because of the angle between the 

two planes (45°), the best port location for a given target point is not directly above the target 

point.  Instead, the best port location, which maximizes the biosensor scoring function, is more 

to the right of the target point.  This is because the approach vector and target surface at the 

target point are perpendicular for the skin point on the right.  However, there is an exception 

for the rightmost target point.  The distance from this point to the green triangle point on the 

skin surface was made to be greater than the length of the biosensor probe.  Thus, the green 

triangle point was not a valid port location.  The blue circle point of the skin surface enables the 
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biosensor probe to reach the target and achieves an angle closest to perpendicular, so it is the 

best port location.  Therefore, this test scenario verifies the system’s performance when the 

skin and target surfaces are not parallel and when a target point exceeds the length of the 

biosensor probe. 

Part (e) shows a test scenario that is very similar to the one in part (a).  The same 

parallel skin and target surfaces are used, but there is an obstruction placed between them.  

The single target point is only accessible from the leftmost skin point.  This test demonstrates 

that the system works by avoiding collisions when obstructions are present. 

These test scenarios show that the Reachable Point Algorithm and the algorithm for 

identifying the best location work as intended.  Since finding all reachable points from a given 

port location is merely an application of the Reachable Point Algorithm, the results 

demonstrate that this function of the port placement system also works correctly. 

More complicated scenes containing a skin model and several enclosed organs were 

constructed to demonstrate the system’s operation.   Due to the scene’s complexity, geometric 

verification of the results was mathematically intractable.  Target areas were selected on one of 

the models, and the system was used to determine an optimized port location (Figure 3-9).  In 

addition, multiple port locations were selected manually and scored to verify that the system-

selected port location had a better score.  During these tests, it was found that the optimized 

port location for a typical scene can be calculated in only a few minutes on a modern PC. 
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Figure 3-9:  Port placement within the visualization system.  The blue box encloses potential port locations, with the green 
dot indicating the optimal location for use with the enclosed red target area. 

We also demonstrated the ability of the system to find all possible reachable points 

from a given port location in a complex scene.  As expected, the system avoided points where 

collisions would occur and indicated only those points that were reachable according to the 

scoring function.  The visualization of these results is shown in Figure 3-10. 
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Figure 3-10:  Visualization system showing all points reachable (green markers) by the biosensor from the manually selected 
port location (green dot) 

3.4 Discussion 

Biosensors and medical robotics used in vivo hold the potential to rapidly identify and 

treat disease.  Biosensors have strict physical limitations that make picking a port location a 

non-trivial task for a human operator.  In addition, current techniques developed for automated 

port placement are designed for laparoscopic surgical instruments.  This work demonstrates a 

novel automated technique for selecting port locations specifically for biosensor applications.  
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Using existing patient 3D modeling techniques, it is able to find a proper location using user 

specified targets in a matter of seconds. 

The technique described in this chapter does have a few limitations.  One limitation is 

that it assumes all structures are rigid (non-deformable).  This limitation is a consequence of the 

complexity of tissue deformation models.  Furthermore, the system also assumes that body 

structures do not move as a result of insufflation, manipulation, respiration, etc.  Consequently, 

CT and MRI scans should be in the same pose as the surgery.  Additional algorithms would be 

needed to accommodate tissue deformation and movement.  This is an ongoing area of 

research [52, 53]. 

Another limitation exists within the collision algorithm.  There is the possibility of missed 

collisions with very large triangles within the 3D models.  Since this method tests for collisions 

at the points of the triangle, it is possible for the vector representing the biosensor to pass 

through the middle of a large triangle (Figure 3-11).  This is possible if each point of the triangle 

resides outside the radius of the biosensor.  In this case a collision should obviously occur, but 

will go undetected.  This possibility can be eliminated with a pre-processing stage that ensures 

the 3D models have none of these triangles.  This pre-processing stage would test each triangle 

in the scene and perform triangle subdivision if any triangle is determined to be too large [54]. 
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Figure 3-11:  Example of a collision that would be undetected due to wide triangle point spacing.  This problem can be 
prevented with a pre-processing stage. 

Currently the execution speed of this applications is acceptable for offline, pre-surgery 

processing.  However, there are many possible solutions for speed increases.  The highly 

parallel nature of this task makes it a prime candidate for multithreading and parallel 

processing.  Other opportunities for speed increases include faster processors and more 

efficient algorithm implementations.  These performance increases may allow for near real-

time results.  If near real-time performance can be achieved, intraoperative medical imaging 

technology (e.g. 3D ultrasound) could be used to update tissue models and reachable points 

during a procedure. 

Currently this work uses a Raman probe for prototyping the algorithms.  However, the 

system can handle any other biosensor that can be used laparoscopically.  To support 

biosensors of different physical dimensions, modifications can be made to the parameters used 

in the collision algorithms, such as probe radius and length.  Flexible probes can be supported 
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by creating a 3D model of the probe and performing traditional collision detection [55].  Other 

types of biosensors (besides Raman spectroscopic probes) can be supported with different 

scoring functions that are developed to accommodate their different physical data capture 

characteristics.  For example, ultrasound probes require a more direct angle of approach in 

order to image the tissue of the target.  In this case Equation 3-2 could be modified to use a 

more restrictive angle, such as 80°, instead of 45°.  Other biosensors, such as many compound 

detection sensors, only need to touch the target, in which case angle of contact has no effect.  

In this case, the biosensor-specific scoring function would simply not be used. 

In conclusion, this chapter presented the implementation, testing, and verification of an 

automated port placement system for in vivo biosensors.  The port placement system provides 

a new way of determining the best port location for biosensor applications.  The port 

placement system also includes scoring for user-selected ports.  This scoring system is used for 

the analysis of human performance in the task of port placement, which is the topic of the next 

chapter. 
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CHAPTER 4: HUMAN PERFORMANCE IN THE TASK OF PORT 

PLACEMENT 

The automated port placement system described in Chapter 3: includes the ability to 

score user-selected ports for given test scenes.  In this chapter, we investigate human 

performance in the task of port placement across a variety of scenarios.  Using the automated 

port placement system’s evaluation methods, we grade user-specified placement.  Such an 

evaluation has never been done before because biosensor use has not been prevalent in 

surgery and no grading system was available for this type of port placement task.  The 

information gathered from these tests will give us insight into human performance in the task 

of port placement for Raman and other similar biosensors.  This will help in the development of 

training options to improve human performance.  In addition, the results will help improve 

future automated systems to better augment human performance.  We believe this will make 

the use of biosensors more feasible in the operating room. 

4.1 Methods 

4.1.1 Participants 

This study was approved by the Human Investigation Committee at Wayne State 

University.  Informed consent was obtained from each participant.  A sample of 20 participants 

was chosen for testing without exclusion criteria corresponding to adult age, gender, or 

expertise.  Fourteen participants were under the age of 30, four were women, and two were 

surgeons.  No participant had any previous training or experience with the tests being 

conducted, so their backgrounds had minimal influence on their performance. 
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4.1.2 Apparatus 

Tests were performed on a laptop computer running 3D Slicer [51].  3D Slicer was 

modified to incorporate the port placement algorithms described in Chapter 3: .  In addition, 

functions were added to collect data such as the chosen port location during the testing.  3D 

test scenes were created, which consisted of individual 3D models representing different 

organs and bodily structures.  The user interface consisted of a computer mouse that was used 

by the participants to choose a location in 3D space on the presented 3D scene. 

4.1.3 Experimental Task 

Fifty tests were designed to mimic the requirements of biosensor port placement during 

surgery.  They were developed with a specific biosensor in mind:  a Raman spectrometer probe. 

Each test scene consisted of 3D models representing the skin, target organs, and the 

dimensions of a Raman probe (as a size reference).  Rather than using complete scans of actual 

patients, the scenes were built from smaller sets of simpler 3D models.  We didn’t use actual 

patient data because we didn’t want the subjects to be overly reliant on their medical 

knowledge.  Moreover, actual patient data would not have given us control over specific 

dimensions of task difficulty. 

Red markers were placed on the target organs to indicate points of interest that should 

be scanned with the Raman spectrometer (Figure 4-1).  Across all 50 test scenes, there were a 

minimum of 9, a median of 54, and a maximum of 826 target points to scan from the selected 

port location. 

The participants were instructed to pick a desired port location on the skin using the 

mouse pointer.  They were directed to choose a port location that would maximize the number 
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of target points reachable with a virtual Raman probe.  In addition, the participants were told 

about the limiting factors used by the port placement system to determine if an individual 

target point is reachable.  These factors are described below.  The participants used the mouse 

to rotate, zoom, and pan the virtual scene as desired, and they indicated their decision for the 

port location by pressing a button on a keyboard. 

There are three factors evaluated by the port placement system to determine if a target 

point is reachable.  These are the same as the three tests described in section 3.2.1 and briefly 

described here for clarity.  First, the ability of the virtual probe to reach the target point from 

the port location (via a straight line) is calculated.  In other words, it is determined if the probe 

has sufficient length.  Second, a collision detection algorithm is executed to verify the absence 

of any obstructions between the target point and the port location using the dimensions of the 

Raman probe.  Finally, an algorithm calculates the angle of incidence of the biosensor from the 

target surface (at the target point) to determine if the angle is within 45° of perpendicular.  This 

constraint was chosen to imitate the characteristics of a real Raman probe, which can 

experience compromised data acquisition beyond this angle.  If a target point passes all three 

tests, it is considered reachable. 

Test scenes were created without regard to the number of target points that are 

actually reachable.  Thus, participants did not know if it was possible to reach every target point 

or only a subset of them.  We used our automated port placement system to find an optimized 

port location for each test scene.  As expected, the port placement system did not always reach 

100% of the target points within the tolerance of the criteria for an allowable scan.  Therefore, 
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the number of points the port placement system reached was used to represent the maximum 

number of points reachable in each test scene. 

4.1.4 Trial-Level Procedure 

Each participant had to go through all 50 test scenes.  The tests were presented in a 

random order with one test shown at a time.  Once a participant chose a port location, the next 

test was presented immediately.  No feedback was given to the participant as to the quality of 

his performance.  This was done to minimize learning effects throughout the study.  The 

execution of one test by a participant was considered to be one trial. 

4.1.5 Experimental Design 

The 50 tests were divided into five sections, with ten tests in each section.  Each section 

was designed to test a specific condition related to the task of port placement.  These specific 

conditions were decided upon during a discussion with a surgeon.  The surgeon was asked what 

types of conditions would present difficulties when trying to laparoscopically position a 

biosensor to scan target tissues.  The surgeon indicated four conditions in which biosensor 

sampling would be impeded due to improper port placement.  Four sections of the study were 

derived from these problem conditions.  A fifth section with no significant impediments was 

added as a control case.  These test sections are described in greater detail below. 

The first section of ten tests served as a baseline/control condition; it was designed to 

be simple.  In this type of scenario, the skin surface and target surfaces were smooth or flat, 

and the line from the ideal port location to the target surface was roughly orthogonal to the 

target surface.  The number of target points was small, and they were clustered close together.  

Figure 4-1 shows an example from this section. 



49 
 

 
 

 

 

Figure 4-1:  Example test scene from section 1.  The pink sphere is the skin surface, and the enclosed blue model provides the 
target surface.  The red dots represent target points.  The red cylinder is a representation of the Raman probe, which 

provides a reference for scale.  The letters are used by 3D Slicer to provide information about the current viewpoint (right, 
anterior, posterior, etc.). 

The second section of tests focused on complex target surfaces.  In this type of scenario, 

the skin surface was smooth, but the target surfaces were bumpy or contained complex angles 

and grooves.   The target points remained relatively few in number and clustered close 

together.  Figure 4-2 shows an example from this section. 
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Figure 4-2:  Close-up view of a section 2 test scene that demonstrates a complex target surface 

The third section of tests focused on the size of the target surface.  In this type of 

scenario, the skin surface and target surfaces were smooth.  The number of target points was 

large, and there were some cases in which groups of target points were separated by distance 

from each other.  Figure 4-3 shows an example from this section. 
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Figure 4-3:  Close-up view of a section 3 test scene that demonstrates large target surface area 

The fourth section of tests focused on the complexity of the skin surface.  In this type of 

scenario, target surfaces were smooth, but the skin surface was bumpy or contained complex 

angles and grooves.  The number of target points was relatively small, and they were clustered 

close together.  Figure 4-4 shows an example from this section. 
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Figure 4-4:  Close-up view of a section 4 test scene that demonstrates a complex skin surface 

The final section of tests focused on obstructions.  In this section, the skin surface and 

target surfaces were smooth.  The number of target points was small, and they were clustered 

close together.  However, additional surfaces were placed in positions that would obstruct the 

placement of the port.  Figure 4-5 shows an example from this section. 
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Figure 4-5:  Close-up view of a section 5 test scene that demonstrates an obstruction 

Each participant was presented each test once.  The trials were analyzed independently, 

and the performances of different participants served as replicates of the experiment for 

statistical analysis.  The time for each test was not considered.  The only data collected during 

testing was the set of Cartesian coordinates (x, y, z) of the port location chosen by the 

participant for each test. 

Although there were no time constraints placed upon the subjects during the testing, 

the tests were designed to be completed in about 30–45 minutes.  Since only a mouse and 

keyboard had to be used during the tests, no physical exertion was required.  Since there were 
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no time constraints or performance requirements, little mental stress was placed upon the 

participants.  Consequently, fatigue was not found to be an issue during the testing. 

Post-processing was done using the port placement system’s evaluation methods.  

Participants were given a score for each test that was equal to the number of target points 

reachable with the virtual Raman probe from the participant’s chosen port location.  An 

individual target point was considered reachable if the three criteria described in the 

Experimental Task section were met. 

From the score (the number of reachable target points) each participant achieved for 

each test scene, two percentages were calculated.  The first is the participant’s score divided by 

the maximum number of reachable target points, or the percentage of maximum (PoM).  As 

stated before, the maximum number of reachable target points was determined using the port 

placement system.  The second is the participant’s score divided by the total number of target 

points present in the scene, or the percentage of total (PoT). 

It is important to obtain a measure of the difficulty of each of the five test sections.    To 

calculate this, we obtained the average of the PoMs for all participants in all tests of each test 

section.  PoM was used because it utilizes the port placement system’s score as the maximum 

number of points.  This normalizes the results among scenes that have different amounts of 

reachable target points. 

4.2 Results 

We used the average of the PoMs to compare the different scenarios to each other 

based on difficulty in order to provide an indication of the types of scenarios in which human 
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performance suffers.  Figure 4-6 shows the averages obtained and the 95% confidence interval 

for each test section. 

 

Figure 4-6:  Average percentage of maximum (PoM) points reached for each test section.  The black vertical lines represent 
the 95% confidence interval about each mean. 

The participants’ average PoMs across all scenes ranged from 57% to 78%.  Confidence 

intervals of the mean PoMs were calculated for all participants, and inspection of the interval 

plots did not reveal any outlying participants.  Figure 4-7 shows the average PoM and 95% 

confidence interval for each participant. 
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Figure 4-7:  Average percentage of maximum (PoM) points reached for each participant over all test scenes.  The black 
vertical lines represent the 95% confidence interval about each mean. 

In addition, it is also important to investigate performance on a scene-by-scene basis.  

This provides an opportunity to find scenes in which the difference between the average 

participant performance and the computer algorithm’s performance is greater than other 

scenes in the same test section.   These outlying scenes can help us understand specific 

scenarios in which performance is degraded.  To calculate this, we obtained the average of the 

PoTs for all participants for each scene.  PoT was used in this case to better compare the 

performances of the port placer system and the participants.  The following graphs display the 

results of the calculations, with one graph per test section.  For clarity, the graphs’ contents are 

sorted by ascending computer algorithm performance. 
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The baseline/control section represented the first type of scene.  As shown in Figure 4-8, 

average participant performance ranged from 0% to 19% less than the computer’s results.  This 

was expected because these tests were the easiest. 

 

Figure 4-8:  Performance for the baseline/control section.  Squares represent the port placer system’s performance, while 
diamonds represent the average participant performance.  The black vertical lines represent the 95% confidence interval 

about each mean. 

The complex target surface section represented the second type of scene.  As shown in 

Figure 4-9, average participant performance ranged from 6% to 25% less than the port placer 

system’s results. 
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Figure 4-9:  Performance for the complex target surface section.  Squares represent the port placer system’s performance, 
while diamonds represent the average participant performance.  The black vertical lines represent the 95% confidence 

interval about each mean. 

The expansive target surface section represented the third type of scene.  As shown in 

Figure 4-10, average participant performance ranged from 6% to 35% less than the computer’s 

results. 
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Figure 4-10:  Performance for the expansive target surface section.  Squares represent the port placer system’s performance, 
while diamonds represent the average participant performance.  The black vertical lines represent the 95% confidence 

interval about each mean. 

The complex skin surface section represented the forth type of scene.  As shown in 

Figure 4-11, average participant performance ranged from 0% to 93% less than the port placer 

system’s results. 
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Figure 4-11:  Performance for the complex skin surface section.  Squares represent the port placer system’s performance, 
while diamonds represent the average participant performance.  The black vertical lines represent the 95% confidence 

interval about each mean. 

The obstructions section represented the fifth type of scene.  As shown in Figure 4-12, 

average participant performance ranged from 5% to 43% less than the computer’s results. 
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Figure 4-12:  Performance for the obstructions section.  Squares represent the port placer system’s performance, while 
diamonds represent the average participant performance.  The black vertical lines represent the 95% confidence interval 

about each mean. 

4.3 Problem Scenarios 

The results demonstrate that human performance tends to lag behind the port 

placement system’s performance by 10% to 25% (on average) depending on the type of 

scenario.  However, there were many cases where human performance was significantly lower 

than the ideal performance of the port placement system.  This section aims to identify 

conditions that led to these drops in performance. 

4.3.1 Separating Ridge 

Scene 10 (from the complex target surface section) demonstrates a target surface with 

target points on both sides of a ridge.  In this case, the participants’ tendency was to assume 

that not all of the points could be reached.  Therefore, they chose to concentrate on obtaining a 
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better score on just one side of the ridge.  The computer system demonstrated that it is indeed 

possible to reach 100% of the points in this test.  Figure 4-13 shows an example of this scenario. 

Skin 

Surface

Target 

Surface

 

Figure 4-13:  Example of the “separating ridge” scenario.  The green circle represents the correct choice for port placement, 
while the blue squares represent typical choices made by participants.  The red triangles represent the target points. 

4.3.2 Multiple Targets Separated by Distance 

Scenes 24, 25, and 26 (from the expansive target surface section) demonstrate multiple 

groups of target points separated by distance.  This case is an extension of the previous case 

(separating ridge). As in the previous section, the participants had a tendency to focus on 

reaching one group of points with high accuracy rather than trying to reach both groups with 

less accuracy.  The computer system showed that it is possible to reach both groups of points.  

Figure 4-14 provides an example of this scenario. 
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Figure 4-14:  Example of the “multiple targets separated by distance” scenario.  The green circle represents the correct choice 
for port placement, while the blue squares represent typical choices made by participants.  The red triangles represent the 

target points. 

4.3.3 Significant Distance from Target 

Exceptionally low performance was observed for scenes 33, 35, and 38 (from the 

complex skin surface section).   Upon review, it was discovered that these trials contained a 

second element of difficulty beyond the complex skin surface.  The potential port locations that 

the target surface directly faces (the port locations that would otherwise provide the highest 

score) are too far away from the skin surface for the probe to reach.  Some participants chose 

these locations regardless, whereas others chose port locations along the side.  The extra 

variable of distance (in addition to the angle of incidence at the target surface) resulted in 
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participants choosing widely varying port locations.  Figure 4-15 provides an example of these 

results. 
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Figure 4-15:  Example of the “significant distance from target” scenario.  The green circle represents the correct choice for 
port placement, while the blue squares represent typical choices made by participants.  The red triangles represent the 

target points.  The probe model was shown in all scenes to give participants a representation of its length. 

4.3.4 Indented Ridge 

Scenes 31 and 34 (from the complex skin surface section) have target surfaces very near 

the skin surface as well as ridges in the skin surface near the optimal port location.  As shown in 

Figure 4-16, it appears that participants were picking port locations along a ridge.  This may 

have been because the ridge was indented and picking points within this indent would serve to 

minimize the distance to the target surface.  However, the distance to the target surface was 

not an issue in these scenes (unlike the scenes mentioned in the previous section).  The 

challenge of the complex skin surface may have led participants to focus on what seemed to be 
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a simple solution (minimizing the distance) even though it didn’t provide an optimal placement.  

Figure 4-16 shows the results of scene 34. 

 

Figure 4-16:  Example of the “indented ridge” scenario.  The correct choice for port placement (the green circle) is 
surrounded by the choices of participants (blue circles).  The red triangles represent the target points. 

4.3.5 Obstructions 

Highly inconsistent levels of performance were observed for the obstructions section.  

Some scenes resulted in relatively good performance, whereas others produced very poor 

results.  Looking closely at the geometric distributions of chosen port locations, it is obvious 

that in the scenes with better performance, the obstruction was positioned in a manner that 

obviously limited the choice to one area on the skin surface.  The scenes with worse 

performance had obstructions that made the choice less obvious.  In these cases, the 
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placement of the port varied significantly, leading to poor average performance.  Figure 4-17 

shows both cases. 
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Figure 4-17:  Examples of the “obstructions” scenario.  The top diagram demonstrates a scenario in which the choice is 
obvious, whereas the bottom demonstrates a scenario in which the choice is ambiguous.  The green circles represent the 
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correct choices for port placement, while the blue squares represent typical choices made by participants.  The red triangles 
represent the target points. 

4.4 Discussion 

Proper port placement is critical to a biosensor’s ability to gather high quality data and 

to a surgeon’s ability to perform a successful biopsy.  Thus, it is important to evaluate the ability 

of people to find optimal port locations.  An optimized port placement system was developed 

to select the best port location based on the surgeon’s area of interest, the biosensor’s 

characteristics, and the patient’s anatomy.  This system was used to analyze the port selection 

performance of a group of participants over a variety of test scenarios.  The scenarios were 

designed to investigate different challenges involved in the selection of a port location. 

A number of conclusions can be drawn from the analysis of the participants’ 

performance.  The first is that the participants uniformly obtain scores approximately 10–25% 

below the scores obtained by the port placement system.  This was expected due to the 

algorithm’s exhaustive search technique for obtaining port locations.  However, this indicates 

that human performance could be improved, perhaps through better training. 

From Figure 4-8 through Figure 4-12, we see that the 95% confidence interval of the 

percentage of target points reached in a given scene was generally 10–20% about the mean.  

Thus, the number of points reached in a scene was relatively inconsistent.  Because the number 

of reachable points is directly related the quality of the chosen port location, we can infer that 

the test participants picked port locations of varied quality.  Therefore, the second conclusion 

we can make is that the quality of port locations chosen for a given scene was inconsistent 

among participants. 
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In addition, Figure 4-7 shows that for each participant, the 95% confidence interval 

across all scenes was generally 15%.  Consequently, the third conclusion is that the number of 

reachable points (and thus the port location quality) a given participant achieved was 

inconsistent from scene to scene. 

Lastly, we can see that no one participant vastly outperformed the other participants 

over the entire experiment.  From this data, we can conclude that while port placement was 

inconsistent from participant to participant for a given test scene, participants on average 

performed the same over the entire test space. 

The results of this study suggest some ways to improve human performance.  It may be 

possible to use the port placement system and the data gathered here to create a training 

program.  Since feedback was not provided to participants during the tests, a minimal amount 

of learning was able to occur during the tests.  By adding modifications to collect and present 

different performance metrics, it is envisioned that the system could be used as a training tool.  

For example, by focusing on the areas where performance was degraded and using the 

computer system to indicate proper placement, it may be possible to increase human 

performance.  In addition, further collection and analysis of data may indicate ways to make the 

port selection process easier for people. 

We identified a common source of error in the Problem Scenarios section for tests 

involving a significant distance from the target.  Subjects erroneously chose port locations that 

were too distant from the target for the probe to reach the surface.  A potential way to improve 

performance would be to add a virtual tool or measurement device that could be positioned at 
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a chosen port location to evaluate the ability of the probe to reach the target surface.  The 

effects of such a tool could be analyzed as part of a future study. 

Surgeon feedback may suggest further improvements that can be made to the port 

placement system.  One possible improvement would be allowing multiple port locations to be 

determined.  This would enable the system to reach more target points (if the surgeon deems 

multiple ports to be acceptable).  In addition, it would enable the system to be generalized for 

use in laparoscopic and robotic cases (where multiple ports are required).  Another related 

potential improvement would be generalizing the port placement algorithms to work with tools 

other than biosensors.  Together, these improvements could have broader impacts in port 

placement during neurosurgery and laparoscopic procedures. 

With enhancements and further testing of the port placement system, varying levels of 

human augmentation and even automation may be possible.  Using pre-operative patient 

imaging, the system could be used to select port locations with minimal human intervention.  

To assist surgeons in physically creating a port in a patient at the determined location, an 

augmented reality interface with positioning cues could be implemented [56].  Furthermore, if 

the system were integrated with a medical robot, the selected port location could be reached 

automatically.  The positioning of a medical robot is the topic of the next chapter.  
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CHAPTER 5: AUTOMATING BIOSENSOR PROBE PLACEMENT 

The InPhotonics portable Raman probe obtains a spectrum from a very small area (e.g. 

on the order of microns in diameter).  Therefore, scanning the relatively large surface area of a 

tumor requires that the probe be placed at many target locations to take many samples.  This is 

unfeasible to do by hand as stability and accuracy are not within acceptable limits.  As stated 

before, this probe is typical of biosensor designs and therefore provides an analog for general 

biosensor requirements.  This chapter describes the automation of the movement of a surgical 

robot (AESOP 1000) for the application of manipulating biosensor probes about target locations 

in vivo.  In addition, the positional accuracy of this robot is unknown and is therefore analyzed.  

As a contingency for poor accuracy, the specific factors contributing to the accuracy are 

identified for consideration in current and future robotic systems for application in biosensor 

placement. 

5.1 Background 

The AESOP 1000 robot manipulator is a six degree-of-freedom (DOF) robot consisting of 

four actively powered joints and two passive joints (Figure 5-1).  It was originally designed to 

hold a laparoscopic camera during minimally invasive surgical procedures.  The camera is 

threaded through a trocar (also called a port) location.  The robot allows the surgeon to control 

the camera without having to use his own hands.  The robot communicates with a motion 

controller (Figure 5-2) through a 55-pin cable.  This motion controller accepts input in the form 

of voice communication or button presses that move the camera through simple motions such 

as to the left or to the right. 
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Figure 5-1:  AESOP 1000 robotic arm 

 

Figure 5-2:  AESOP 1000 motion controller 
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For simplicity, the robot’s joints are referred to by simple nicknames, mimicking a 

human arm (Figure 5-3). 

1. The translational joint is called the linear joint 

2. The first rotational joint is called the shoulder 

3. The second rotational joint is called the elbow 

4. The third rotational joint is called the wrist 

5. The fourth rotational joint is called the finger 

6. The fifth rotational joint is called the nail 

 

Figure 5-3:  The AESOP 1000 in the default position.  Joint names are nicknames for easy reference. 
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Because the robot is rigid and capable of moving an end-effector to a desired location, it 

fills the role of holding and manipulating the Raman probe.  However, the motion control 

system is too simple for the complex movements needed to move the probe.  In addition, the 

motion control system is proprietary and closed, making modification impossible.  However, it 

is possible to obtain full control through the use of a different motion controller. 

5.1.1 Denavit-Hartenberg (D-H) Notation 

Robotic manipulators consist of a set of joints and linkages.  A robot with n joints is 

called an n degree-of-freedom robot.  This robot would also have n+1 links joining each joint 

with a neighbor.  The first link is attached to a static point called the base, and the last link is 

attached to the end-effector (or in this research, the Raman probe).  Figure 5-4 shows an 

example of a three DOF robot.  Note that the joints here are abstracted and could be either 

rotational or translational.  This figure simply demonstrates the notation used for joints and 

their corresponding links. 
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Figure 5-4:  A three degree-of-freedom robot 

There are two types of joints commonly utilized in robotic manipulators.  The first type, 

translational, extends or retracts its associated link along a fixed axis.  The second type, 

rotational, rotates its associated link about a fixed axis. 

Knowing the orientation and dimensions of each link of the robot allows the end-

effector location to be found in 3D space.  Denavit-Hartenberg (D-H) notation is a way of 

describing each link in a robot’s chain using four parameters [57].  Specifically, the parameters 

relate each joint’s position and orientation to the position and orientation of the previous joint 

in the chain. 

While D-H notation has two forms (standard and modified), only standard notation was 

used in this research.  Standard D-H notation uses four values for each link in the robot chain.  

Link length (ai) is the distance between the zi−1 and zi axes along the xi axis.  Link twist (αi) is the 

angle from the zi−1 and zi axes about the xi axis.  Link offset (di) is the distance from the origin of 



75 
 

 
 

 

frame i−1 to the xi axis along the zi−1 axis.  Finally, the joint angle (θi) is the angle between the 

xi−1 and the xi axes about the zi−1 axis.  The link offset (di) is variable for a translational joint, 

while the joint angle (θi) is variable for a rotational joint.  Figure 5-5 illustrates these values. 

 

Figure 5-5:  Example of standard D-H notation 

5.1.2 Locating the End-Effector (Forward Kinematics) 

Locating the end-effector (or Raman probe tip) in relation to the base is essential to this 

research.  The base is a fixed point that is used to define a coordinate system in which the 

positions of the robot’s links, joints, and end-effector are established.  The end-effector location 

is found through the use of standard 3D transformation matrix equations [58].  These equations 

require the knowledge of the physical parameters of the robot including joint variables, link 

lengths, and general dimensions of the robot. 
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5.1.2.1 Base-to-Tip Transformation 

Utilizing D-H parameters and measurements of the variable joint angles or 

displacements, a homogeneous 3D transformation matrix can be constructed (Equation 5-1) for 

each joint location.  This transformation describes the location and orientation of the joint in 

relation to the previous joint in the chain.  Multiplying these matrices together results in a 

transformation matrix that (TBaseTip) describes the location and orientation of the end-

effector (the robot’s tip) in relation to the robot’s base (Equation 5-2). 
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In addition, the transformation matrix can be considered a composite of two smaller 

matrices: the rotation (Equation 5-3) and position (Equation 5-4) matrices. 

 























)cos()sin(0

)cos(*)sin()cos(*)cos()sin(

)sin(*)sin()sin(*)cos()cos(

ii

iiiii

iiiii

iransrotation_t







 Equation 5-3 

 



















i

ii

ii

i

d

a

a

ransposition_t )sin(*

)cos(*





 
Equation 5-4 

 

Therefore the joint transformation matrix can also be written as: 
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5.1.2.2 Registration 

To enable the robot to interact with objects, we need a way to know its position in 

relation to a physical environment (e.g. around and inside the patient).  Thus, we need a way to 

relate the coordinate system of the robot to that of the physical environment.  This relationship 

is defined by a transformation matrix that links the object’s coordinate system to the robot’s 

coordinate system.  The transformation relates the object’s established coordinate system to 

the base of the robot, which is a fixed point in space.  The transformation is found through a 

process called registration. 

To help visualize the robot’s position in the real environment, we can use a virtual or 

augmented reality environment.  This space can be populated with 3D models that represent 

the physical object(s) of interest (such as a patient).  The models can be constructed from pre-

operative imaging. 

Fiducial markers are placed on an object, which have known locations on the object’s 

model in the virtual environment (Figure 5-6).  For each fiducial marker, the robot is placed in 

an orientation such that the end-effector touches the fiducial marker.  The TBaseTip 

transformation is recorded for each of these fiducial markers.  An algorithm based on iterative 

Levenberg-Marquardt optimization utilizes the recorded TBaseTip transformations and the 

known fiducial locations to establish a homogeneous transformation matrix (TObjectBase) from 

the object’s coordinate system to the robot’s coordinate system [14]. 

The process of registration is done one time before any procedure using the robot.  

Therefore, any movement of the patient during surgery destroys the registration (TOBjectBase 

is no longer accurate).  Consequently, any tracking of the end-effector would no longer be 
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possible until registration is performed again.  Examples of types of movements include tissue 

movements or deformations due to fluid interaction or cavity introduction, patient shifting, or 

breathing and heart beats.  As with the port placement system described in Chapter 3: , this 

work does not consider the movements of patients and tissues when tracking the end-effector.  

This limitation is due to the complexity of tissue deformation models and is outside the scope 

of this research to overcome. 

 

Figure 5-6:  Fiducial markers in a virtual scene and their corresponding markers on the real object.  Image provided with 
permission from author of [14]. 

At least three fiducial markers are needed to generate the transformation matrix.  To 

avoid loss of accuracy due to positioning errors, more fiducials are generally used.  For example, 

seven fiducial markers were used for the model shown in Figure 5-7. 

5.1.2.3 End-Effector Location in the Object’s Coordinate System 

Calculating the location of the end-effector in the object’s coordinate system is 

accomplished by multiplying the registration matrix, TObjectBase, by the current TBaseTip 

transformation (Equation 5-6). 
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 TBaseTipeTOjbectBasTObjectTip *  Equation 5-6 

5.1.3 Optical Encoders 

Actively powered joints can use quadrature optical encoders to track their rotation or 

displacement with a high degree of accuracy.  Optical encoders use metal discs rigidly attached 

to the drive shaft of a motor.  These discs have alternating transparent and opaque areas 

through which a light source is shined.  A detector on the opposite side detects if light is shining 

through the opening or not.  The number of cycles of light on and off can be translated to an 

amount of rotation by the motor and consequently the rotation or displacement of a joint of 

the robot.  Although not utilized in this project, there is a class of encoders called absolute 

encoders which provides rotation or displacement measurements with respect to a known 

location referred to as the “zero” location. 

By using two sensors, the encoder can not only measure the rotation of a motor, but 

also the direction of rotation.  The two sensors, A and B, are placed in such a way that their 

outputs are 90° out of phase.  In this arrangement, the output of the sensors produces a two-bit 

Gray code counter. 

 

Figure 5-7:  Quadrature optical encoder outputs for sensors A and B for clockwise and counter-clockwise movements of a 
motor 
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In Figure 5-7, the outputs from the detectors of the optical encoder are shown for both 

clockwise and counter-clockwise rotations.  In clockwise rotation, the output from sensors A 

and B is 00→01→11→10→00 and so on, where B leads A in changes.  During counter-clockwise 

rotation, the output is 00→10→11→01→00 and so on, where A leads B in changes. 

5.2 Methods 

Several steps (explained in detail in the following sections) are required in order to 

obtain full control of the movement of the AESOP robotic arm.  First, a test platform was 

constructed to understand the operation of the robot, and a new motion control system was 

attached to the robot.  Next, the physical parameters of the AESOP robot were measured, 

allowing the end-effector to be located using forward kinematics.  Finally, an inverse kinematics 

algorithm was implemented, allowing the end-effector to be moved to any desired location. 

5.2.1 Test Platform 

The test platform allows us to both manipulate the robot in a controlled fashion and 

observe the control signals going to and from the robot.  It consists of a break-out box and a 

motion controller, both of which are described below. 

5.2.1.1 Break-Out Box 

In order to attach a different motion controller to the AESOP robot, we had to first 

decipher the control signals coming from the proprietary controller.  To accomplish this, a 

break-out box was constructed.  This consisted of two sets of terminal blocks where the wires 

from each side of a severed control cable were attached (Figure 5-8).  This allowed us to 

observe the signals coming from and going to the robot during operation.  Appendix A: AESOP 

1000 Control Pins describes the function of each pin. 
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Figure 5-8:  AESOP 1000 break-out box and block diagram 

The AESOP 1000 uses a combination of optical encoders and potentiometers to track 

joint variables.  The linear, shoulder, and elbow joints have redundant systems of both optical 

encoders and potentiometers.  The passive wrist and finger joints only use potentiometers.  The 

nail joint uses only an encoder. 

5.2.1.2 Galil Motion Controller 

The Galil DMC-2153 (Galil Motion Control, Rocklin, CA) is a robotic motion controller 

(Figure 5-9).  It is capable of both controlling and tracking robotic motors.  This particular 

version is capable of controlling up to five motors while using either optical encoders or 

potentiometers for feedback.  A user can command the motion controller through several 

means, including direct serial communication and computer network (TCP/IP) protocols. 
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Figure 5-9:  Galil motion controller attached to the break-out box 

The Galil motion controller was attached to the AESOP robot through the break-out box 

in place of the standard motion controller.  Only optical encoders were used to track the joint 

variables for the linear, shoulder, and elbow joints because the information from the 

potentiometers would be redundant.  The wrist and finger joints were tracked using the 

potentiometer measurements.  Since the nail joint only affects the rotation of the end-effector, 

which is not a factor for Raman scans, the nail joint was not wired into the motion controller. 
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5.2.2 Physical Parameters 

Knowledge of the physical parameters of the robot is necessary for locating the end-

effector (or Raman probe tip) in relation to the base as well as for controlling the robot.  

Parameters such as link lengths and joint limitations must be measured.  The following 

subsections describe the physical properties of the AESOP manipulator. 

5.2.2.1 Denavit-Hartenberg (D-H) Parameters 

Obtaining the D-H parameters is a difficult task with the AESOP robot due to its large 

size and oddly shaped chassis (Figure 5-1).  The large size makes the use of optical methods 

difficult because the robot extends outside the operating envelope of the measurement device.  

Ultimately the parameters were obtained using a vernier caliper.  Table 5-1 shows the obtained 

values while Figure 5-10 shows the D-H configuration of each of the joints.  Note that we 

assume the base is located in the same position as the linear joint, which means there is a null 

transformation from the base to the first joint.  The linear joint coincides with the center of the 

shoulder joint when the linear joint’s link is fully retracted.  Also note that link 4 is a “dummy” 

joint.  This is needed due to D-H convention’s inability to encapsulate a link length along a 

desired axis of rotation.  The dummy joint is inserted as an intermediary to reorient the 

coordinate frame.  Finally note that the ‘d’ parameter for link 7 is equal to the length of the 

attached probe.  The probe used in this work had a length of 275.42 mm. 
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Link a Α d θ Joint Type 

1 0 mm 0 radians 0 mm 0 radians Translational 

2 384.44 mm 0 radians 0 mm 0 radians Rotational 

3 52.71 mm π/2 radians 0 mm 0 radians Rotational 

4 0 mm π/2 radians 0 mm π/2 radians Dummy 

5 0 mm π/2 radians 250.7 mm π radians Rotational 

6 17.2 mm -π/2 radians 0 mm π/2 radians Rotational 

7 0 mm 0 radians -275.42 mm -π/2 radians Rotational 
Table 5-1:  AESOP 1000 D-H parameters 

 

Figure 5-10:  Diagram of the D-H configuration of the AESOP 1000 robot 

Normally a D-H parameter table contains no values for the variable portion of a 

particular joint (such as θ for a rotational joint).  Table 5-1 contains values in some of these 

places, which correspond to a default position of that joint.  The default positions were chosen 

to produce a convenient reference configuration of the AESOP’s joints.  In addition, because the 

AESOP 1000 uses optical encoders that provide no absolute position information, the reference 

configuration can be used to define the starting position of each joint (for which the encoder 

count is zero).  The default orientation is shown in Figure 5-3. 
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5.2.2.2 Joint Limits 

The joints of the AESOP manipulator have physical limitations with respect to how far 

they can rotate or extend before further movement is impossible.  When moving the robot with 

the motion controller, these limitations must be considered so that we do not attempt to move 

the robot into a potentially damaging or impossible orientation.  Therefore, for safe, effective 

control of the robot with a motion controller, these limitations must be known.  Table 5-2 

shows the limitations of the joints.  Each joint’s limitations represent the maximum possible 

changes from the default orientation.  Note that these values do not represent the actual 

physical limits.  The measurement of these values is difficult as the robot tends to rebound 

slightly when pushed to the limits.  In order to keep the robot from approaching these rebound 

points, these values were picked to be slightly (a few degrees of rotation) lower than the actual 

physical limits. 

Joint Positive Limit Negative Limit 

Linear 320 mm 0 mm 

Shoulder 2.106 radians -2.106 radians 

Elbow 2.711 radians -2.711 radians 

Wrist 2.356 radians -2.356 radians 

Finger 1.570 radians -1.570 radians 

Nail 3.141 radians -3.141 radians 
Table 5-2:  AESOP 1000 joint limits with respect to the default orientation 

5.2.2.3 Joint Angle Conversion 

As stated before, the AESOP robot uses a combination of optical encoders and 

potentiometers to track joint positions.  The active joints (liner, shoulder, and elbow) use 

optical encoders, while the passive joints (wrist and finger) use potentiometers. 

The Galil motion controller monitors the quadrature encoders and produces a real-time 

count of encoder transitions for each active joint’s movements (i.e. 00→01 is one count).  In 
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addition, the motion controller reads the analog potentiometer signals for the passive joints.  

Since movement and end-effector location are dependent on joint angles/displacement, a 

conversion from encoder counts and potentiometer voltage to joint angles/displacement is 

needed. 

To obtain this conversion for the rotary shoulder and elbow joints, each joint was put 

through a procedure that involved moving it a specific number of encoder counts.  First, two 

markers were placed on the robot, and the positions of these markers were recorded, as (X,Y,Z) 

coordinates, using a Polaris Accedo (Northern Digital Inc., Waterloo, Ontario) optical tracker.  

From the coordinates of the two markers, a 3D vector connecting the markers was constructed.  

The robot was then moved, and another vector was constructed for this new joint angle.  A 

vector dot product and inverse cosine provided the angle between these two orientations 

(Equation 5-7).  This was repeated several times, and the average number of encoder counts 

per radian of rotation was calculated.  For the shoulder, an average of 131,583 encoder counts 

per radian was found.  For the elbow, an average of 114,998 encoder counts per radian was 

found.  The collected data is presented in Appendix C: AESOP 1000 Shoulder Joint Encoder 

Conversion and Appendix D: AESOP 1000 Elbow Joint Encoder Conversion. 

                                  Equation 5-7 

For the linear joint, the joint was moved a specific number of encoder counts and 

tracked with the Polaris Accedo.  In this case, however, one marker was placed on the linear 

joint and measured as an (X,Y,Z) coordinate.  Comparison with subsequent measurements after 

moving the joint provided the linear displacement of the joint.  This was repeated several times, 

and the average number of encoder counts per millimeter of displacement was calculated.  An 



87 
 

 
 

 

average of 793 encoder counts per millimeter was found.  The collected data is presented in 

Appendix B: AESOP 1000 Linear Joint Encoder Conversion. 

For the passive wrist and finger joints, each joint was moved a random amount and 

securely locked into position, and the analog voltage from the joint’s potentiometer was 

measured.  The joint was then photographed using a stationary camera pointing down the axis 

of rotation.  Using two fixed markers on the joint from the gathered image, a simple 2D vector 

was constructed.  Another vector that represented the zero angle was constructed from two 

fixed points on the robot.  The atan2 function (a quadrant-sensitive arctangent function) was 

used to determine the angle between these two vectors.  This function was used for its ability 

to represent angles beyond ±90°.  This was repeated several times, and a first degree 

polynomial equation relating the angle to the voltage was fitted to the data.  Equation 5-8 

shows the equation for the wrist, and Equation 5-9 shows the equation for the finger.  The 

collected data is presented in Appendix E: AESOP 1000 Wrist Joint Potentiometer Conversion 

and Appendix F: AESOP 1000 Finger Joint Potentiometer Conversion. 

 0096.0)_(2637.0_  voltagewristanglewrist  Equation 5-8 

 0302.0)_(176.0_  voltagefingeranglefinger  Equation 5-9 

5.2.3 Positioning the End-Effector (Inverse Kinematics) 

Using forward kinematics, we can utilize the knowledge of the joints’ orientations to 

determine the location of the end-effector in space.  Conversely, to place the robot into a 

desired position and orientation, the appropriate joint variables must be determined.  The 

process of finding the necessary joint variables is called inverse kinematics. 

Let 
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be the set of joint variables from which TBaseTip can be derived as described in 

Equation 5-2.  Also let 

 





















1000

3333

2222

1111

pzyx

pzyx

pzyx

t  Equation 5-11 

be the target position/orientation for the end-effector given as a homogeneous 

transformation matrix with respect to the base coordinate frame.  Therefore 

 tTBaseTipE *1  Equation 5-12 

is the transformation from the current end-effector position/orientation to the target.  

The goal of inverse kinematics is to find a new set of joint variables Θ that moves the end-

effector to the target t, via the transformation described in E. 

There exist several methods for solving the inverse kinematics problem.  This work 

utilizes a technique involving a Jacobian matrix and its pseudo-inverse.  This algorithm was 

chosen for its ability to be generalized to any robot manipulator.  Note that the Pseudo-inverse 

algorithm is unstable near singularities (target points where no robot configuration will place 

the end-effector at that target).  These singularities occur when one or more of the robot’s 

joints are near their limit.  This is of little concern for this application as we determine the 

operating envelope for the robot, and in surgical applications, the robot is rarely placed in 

positions where the joints are near their limits.  In addition, a form of the pseudo-inverse 
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algorithm is implemented in the MATLAB Robotics Toolbox [59], providing a reference for 

verification.  The following subsections describe the process of calculating the manipulator 

Jacobian and the pseudo-inverse algorithm. 

5.2.3.1 Manipulator Jacobian 

The manipulator Jacobian, J(Θ), is a multidimensional matrix that relates movement at 

the end-effector to movements of the joints [60].  It is essentially a multidimensional form of a 

partial derivative.  In robotic kinematics, two different Jacobian matrices can be used. 

The first is called the analytical Jacobian.  It requires that equations describing the end-

effector location/orientation are known.  Specifically, there must be three equations describing 

the location (X, Y, and Z) and a minimum of three equations describing the orientation with 

respect to the joint variables Θ.  The orientation could be in any notation desired, but a 

minimum of three parameters is necessary to describe an orientation, such as Euler angles.  

Assuming three orientation parameters, these equations describe a surface in a 6-variable 

position/orientation space.  The analytical Jacobian is populated with the partial derivatives of 

these equations with respect to each of the joint variables.  Thus, this Jacobian relates the 

changes in the end-effector location to the changes in the joint variables. 

When evaluating the Jacobian with a specific set of joint variables, the resulting values 

of the partial derivatives describe the gradient of the surface in position/orientation space.  The 

described surface is complex for any practical robot; therefore the computed value of the 

gradient is only valid for the specific set of joint variables. 

The second type of Jacobian matrix is called the geometric Jacobian.  It is calculated 

using the D-H parameters.  In many cases of robot kinematics, knowing the end-effector 
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velocities is desirable.  In addition, in almost all cases, direct equations describing the end-

effector location/orientation are not known.  Let ωx, ωy, and ωz be the end-effector angular 

velocities and vx, vy, and vz be the positional velocities.  Also, let e be the vector set of end-

effector velocities and dΘ be the set of joint velocities. 
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The geometric Jacobian relates changes in the end-effector velocities (e) to the joint 

velocities (dΘ).  This Jacobian is a 6 x n matrix (n being the number of joints) and is calculated 

via one of several different methods.  The method used in this work is a method described by 

Orin and Shrader [61].  The Jacobian matrix is of the following form: 
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 Θ  Equation 5-15 

In addition, a relationship between the end-effector velocities, joint velocities, and the 

Jacobian is as follows: 

   ΘΘ dJe   Equation 5-16 

In this work we are not concerned with velocities.  Instead, we wish to move the robot 

from one position to another without any concern for time.  We therefore use the set of joint 

velocities (dΘ) as an estimate of the required change in joint variables.  The inverse kinematics 

algorithm described below uses an iterative process that compensates for any estimation 

errors.  Solving for dΘ we find 

   eJd


ΘΘ   Equation 5-17 

where  ΘJ is the pseudo-inverse (or Moore-Penrose inverse) of the Jacobian [62].  To 

solve this equation, e must be calculated.  The set of end-effector velocities is found using a 

method presented in the MATLAB Robotics Toolbox [59].  This and most methods use the 

current end-effector (TBaseTip) and target (t) positions/orientations.  Note that while the 

method only produces an estimate of the end-effector velocity vector, the estimation can be 

used due to the iterative nature of the inverse kinematics algorithm described below. 
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5.2.3.2 Pseudo-Inverse Algorithm 

The pseudo-inverse algorithm provides a solution for finding the joint variables needed 

to place the end-effector at a desired location in space.  The pseudo-inverse is used because a 

true inverse of the Jacobian matrix may not exist.  In addition, the algorithm uses an iterative 

solution to minimize error introduced due to the use of estimates for the velocities.  Using the 

forward kinematics and Jacobian calculations described above, the algorithm is as follows: 

1. Compute TBaseTip using current set of joint variables (Θ) as in Equation 5-2 

2. Find the estimation of e 

3. Find the Jacobian matrix based on current joint variables (Θ) 

4. Calculate the pseudo-inverse (Moore-Penrose inverse) of the Jacobian matrix 

5. Calculate dΘ using Equation 5-17 

6. Update the joint variables according to ΘΘΘ d  

7. Go to step 1;  repeat until dΘ is below a defined threshold (usually defined as the 

magnitude of the dΘ vector) 

5.2.3.3 Movement Algorithm 

The pseudo-inverse algorithm provides the joint variables that place the robotic arm 

into a particular position and orientation.  However, the AESOP 1000 operates through a port 

that reduces the degrees of freedom at the end-effector.  Specifically, there is only one 

orientation achievable for a given position of the end-effector.  Consequently, when a new 

position is specified, the corresponding orientation is calculated using the target position and 

the position of the port. 
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In addition, the tissue surface that the biosensor must touch is often bumpy, with peaks 

of the surface potentially blocking the path of the biosensor end-effector.  The tissue surface 

should not be impeded upon.  However, the area above the tissue is generally open during 

minimally invasive surgical procedures.  This is due to patients being insufflated. 

A movement algorithm has been devised that takes into account both the port location 

and impeding tissues.  The movement algorithm is shown in Figure 5-11 and uses the following 

steps: 

1. Back the end-effector away from the current target by a set amount (e.g. 20 mm) 

2. Move the end-effector to a position above the next target 

3. Move the end-effector towards the next target until it touches the surface 

 

Figure 5-11:  Starting and intermediary positions for robot movement from current target to next target 
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5.3 Results 

To verify the operation of the forward kinematics, the robot was registered with a 

phantom skull filled with various objects.  The robot was then moved manually to different 

locations and tracked using 3D Slicer to visualize a virtual model of the skull and end-effector.  

This was done without the use of port.  It was observed that the virtual end-effector followed 

the movements of the real robot.  While this process did verify the operation of the forward 

kinematics, it did not evaluate the accuracy of the AESOP robot. 

The inverse kinematics algorithm was verified with test cases developed in MATLAB.  

The MATLAB model of the AESOP robot was created using the MATLAB Robotics Toolbox and 

the D-H parameters described above.  Various target positions/orientations were used as input 

to both MATLAB’s algorithm and our system.  In all test cases, the calculated joint variables 

were the same between the two systems. 

Finally, the movement of the robot was evaluated using a port that can be fixed 

anywhere in space and simple target locations on a flat surface.  The movement algorithm 

performed correctly, following the three steps described above.  However, it was noticed that 

while the end-effector moved in the correct directions and stopped near the target point, it 

routinely failed to move to the desired location with reasonable accuracy. 

To test the positional accuracy of the AESOP robot, a simple test was designed.  In order 

to eliminate additional sources of error, the test was designed to forgo external measurement 

of the end-effector’s location and rely simply on the kinematics of the robot.  The AESOP robot 

base was fixed in a location, while a target point was fixed in 3D space.  The AESOP’s end-

effector was manipulated (without using a port) in order to touch this target from several 
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orientations.  Consequently, the end-effector location (in XYZ coordinates) should always have 

been the same even when the orientation changed.  In this test, the orientation portion of the 

end-effector is ignored (as it will be changing); only the positional portion is considered.  The 

data collected from four separate tests is presented in Appendix G: AESOP Positional Accuracy 

Tests. 

Simple observation of the data showed that different orientations of the robot result in 

different end-effector positions, contrary to what was expected and desired.  That is, the XYZ 

values should all be the same (or very close), but they are not.  We can see that the largest 

differential between two data points occurred in test 4, with a difference of 67.22 mm.  This 

means that while the robot end-effector was touching the same place in 3D space, the 

kinematics algorithms believed those locations to be 67.22 mm apart.  The source of this 

inaccuracy is a combination of factors, which are described in the following subsections. 

5.3.1 Home Position and Encoder Conversion 

The conversion from joint encoder counts to radians of rotation or millimeters of 

displacement ultimately determines the orientation of a particular joint.  The optical encoders 

employed by the AESOP robot, however, are not absolute devices.  They only provide measures 

of movement from a known reference position.  The reference positions for the joints are 

obtained through the process of “homing” the robot, whereby the robot is placed into a known 

orientation and the encoder’s values are set to zero (zeroed). 

The AESOP robot’s shoulder and elbow joints have a small amount of flex at their limits 

of movement.  This means that driving the joints to their limits with the motors will not always 

make the joints end up in the same position.  Because of this design, the shoulder and elbow 
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joints could not be zeroed by rotating the joints to one extreme or the other.  Instead, a process 

was adopted whereby the shoulder and elbow joints were positioned in an outstretched pose 

(see Figure 5-3) called the “home” position.  This process was done by hand and lined up by 

eye.  Therefore, it was possible to introduce angular error by placing the robot in an incorrect 

home position. 

The AESOP’s motors use attached rubber belts to move the various joints.  Over time, 

these belts stretch, causing a change in the encoder conversion factors.  Therefore, a new 

conversion factor must be obtained (or the old values verified) periodically in order to maintain 

the proper joint angle conversion. 

5.3.2 D-H Parameters 

The D-H parameter model makes certain assumptions about the motion of particular 

robotic joints.  For example, translational joints are assumed to only move along a fixed linear 

axis.  Similarly, rotational joints are assumed to rotate around a fixed axis at the center of the 

joint.  However, due to loose components, flexing components, etc., there may be undesired 

motion that is not modeled. 

One type of undesired motion is the sagging of the robot when the arm is outstretched.  

In the home position or other orientations that are similar, the robot sags by a few degrees 

under the weight of the arm.  This can be observed at the robot’s mounting points or, to a 

slightly lesser extent, in the arm itself.  This sag can introduce angular and positional error. 

The TBaseTip calculation (see Equation 5-2) describes the location of the end-effector in 

space.  This calculation relies on the D-H parameters.  Because of the AESOP’s structure, 

obtaining the D-H parameters proved to be a daunting task.  Ultimately, the parameters were 
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found manually using a vernier caliper.  For this reason, there is the potential for error in the 

measurements. 

5.3.3 Registration 

The process of registration requires a minimum of three points on the object to which 

the robot is being registered.  This process produces the TObjectBase matrix.  As described 

before, more than three points are generally used.  This implies an anticipation of a small 

amount of error.  However, any small amount of error in the TObjectBase matrix will be 

multiplied into TObjectTip when locating the end-effector in relation to an object (see Equation 

5-6).  The result is additional error in the position/orientation of the end-effector. 

5.3.4 Port Location Registration 

As described before, the port location must be known for the movement algorithm to 

determine an orientation for the robot.  While the process of registration may rely on multiple 

points for redundancy, the port location is a single point in space.  The registration of this point 

therefore lends itself to error.  Error in the port location will lead to improper calculation of the 

orientation needed to place the robot in the desired position.  In addition, the greater the 

distance the end-effector is threaded through the port, the greater an error is produced due to 

a fulcrum effect.  There exist algorithms that are capable of automatically finding the port 

location in space through a process of moving the end-effector and computing the pivot point 

[63].  However, these algorithms can be ill-suited for some applications because large 

movements in vivo are not desirable.  In addition, inaccurate D-H parameters make the 

determination of the end-effector position impossible. 



98 
 

 
 

 

5.4 Discussion 

Many biosensors gather data from extremely small areas.  For example, Raman 

spectrometers typically gather data from areas smaller than 150 microns in diameter.  

Therefore, scanning tissues in vivo requires many scans.  At these scales, the accuracy of the 

human hand is inadequate for positioning and holding biosensors.  This work demonstrates the 

potential of using medical robotics to accomplish the positioning and holding duties of 

biosensors, while simultaneously enabling the tracking of these tools for use with image-guided 

surgery techniques. 

Although the robot chosen for this work, the AESOP 1000, was ultimately unable to 

adequately provide these abilities, it was shown that the techniques for biosensor placement 

were sound.  The limitations of this particular robot lie in its accuracy.  Therefore, the lessons 

learned from this work relate to specific factors that affect accuracy.  These factors can be used 

in future analyses of existing robotic devices, or the design of new robotic devices for the task 

of biosensor placement. 

The single biggest factor limiting the AESOP is accurate D-H parameters.  While the 

registration, encoder conversion, and homing of the robot all affect the accuracy, these 

processes are fairly well defined.  The D-H parameters for the AESOP were obtained with a 

vernier caliper.  This process is inaccurate due to human error and the complex structure of the 

robot.  In addition, inaccurate D-H parameters affect other factors discussed above.  For 

example, registration is affected because the end-effector location must be known in order to 

calculate the TObjectBase matrix. 
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Some newer medical robots already address some of the issues identified here.  The da 

Vinci surgical system, for example, uses a virtual trocar in its movement algorithms.  This solves 

the problem of port location registration as the robot has a defined way of using a fixed 

location in space.  Another example is the neuromate (Renishaw, Gloucestershire, England).  

This is an FDA-approved robot with a high degree of accuracy that is specifically designed for 

neurosurgery [64-66].  In addition, it currently integrates with image-guided surgery systems 

and has been used in a host of applications.  We believe that future robots that address the 

issues identified here will be capable of accurately positioning biosensors in vivo. 
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CHAPTER 6: SUMMARY, APPLICATIONS, AND FUTURE WORK 

This chapter will summarize the three major contributions of this dissertation.  

Following that will be potential applications of this work, including some preliminary 

investigations.  Finally, future areas of research will be presented. 

6.1 Summary/Contributions 

Minimally invasive surgical procedures are becoming more prevalent every day.  New 

procedures and tools are opening new doors with outcomes never thought possible.  However, 

the lack of direct physical contact with the patient inherently leads to a loss of information for 

the surgeon.  Biosensors offer the possibility to restore this information and take it much 

further.  There are three novel contributions of this dissertation. 

The first technological contribution of this dissertation is the implementation details of 

an automated surgical port placement system specifically designed for biosensors, capable of 

calculating proper port placement from pre-operative patient imaging.  This is a new 

technology and the implementation is important for researchers in the areas of pre-operative 

planning and biosensors.  This has not been done before due to the lack of biosensor use in 

minimally invasive surgical procedures.  Current port placement algorithms are developed using 

assumptions for laparoscopic tools and minimally invasive procedures. 

The second technological contribution of this dissertation is the implementation of 

movement algorithms for and the investigation of a surgical robot’s suitability for in vivo 

biosensor placement.  It was unknown if surgical robotic arms could be adapted for biosensor 

placement.  The implementation details include a detailed description of control algorithms and 
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robot kinematics, which should be useful to future researchers in the area of robotics.  A 

discussion about the accuracy of the robotic platform and its consequences on biosensor 

placement is also included, which should be useful for future robotic design considerations.  In 

addition, this work provided a demonstration of our vision of a robotically positioned biosensor. 

The human factors contribution of this dissertation is that we have provided an analysis 

of human performance in the task of port placement.  Although the placement of ports for 

laparoscopic procedures according to surgeon intuition and prior knowledge has been routine, 

it was unknown if this type of placement would be suitable for biosensor use.  This is due to the 

physical limitations that are inherent to biosensor design.  Specifically, we have provided 

scenarios in which human performance is degraded in comparison to the computer algorithms.  

Thus, the added cost of utilizing the automated system may be justified. 

The ultimate aim of this work is to provide tools and the underlying knowledge that 

enables biosensors to be used in vivo during minimally invasive surgical procedures.  While the 

port placement work shows great promise with positive results, the tested robotic platform 

lacks the positional accuracy to enable biosensor use.  Although this provides a good 

demonstration, we believe that other systems, such as the da Vinci (Intuitive Inc.) or future 

robotic systems utilizing the knowledge gained from this dissertation will enable acceptable 

accuracy. 

6.2 Applications and Future Research 

There is a large amount of work to be completed in order to realize a robotically 

positioned biosensor.  The most significant work remains in the discovery or development of a 

robot capable of the accuracy needed for such a task.  It is recommended that future 
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researchers focus on the two largest limitations identified in this work.  These are the discovery 

of accurate structural parameters, and a repeatable, accurate method for placing the robot in a 

home position. 

The following subsections contain applications of the work presented here as well as 

preliminary and potential future work in these areas. 

6.2.1 Robotically Positioned Raman Biosensor 

The most obvious future application of this work is a completely robotically positioned 

Raman biosensor system.  It is envisioned that such a system could greatly impact the areas of 

cancer resection and diagnosis.  As conventional histopathology takes 24–48 hours for a 

complete analysis of removed tissue, a Raman biosensor capable of diagnosing cancer in near 

real time would greatly enhance the accuracy and speed of cancer resection procedures. 

Once an accurate robot is identified, we envision future work to focus on surgical 

planning and visualization.  Some preliminary work on the overall system has been completed 

[67, 68].  This work utilizes an extremely accurate MicroScribe G2X (Immersion, San Jose, CA) 

tracking arm (see Figure 6-1).  However, this arm is passively articulated, making it unsuitable 

for surgical use. 
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Figure 6-1:  The Raman probe, attached to the end of the MicroScribe G2X, is used to scan a plastic cup and other 
objects with the phantom skull 

A portable Raman spectrometer was attached to the MicroScribe G2X, registered with a 

phantom skull filled with various objects (providing an analog for a surgical environment), and 

tracked using 3D Slicer.  Raman scans of the various objects were analyzed using neural 

networks [67-71].  The results of these scans were presented within the 3D Slicer environment 

(see Figure 6-2). 
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Figure 6-2:  A screenshot of our visualization system showing 3D models (derived from CT imaging of the phantom 
skull), the location of the tracked Raman probe, collected Raman spectra, and colored markers denoting the classifications 

(computed from Raman scan data) of various objects within the skull 

6.2.2 Automated Laparoscopic/Robotic Surgical Camera Placement 

One application already showing progress is automated endoscopic camera placement 

[72, 73].  The AESOP robotic arm was originally designed to hold and manipulate an endoscopic 

camera.  This method uses voice, hand, or foot controls, while conventional camera placement 

for laparoscopic procedures involves an assistant holding/manipulating the camera.  The 

control algorithms and test platform developed in this work have led to the investigation of 

automating the control of the endoscopic camera.  A system derived from this work tracks the 

surgical instruments and moves the camera to keep the instruments in view.  This system has 
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the potential of improving surgeon awareness by eliminating the need to concentrate on 

camera placement. 

6.2.3 Port Placement Training 

In Chapter 4: human performance in the task of port placement was investigated.  The 

results of this work, in addition to showing that an automated system may be desirable, 

identified several types of surgical scenarios in which performance was significantly degraded.  

This information, along with the testing methodology, could be used to design a training 

program for surgeons with the purpose of increasing accuracy of port placements.  The port 

placement system described in Chapter 3: provides a grading system, while the testing 

methodology would enable the rehearsal of specific cases.  Results could be tracked to show 

progress over time.  Such a system could improve both laparoscopic and robotic minimally 

invasive procedures. 

6.2.4 Optimized Ablation 

The port placement system provides an effective starting platform for other software 

systems pertaining to laparoscopic-related tools.  An example of such kinds of tools are 

microwave or cryoablation tools, which are used for destroying cancerous tissues in vivo.  

Currently these tools are held and positioned by hand.  Preliminary work has been done by our 

research group to investigate the use of software algorithms to optimize the placement of 

these probes.  In this work, pre-operative imaging is used to develop a 3D virtual model of the 

patient.  This is the same process as presented in the port placement system described in 

Chapter 3: .  The algorithm indicates the points from which optimal coverage of a tumor can be 

achieved with the minimum application of radiation.  In the future, this program could be 
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extended using other features of the port placement system.  It is envisioned that the port 

placement system could decide the best location from which to reach the target points.  In 

addition, with accurate robotics, it may be possible to place the ablation probes at the target 

locations without any surgeon interaction.  
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APPENDIX A: AESOP 1000 CONTROL PINS 

Pin Use Description 

1 Ground  

2 Linear up control When moving up quickly:  4 V 
When moving up slowly:  4–24 V 
When moving down:  24V 

3 Linear down control When moving down quickly:  8.5 V 
When moving down slowly:  8.5–24 V 
When moving up:  24V 

4 Linear potentiometer At top:  8.78 V 
At bottom:  -8.76 V 

5 Shoulder potentiometer Fully CW:  -9.09 V 
Fully CCW:  8.95 V 

6 Elbow potentiometer Fully CW:  -8.9 V 
Fully CCW:  8.93 V 

7 Ground  

8 Shoulder & elbow CCW control Manual mode: 
0 V for CCW motion 
Variable 024 V for increasing CW speed 
Hand control: 
24 V for CW motion 
Variable 240 V for increasing CCW speed 

9 Shoulder & elbow CW control Manual mode: 
0 V for CW motion 
Variable 024 V for increasing CCW speed 
Hand control: 
24 V for CCW motion 
Variable 240 V for increasing CW speed 

10 9.48 V DC  

11 -9.49 V DC  

12 Wrist potentiometer Fully CW:  9.14 V 
Fully CCW:  -8.8 V 

13 Finger potentiometer Fully up (default):  9.11 V 
Fully down:  -8.93 V 

14 Ground  

15 Ground  

16 Ground  

17 Delayed finger potentiometer? Acts like a slow/delayed version of the finger 
potentiometer with lower voltages. 
Fully up (default):  1.254V 
Fully down:  -2.589 V 

18 4.98 V DC  

19 Should & elbow encoder 1 Elbow and shoulder not moving:  Stays at 0.25 V or 4.99 
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V. 
When elbow or shoulder moving:  ~ 2.3 V (average) 

20 Should & elbow encoder 2 Same properties as pin 19 

21 Shoulder CCW control Manual mode: 
(0 V for CCW motion?) 
24 V when no motors engaged 
0 V when other motor(s) engaged 
Variable 025 V for increasing CW speed 
Hand control: 
(24 V for CW motion?) 
24 V normally 
Variable 24~17 V for increasing CCW speed 

22 Shoulder CW control Manual mode: 
(0 V for CW motion?) 
0 V normally 
Variable 024 V for increasing CCW speed 
Hand control: 
(24 V for CCW motion?) 
24 V normally 
Variable 240 V for increasing CW speed 

23 Nail CW control Hand control: 
(24 V for CCW motion?) 
24 V normally 
Variable 24~16 V for increasing CW speed 

24 Nail CCW control Hand control: 
(24 V for CW motion?) 
24 V normally 
Variable 24~16 V for increasing CCW speed 

25 Ground  

26 Linear encoder 1 Linear not moving:  Stays at 0.25 V or 4.98 V. 
When linear moving:  ~ 2.5 V (average) 

27 Linear encoder 2 Same properties as pin 26 

28 Shoulder encoder 1 Shoulder not moving:  Stays at 0.25 V or 5 V. 
When shoulder moving:  ~ 2.5 V (average) 

29 Shoulder encoder 2 Same properties as pin 28 

30 Motor power? When motors engaged (ready for motion):  24 V 
[e.g. when manual mode button held down or when 
configured for hand control (finger held horizontal and 
manual mode button pushed)] 
Otherwise:  0 V 

31 Motor ground? (Not a green-tubed wire) 
0 V normally 
0.4 V when any motor is moving 

32 5 V DC  

33 Poor ground? Fixed DC voltage of 0.035 V 

34 Nail encoder 1 Nail not moving:  Stays at 0.3 V or 4.99 V. 
When nail moving:  ~ 2.6 V (average) 
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35 Nail encoder 2 Same properties as pin 34 

36 4 V DC  

37 Poor 0.57 V DC? Jitters around an average DC voltage of ~ 0.57 V 

38 Ground (Green-tubed wire) 

39 Ground (Green-tubed wire) 

40 Ground? (Yellow wire) 
Fixed DC voltage of 0 V (?) 
Either a ground or floating 

41 Poor ground? Fixed DC voltage of 0.097 V 
Either a poor ground or floating 

42 Ground (Black wire) 

43 Poor ground? (Red wire) 
Fixed DC voltage of 0.001 V 
Either a poor ground or floating 

44 Ground (Green-tubed wire) 

45 4 V DC  

46 Poor 0.6 V DC Jitters around an average DC voltage of ~ 0.6 V 

47 5.08 V DC  

48 Poor ground? (Orange wire) 
~ 0 V 
Either a ground or floating 

49 Poor ground? (Yellow wire) 
~ 0 V 
Either a ground or floating 

50 Ground (Green-tubed wire) 

51 4.99 V DC  

52 4.99 V DC  

53 Ground (Green-tubed wire) 

54 Cable ground Connected to the inside and outside of the connectors 
on both ends of the cable 

55 Cable ground Connected to the inside and outside of the connectors 
on both ends of the cable 
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APPENDIX B: AESOP 1000 LINEAR JOINT ENCODER 

CONVERSION 
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APPENDIX C: AESOP 1000 SHOULDER JOINT ENCODER 

CONVERSION 
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APPENDIX D: AESOP 1000 ELBOW JOINT ENCODER 

CONVERSION 
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APPENDIX E: AESOP 1000 WRIST JOINT POTENTIOMETER 

CONVERSION 

 

y = -0.2637x + 0.0096 
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APPENDIX F: AESOP 1000 FINGER JOINT POTENTIOMETER 

CONVERSION 

 

y = -0.176x - 0.0302 
R² = 0.9999 
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APPENDIX G: AESOP POSITIONAL ACCURACY TESTS 

 Test #1 
 
    Data 

Point X Y Z 

1 524.574358 -82.66687 -205.629861 

2 521.476404 -78.174722 -172.333582 

3 522.434961 -81.548368 -206.99088 

4 524.094198 -73.140039 -191.916763 

5 516.573776 -65.794138 -179.998825 

6 518.531857 -72.890142 -178.44276 

7 514.180436 -70.706134 -200.704265 

8 516.750571 -69.606718 -189.466138 

9 513.893028 -63.367088 -185.941974 

10 504.188694 -87.1076 -202.060968 

11 503.334216 -82.658407 -205.942266 

12 493.520333 -84.534993 -203.837181 

13 494.06761 -85.822935 -209.662253 

14 502.190709 -81.440484 -199.305455 

15 507.957224 -86.01856 -199.561571 

16 507.941914 -78.993437 -208.240378 

17 488.794133 -88.600587 -215.481894 

18 507.562293 -71.759283 -175.479235 

19 508.043326 -79.792907 -203.694318 

 Test #2 
 

    Data 
Point X Y Z 

1 18.485291 -537.015165 -214.177931 

2 20.273482 -536.668742 -223.862184 
3 22.158442 -534.140172 -230.294728 
4 26.635293 -531.277909 -213.264834 
5 29.073236 -524.50478 -225.988738 
6 25.2811 -527.126186 -222.273663 
7 19.036653 -531.980441 -225.316845 
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8 10.684031 -538.775684 -223.050654 
9 18.245047 -536.995149 -209.31205 

10 3.258392 -519.350927 -234.319754 
11 7.631817 -521.684997 -231.721661 
12 2.232406 -525.168048 -234.730204 
13 -2.477423 -512.270224 -240.899376 
14 1.013554 -510.734701 -242.788318 
15 9.718285 -522.388459 -228.621032 
16 9.562081 -522.702631 -231.451111 
17 8.027885 -524.847683 -234.322736 
18 -4.465863 -524.417876 -241.040227 

19 1.595823 -513.431963 -242.596411 
20 6.090366 -521.692036 -238.838741 

 Test #3 
 
    Data 

Point X Y Z 

1 34.929897 464.54613 -233.679731 

2 33.030776 472.748133 -233.262941 
3 29.345985 484.576663 -231.061935 
4 33.242722 479.478279 -218.286226 

5 26.306863 476.954919 -213.997085 
6 27.863606 480.041216 -218.628338 
7 26.712156 482.270287 -223.362634 
8 28.831057 477.229757 -214.569399 
9 34.365535 461.82662 -229.094998 

10 32.743183 476.105035 -227.424429 
11 7.506911 499.399716 -220.799958 
12 25.853032 505.614993 -216.056662 
13 26.222353 511.146144 -200.992237 
14 8.593604 500.949085 -191.899831 
15 -2.624963 492.556077 -206.813654 
16 -6.837628 494.571891 -214.312867 

17 -1.631633 502.056593 -222.8102 
18 28.733932 512.927089 -219.18805 
19 22.044373 509.588548 -228.798511 
20 25.744467 510.52167 -193.9703 

 Test #4 
 
    Data 

Point X Y Z 
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1 466.862132 -35.432239 58.253058 
2 459.137845 -36.688081 59.679882 
3 443.583376 -44.763205 44.091864 
4 447.794926 -42.796132 26.734014 
5 470.778863 -42.568024 46.773337 
6 468.430939 -37.769842 36.480447 
7 455.649124 -41.524379 55.840116 
8 442.70271 -46.745095 31.896692 
9 455.786389 -40.811082 36.322987 

10 468.150749 -37.810554 48.613235 
11 482.06815 -29.709164 61.220936 

12 482.931875 -32.250105 39.684082 
13 475.156482 -26.697006 73.378358 
14 476.212836 -16.360409 81.612702 
15 467.638048 -6.248758 61.800813 
16 476.167195 -29.477224 35.316124 
17 477.835745 -27.830806 37.566424 
18 473.597536 -31.066708 28.94066 
19 479.603077 -29.572549 56.665067 
20 464.539535 -17.888448 77.322196 
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ABSTRACT 

OPTIMAL SURGICAL PORT PLACEMENT AND AUTOMATED ROBOTIC POSITIONING FOR 
RAMAN AND OTHER BIOSENSORS 

by 

BRADY KING 

May 2011 

Advisor:   Dr. Abhilash Pandya  

Major:  Computer Engineering 

Degree: Doctor of Philosophy 

Medical biosensors can provide new information during minimally invasive and robotic 

surgical procedures.  However, these biosensors have significant physical limitations that make 

it difficult to find optimal port locations and place them in vivo.  This dissertation explores the 

application of robotics and virtual/augmented reality to biosensors to enable their optimal use 

in vivo. 

In the first study, an automated intelligent port placement system for biosensor use was 

developed.  Patient data was displayed in an environment in which a surgeon could indicate 

areas of interest.  The system utilized biosensor physical limitations and provided the best port 

location from which the biosensor could reach the targets on a collision-free path.  The study 

showed that it is possible to find an optimal port location for proper biosensor data capture. 

In the second study, human performance in the task of port placement was evaluated to 

determine if computer intervention and assistance was needed.  Using a virtual surgical 

environment, we present a number of targets on one or more tissue surfaces.  A human factors 

study was conducted with 20 subjects that analyzed the subject’s placement of a port with the 
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goal of scanning as many targets as possible with a biosensor.  The study showed performance 

to be less than optimal with significant degradation in several specific scenarios. 

In the final study, a surgical robot was investigated for potential use in holding and 

positioning a biosensor in vivo.  A full control suite was developed for an AESOP 1000, enabling 

the positioning of the biosensor without hand manipulation.  It was found that the robot lacks 

the accuracy needed for proper biosensor utilization.  Specific causes of the inaccuracies were 

identified for analysis and consideration in future robotic platforms. 

Overall, the results show that the application of medical robotics and virtual/augmented 

reality is able to overcome/mitigate many of the significant physical limitations inherent to 

biosensor design that currently limit their use in surgery.  We conjecture that a complete 

system, with a more accurate robot, could be used in vivo.  We believe that results taken from 

the individual studies will result in improvements to pre-operative port placement and robotic 

design. 
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