4,505 research outputs found

    Interaction intermodale dans les réseaux neuronaux profonds pour la classification et la localisation d'évènements audiovisuels

    Get PDF
    La compréhension automatique du monde environnant a de nombreuses applications telles que la surveillance et sécurité, l'interaction Homme-Machine, la robotique, les soins de santé, etc. Plus précisément, la compréhension peut s'exprimer par le biais de différentes taches telles que la classification et localisation dans l'espace d'évènements. Les êtres vivants exploitent un maximum de l'information disponible pour comprendre ce qui les entoure. En s'inspirant du comportement des êtres vivants, les réseaux de neurones artificiels devraient également utiliser conjointement plusieurs modalités, par exemple, la vision et l'audition. Premièrement, les modèles de classification et localisation, basés sur l'information audio-visuelle, doivent être évalués de façon objective. Nous avons donc enregistré une nouvelle base de données pour compléter les bases actuellement disponibles. Comme aucun modèle audio-visuel de classification et localisation n'existe, seule la partie sonore de la base est évaluée avec un modèle de la littérature. Deuxièmement, nous nous concentrons sur le cœur de la thèse: comment utiliser conjointement de l'information visuelle et sonore pour résoudre une tâche spécifique, la reconnaissance d'évènements. Le cerveau n'est pas constitué d'une "simple" fusion mais comprend de multiples interactions entre les deux modalités. Il y a un couplage important entre le traitement de l'information visuelle et sonore. Les réseaux de neurones offrent la possibilité de créer des interactions entre les modalités en plus de la fusion. Dans cette thèse, nous explorons plusieurs stratégies pour fusionner les modalités visuelles et sonores et pour créer des interactions entre les modalités. Ces techniques ont les meilleures performances en comparaison aux architectures de l'état de l'art au moment de la publication. Ces techniques montrent l'utilité de la fusion audio-visuelle mais surtout l'importance des interactions entre les modalités. Pour conclure la thèse, nous proposons un réseau de référence pour la classification et localisation d'évènements audio-visuels. Ce réseau a été testé avec la nouvelle base de données. Les modèles précédents de classification sont modifiés pour prendre en compte la localisation dans l'espace en plus de la classification.Abstract: The automatic understanding of the surrounding world has a wide range of applications, including surveillance, human-computer interaction, robotics, health care, etc. The understanding can be expressed in several ways such as event classification and its localization in space. Living beings exploit a maximum of the available information to understand the surrounding world. Artificial neural networks should build on this behavior and jointly use several modalities such as vision and hearing. First, audio-visual networks for classification and localization must be evaluated objectively. We recorded a new audio-visual dataset to fill a gap in the current available datasets. We were not able to find audio-visual models for classification and localization. Only the dataset audio part is evaluated with a state-of-the-art model. Secondly, we focus on the main challenge of the thesis: How to jointly use visual and audio information to solve a specific task, event recognition. The brain does not comprise a simple fusion but has multiple interactions between the two modalities to create a strong coupling between them. The neural networks offer the possibility to create interactions between the two modalities in addition to the fusion. We explore several strategies to fuse the audio and visual modalities and to create interactions between modalities. These techniques have the best performance compared to the state-of-the-art architectures at the time of publishing. They show the usefulness of audio-visual fusion but above all the contribution of the interaction between modalities. To conclude, we propose a benchmark for audio-visual classification and localization on the new dataset. Previous models for the audio-visual classification are modified to address the localization in addition to the classification

    Ambient Sound Helps: Audiovisual Crowd Counting in Extreme Conditions

    Get PDF
    Visual crowd counting has been recently studied as a way to enable people counting in crowd scenes from images. Albeit successful, vision-based crowd counting approaches could fail to capture informative features in extreme conditions, e.g., imaging at night and occlusion. In this work, we introduce a novel task of audiovisual crowd counting, in which visual and auditory information are integrated for counting purposes. We collect a large-scale benchmark, named auDiovISual Crowd cOunting (DISCO) dataset, consisting of 1,935 images and the corresponding audio clips, and 170,270 annotated instances. In order to fuse the two modalities, we make use of a linear feature-wise fusion module that carries out an affine transformation on visual and auditory features. Finally, we conduct extensive experiments using the proposed dataset and approach. Experimental results show that introducing auditory information can benefit crowd counting under different illumination, noise, and occlusion conditions. The dataset and code will be released. Code and data have been made availabl

    Multimodal fusion for audio-image and video action recognition

    Get PDF
    Multimodal Human Action Recognition (MHAR) is an important research topic in computer vision and event recognition fields. In this work, we address the problem of MHAR by developing a novel audio-image and video fusion-based deep learning framework that we call Multimodal Audio-Image and Video Action Recognizer (MAiVAR). We extract temporal information using image representations of audio signals and spatial information from video modality with the help of Convolutional Neutral Networks (CNN)-based feature extractors and fuse these features to recognize respective action classes. We apply a high-level weights assignment algorithm for improving audio-visual interaction and convergence. This proposed fusion-based framework utilizes the influence of audio and video feature maps and uses them to classify an action. Compared with state-of-the-art audio-visual MHAR techniques, the proposed approach features a simpler yet more accurate and more generalizable architecture, one that performs better with different audio-image representations. The system achieves an accuracy 87.9% and 79.0% on UCF51 and Kinetics Sounds datasets, respectively. All code and models for this paper will be available at https://tinyurl.com/4ps2ux6n

    An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and Separation

    Get PDF
    Speech enhancement and speech separation are two related tasks, whose purpose is to extract either one or more target speech signals, respectively, from a mixture of sounds generated by several sources. Traditionally, these tasks have been tackled using signal processing and machine learning techniques applied to the available acoustic signals. Since the visual aspect of speech is essentially unaffected by the acoustic environment, visual information from the target speakers, such as lip movements and facial expressions, has also been used for speech enhancement and speech separation systems. In order to efficiently fuse acoustic and visual information, researchers have exploited the flexibility of data-driven approaches, specifically deep learning, achieving strong performance. The ceaseless proposal of a large number of techniques to extract features and fuse multimodal information has highlighted the need for an overview that comprehensively describes and discusses audio-visual speech enhancement and separation based on deep learning. In this paper, we provide a systematic survey of this research topic, focusing on the main elements that characterise the systems in the literature: acoustic features; visual features; deep learning methods; fusion techniques; training targets and objective functions. In addition, we review deep-learning-based methods for speech reconstruction from silent videos and audio-visual sound source separation for non-speech signals, since these methods can be more or less directly applied to audio-visual speech enhancement and separation. Finally, we survey commonly employed audio-visual speech datasets, given their central role in the development of data-driven approaches, and evaluation methods, because they are generally used to compare different systems and determine their performance

    LIPSFUS: A neuromorphic dataset for audio-visual sensory fusion of lip reading

    Full text link
    This paper presents a sensory fusion neuromorphic dataset collected with precise temporal synchronization using a set of Address-Event-Representation sensors and tools. The target application is the lip reading of several keywords for different machine learning applications, such as digits, robotic commands, and auxiliary rich phonetic short words. The dataset is enlarged with a spiking version of an audio-visual lip reading dataset collected with frame-based cameras. LIPSFUS is publicly available and it has been validated with a deep learning architecture for audio and visual classification. It is intended for sensory fusion architectures based on both artificial and spiking neural network algorithms.Comment: Submitted to ISCAS2023, 4 pages, plus references, github link provide

    Where and When: {S}pace-Time Attention for Audio-Visual Explanations

    Get PDF
    Explaining the decision of a multi-modal decision-maker requires to determine the evidence from both modalities. Recent advances in XAI provide explanations for models trained on still images. However, when it comes to modeling multiple sensory modalities in a dynamic world, it remains underexplored how to demystify the mysterious dynamics of a complex multi-modal model. In this work, we take a crucial step forward and explore learnable explanations for audio-visual recognition. Specifically, we propose a novel space-time attention network that uncovers the synergistic dynamics of audio and visual data over both space and time. Our model is capable of predicting the audio-visual video events, while justifying its decision by localizing where the relevant visual cues appear, and when the predicted sounds occur in videos. We benchmark our model on three audio-visual video event datasets, comparing extensively to multiple recent multi-modal representation learners and intrinsic explanation models. Experimental results demonstrate the clear superior performance of our model over the existing methods on audio-visual video event recognition. Moreover, we conduct an in-depth study to analyze the explainability of our model based on robustness analysis via perturbation tests and pointing games using human annotations
    corecore