470 research outputs found

    Spotting Agreement and Disagreement: A Survey of Nonverbal Audiovisual Cues and Tools

    Get PDF
    While detecting and interpreting temporal patterns of non–verbal behavioral cues in a given context is a natural and often unconscious process for humans, it remains a rather difficult task for computer systems. Nevertheless, it is an important one to achieve if the goal is to realise a naturalistic communication between humans and machines. Machines that are able to sense social attitudes like agreement and disagreement and respond to them in a meaningful way are likely to be welcomed by users due to the more natural, efficient and human–centered interaction they are bound to experience. This paper surveys the nonverbal cues that could be present during agreement and disagreement behavioural displays and lists a number of tools that could be useful in detecting them, as well as a few publicly available databases that could be used to train these tools for analysis of spontaneous, audiovisual instances of agreement and disagreement

    Macro-and Micro-Expressions Facial Datasets: A Survey

    Get PDF
    Automatic facial expression recognition is essential for many potential applications. Thus, having a clear overview on existing datasets that have been investigated within the framework of face expression recognition is of paramount importance in designing and evaluating effective solutions, notably for neural networks-based training. In this survey, we provide a review of more than eighty facial expression datasets, while taking into account both macro-and micro-expressions. The proposed study is mostly focused on spontaneous and in-the-wild datasets, given the common trend in the research is that of considering contexts where expressions are shown in a spontaneous way and in a real context. We have also provided instances of potential applications of the investigated datasets, while putting into evidence their pros and cons. The proposed survey can help researchers to have a better understanding of the characteristics of the existing datasets, thus facilitating the choice of the data that best suits the particular context of their application

    Can a robot laugh with you?: Shared laughter generation for empathetic spoken dialogue

    Get PDF
    人と一緒に笑う会話ロボットを開発 --人に共感し、人と共生する会話AIの実現に向けて--. 京都大学プレスリリース. 2022-09-29.Spoken dialogue systems must be able to express empathy to achieve natural interaction with human users. However, laughter generation requires a high level of dialogue understanding. Thus, implementing laughter in existing systems, such as in conversational robots, has been challenging. As a first step toward solving this problem, rather than generating laughter from user dialogue, we focus on “shared laughter, ” where a user laughs using either solo or speech laughs (initial laugh), and the system laughs in turn (response laugh). The proposed system consists of three models: 1) initial laugh detection, 2) shared laughter prediction, and 3) laugh type selection. We trained each model using a human-robot speed dating dialogue corpus. For the first model, a recurrent neural network was applied, and the detection performance achieved an F1 score of 82.6%. The second model used the acoustic and prosodic features of the initial laugh and achieved a prediction accuracy above that of the random prediction. The third model selects the type of system’s response laugh as social or mirthful laugh based on the same features of the initial laugh. We then implemented the full shared laughter generation system in an attentive listening dialogue system and conducted a dialogue listening experiment. The proposed system improved the impression of the dialogue system such as empathy perception compared to a naive baseline without laughter and a reactive system that always responded with only social laughs. We propose that our system can be used for situated robot interaction and also emphasize the need for integrating proper empathetic laughs into conversational robots and agents

    SEWA DB: A rich database for audio-visual emotion and sentiment research in the wild

    Get PDF
    Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust performance in-the-wild are more needed than ever as digital devices are becoming indispensable part of our life more and more. Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old. Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation

    Emotion elicitation and capture among real couples in the lab

    Get PDF
    Couples’ relationships affect partners’ mental and physical well-being. Automatic recognition of couples’ emotions will not only help to better understand the interplay of emotions, intimate relationships, and health and well-being, but also provide crucial clinical insights into protective and risk factors of relationships, and can ultimately guide interventions. However, several works developing emotion recognition algorithms use data from actors in artificial dyadic interactions and the algorithms are likely not to perform well on real couples. We are developing emotion recognition methods using data from real couples and, in this paper, we describe two studies we ran in which we collected emotion data from real couples — Dutch-speaking couples in Belgium and German-speaking couples in Switzerland. We discuss our approach to eliciting and capturing emotions and make five recommendations based on their relevance for developing well-performing emotion recognition systems for couples

    Robust subspace learning for static and dynamic affect and behaviour modelling

    Get PDF
    Machine analysis of human affect and behavior in naturalistic contexts has witnessed a growing attention in the last decade from various disciplines ranging from social and cognitive sciences to machine learning and computer vision. Endowing machines with the ability to seamlessly detect, analyze, model, predict as well as simulate and synthesize manifestations of internal emotional and behavioral states in real-world data is deemed essential for the deployment of next-generation, emotionally- and socially-competent human-centered interfaces. In this thesis, we are primarily motivated by the problem of modeling, recognizing and predicting spontaneous expressions of non-verbal human affect and behavior manifested through either low-level facial attributes in static images or high-level semantic events in image sequences. Both visual data and annotations of naturalistic affect and behavior naturally contain noisy measurements of unbounded magnitude at random locations, commonly referred to as ‘outliers’. We present here machine learning methods that are robust to such gross, sparse noise. First, we deal with static analysis of face images, viewing the latter as a superposition of mutually-incoherent, low-complexity components corresponding to facial attributes, such as facial identity, expressions and activation of atomic facial muscle actions. We develop a robust, discriminant dictionary learning framework to extract these components from grossly corrupted training data and combine it with sparse representation to recognize the associated attributes. We demonstrate that our framework can jointly address interrelated classification tasks such as face and facial expression recognition. Inspired by the well-documented importance of the temporal aspect in perceiving affect and behavior, we direct the bulk of our research efforts into continuous-time modeling of dimensional affect and social behavior. Having identified a gap in the literature which is the lack of data containing annotations of social attitudes in continuous time and scale, we first curate a new audio-visual database of multi-party conversations from political debates annotated frame-by-frame in terms of real-valued conflict intensity and use it to conduct the first study on continuous-time conflict intensity estimation. Our experimental findings corroborate previous evidence indicating the inability of existing classifiers in capturing the hidden temporal structures of affective and behavioral displays. We present here a novel dynamic behavior analysis framework which models temporal dynamics in an explicit way, based on the natural assumption that continuous- time annotations of smoothly-varying affect or behavior can be viewed as outputs of a low-complexity linear dynamical system when behavioral cues (features) act as system inputs. A novel robust structured rank minimization framework is proposed to estimate the system parameters in the presence of gross corruptions and partially missing data. Experiments on prediction of dimensional conflict and affect as well as multi-object tracking from detection validate the effectiveness of our predictive framework and demonstrate that for the first time that complex human behavior and affect can be learned and predicted based on small training sets of person(s)-specific observations.Open Acces

    The conflict escalation resolution (CONFER) database

    Get PDF
    Conflict is usually defined as a high level of disagreement taking place when individuals act on incompatible goals, interests, or intentions. Research in human sciences has recognized conflict as one of the main dimensions along which an interaction is perceived and assessed. Hence, automatic estimation of conflict intensity in naturalistic conversations would be a valuable tool for the advancement of human-centered computing and the deployment of novel applications for social skills enhancement including conflict management and negotiation. However, machine analysis of conflict is still limited to just a few works, partially due to an overall lack of suitable annotated data, while it has been mostly approached as a conflict or (dis)agreement detection problem based on audio features only. In this work, we aim to overcome the aforementioned limitations by a) presenting the Conflict Escalation Resolution (CONFER) Database, a set of excerpts from audiovisual recordings of televised political debates where conflicts naturally arise, and b)reporting baseline experiments on audiovisual conflict intensity estimation. The database contains approximately 142min of recordings in Greek language, split over 120 non-overlapping episodes of naturalistic conversations that involve two or three interactants. Subject- and session-independent experiments are conducted on continuous-time (frame-by-frame) estimation of real-valued conflict intensity, as opposed to binary conflict/non-conflict classification. For the problem at hand, the efficiency of various audio and visual features and fusion of them as well as various regression frameworks is examined. Experimental results suggest that there is much room for improvement in the design and development of automated multi-modal approaches to continuous conflict analysis. The CONFER Database is publicly available for non-commercial use at http://ibug.doc.ic.ac.uk/resources/confer/. The Conflict Escalation Resolution (CONFER) Database is presented.CONFER contains 142min (120 episodes) of recordings in Greek language.Episodes are extracted from TV political debates where conflicts naturally arise.Experiments are the first approach to continuous estimation of conflict intensity.Performance of various audio and visual features and classifiers is evaluated

    The conflict escalation resolution (CONFER) database

    Get PDF
    Conflict is usually defined as a high level of disagreement taking place when individuals act on incompatible goals, interests, or intentions. Research in human sciences has recognized conflict as one of the main dimensions along which an interaction is perceived and assessed. Hence, automatic estimation of conflict intensity in naturalistic conversations would be a valuable tool for the advancement of human-centered computing and the deployment of novel applications for social skills enhancement including conflict management and negotiation. However, machine analysis of conflict is still limited to just a few works, partially due to an overall lack of suitable annotated data, while it has been mostly approached as a conflict or (dis)agreement detection problem based on audio features only. In this work, we aim to overcome the aforementioned limitations by a) presenting the Conflict Escalation Resolution (CONFER) Database, a set of excerpts from audiovisual recordings of televised political debates where conflicts naturally arise, and b)reporting baseline experiments on audiovisual conflict intensity estimation. The database contains approximately 142min of recordings in Greek language, split over 120 non-overlapping episodes of naturalistic conversations that involve two or three interactants. Subject- and session-independent experiments are conducted on continuous-time (frame-by-frame) estimation of real-valued conflict intensity, as opposed to binary conflict/non-conflict classification. For the problem at hand, the efficiency of various audio and visual features and fusion of them as well as various regression frameworks is examined. Experimental results suggest that there is much room for improvement in the design and development of automated multi-modal approaches to continuous conflict analysis. The CONFER Database is publicly available for non-commercial use at http://ibug.doc.ic.ac.uk/resources/confer/. The Conflict Escalation Resolution (CONFER) Database is presented.CONFER contains 142min (120 episodes) of recordings in Greek language.Episodes are extracted from TV political debates where conflicts naturally arise.Experiments are the first approach to continuous estimation of conflict intensity.Performance of various audio and visual features and classifiers is evaluated
    corecore