168 research outputs found

    New Digital Audio Watermarking Algorithms for Copyright Protection

    Get PDF
    This thesis investigates the development of digital audio watermarking in addressing issues such as copyright protection. Over the past two decades, many digital watermarking algorithms have been developed, each with its own advantages and disadvantages. The main aim of this thesis was to develop a new watermarking algorithm within an existing Fast Fourier Transform framework. This resulted in the development of a Complex Spectrum Phase Evolution based watermarking algorithm. In this new implementation, the embedding positions were generated dynamically thereby rendering it more difficult for an attacker to remove, and watermark information was embedded by manipulation of the spectral components in the time domain thereby reducing any audible distortion. Further improvements were attained when the embedding criteria was based on bin location comparison instead of magnitude, thereby rendering it more robust against those attacks that interfere with the spectral magnitudes. However, it was discovered that this new audio watermarking algorithm has some disadvantages such as a relatively low capacity and a non-consistent robustness for different audio files. Therefore, a further aim of this thesis was to improve the algorithm from a different perspective. Improvements were investigated using an Singular Value Decomposition framework wherein a novel observation was discovered. Furthermore, a psychoacoustic model was incorporated to suppress any audible distortion. This resulted in a watermarking algorithm which achieved a higher capacity and a more consistent robustness. The overall result was that two new digital audio watermarking algorithms were developed which were complementary in their performance thereby opening more opportunities for further research

    Hardware Implementation of Audio Watermarking Based on DWT Transform

    Get PDF
    Presently, the duplicate copy of an audio can be generated with great ease using some smart devices, and transmitted over the internet which raises concern over copyright and privacy. Digital audio watermarking is a procedure to insert some data bits known as watermark into audio signal. Then the audio with watermark is to be transmitted to end user or made public. The proposed algorithm is used to insert a binary watermark image into a detailed coefficient of the Daubechies 9/7-based DWT transform. A watermark is dispersed consistently in low frequencies, which builds the robustness and inaudibility of the watermark data. Further, the watermark is embedded into an audio signal to have robust system against audio attacks and inaudible performance. The algorithm is verified using MATLAB and subsequently implemented on FPGA hardware to verify the real-time performance. Hardware implementation helps to embed the watermark at the same instance when audio is being captured. The results show promising application for real-time audio applications

    An Optimized Medical Image Watermarking Approach for E-Health Applications

    Get PDF
    Background: In recent years, information and communication technologies have been widely used in the healthcare sector. This development enables E-Health applications to transmit medical data, as well as their sharing and remote access by healthcare professionals. However, due to their sensitivity, medical data in general, and medical images in particular, are vulnerable to a variety of illegitimate attacks. Therefore, suitable security and effective protection are necessary during transmission. Method: In consideration of these challenges, we put forth a security system relying on digital watermarking with the aim of ensuring the integrity and authenticity of medical images. The proposed approach is based on Integer Wavelet Transform as an embedding algorithm; furthermore, Particles Swarm Optimization was employed to select the optimal scaling factor, which allows the system to be compatible with different medical imaging modalities. Results: The experimental results demonstrate that the method provides a high imperceptibility and robustness for both secret watermark and watermarked images. In addition, the proposed scheme performs better for medical images compared with similar watermarking algorithms. Conclusion: As it is suitable for a lossless-data application, IWT is the best choice for medical images integrity. Furthermore, using the PSO algorithm enables the algorithm to be compatible with different medical imaging modalities

    Robust Image Watermarking Using QR Factorization In Wavelet Domain

    Get PDF
    A robust blind image watermarking algorithm in wavelet transform domain (WT) based on QR factorization, and quantization index modulation (QIM) technique is presented for legal protection of digital images. The host image is decomposed into wavelet subbands, and then the approximation subband is QR factorized. The secret watermark bit is embedded into the R vector in QR using QIM. The experimental results show that the proposed algorithm preserves the high perceptual quality. It also sustains against JPEG compression, and other image processing attacks. The comparison analysis demonstrates the proposed scheme has better performance in imperceptibility and robustness than the previously reported watermarking algorithms

    Robust Multiple Image Watermarking Based on Spread Transform

    Get PDF

    A New Digital Video Watermarking Using Decimated Wavelet and Principle Component Analysis in YCbCr Domain

    Full text link
    Digital watermarking is a technology used for security and for the copyright protection of digital media application. In this letter, we introduced “A New Digital Video Watermarking Using Decimated Wavelet and Principle Component Analysis in YCbCr domain”. First, the input video stream will be divided into number of frames and then select one frame to embed the information into it. Now convert it into YCbCr color space and apply DWT followed by PCA to get the watermarked frame then replace this frame with the original frame to obtain the watermarked video. It has also tested for various attacks such asRST, cropping, compression, filtering and Gaussian noise successfully with reduced bit error. Peak signal to noise ratio (PSNR) and structural similarity index (SSIM) used to measure the quality of watermarked frame. Simulated results had shown that the proposed algorithm gives more superior results and higher imperceptibility over existing algorithm in terms of quality metrics
    corecore