159 research outputs found

    Sound Event Detection by Exploring Audio Sequence Modelling

    Get PDF
    Everyday sounds in real-world environments are a powerful source of information by which humans can interact with their environments. Humans can infer what is happening around them by listening to everyday sounds. At the same time, it is a challenging task for a computer algorithm in a smart device to automatically recognise, understand, and interpret everyday sounds. Sound event detection (SED) is the process of transcribing an audio recording into sound event tags with onset and offset time values. This involves classification and segmentation of sound events in the given audio recording. SED has numerous applications in everyday life which include security and surveillance, automation, healthcare monitoring, multimedia information retrieval, and assisted living technologies. SED is to everyday sounds what automatic speech recognition (ASR) is to speech and automatic music transcription (AMT) is to music. The fundamental questions in designing a sound recognition system are, which portion of a sound event should the system analyse, and what proportion of a sound event should the system process in order to claim a confident detection of that particular sound event. While the classification of sound events has improved a lot in recent years, it is considered that the temporal-segmentation of sound events has not improved in the same extent. The aim of this thesis is to propose and develop methods to improve the segmentation and classification of everyday sound events in SED models. In particular, this thesis explores the segmentation of sound events by investigating audio sequence encoding-based and audio sequence modelling-based methods, in an effort to improve the overall sound event detection performance. In the first phase of this thesis, efforts are put towards improving sound event detection by explicitly conditioning the audio sequence representations of an SED model using sound activity detection (SAD) and onset detection. To achieve this, we propose multi-task learning-based SED models in which SAD and onset detection are used as auxiliary tasks for the SED task. The next part of this thesis explores self-attention-based audio sequence modelling, which aggregates audio representations based on temporal relations within and between sound events, scored on the basis of the similarity of sound event portions in audio event sequences. We propose SED models that include memory-controlled, adaptive, dynamic, and source separation-induced self-attention variants, with the aim to improve overall sound recognition

    Deep Neural Networks for Sound Event Detection

    Get PDF
    The objective of this thesis is to develop novel classification and feature learning techniques for the task of sound event detection (SED) in real-world environments. Throughout their lives, humans experience a consistent learning process on how to assign meanings to sounds. Thanks to this, most of the humans can easily recognize the sound of a thunder, dog bark, door bell, bird singing etc. In this work, we aim to develop systems that can automatically detect the sound events commonly present in our daily lives. Such systems can be utilized in e.g. contextaware devices, acoustic surveillance, bio-acoustical and healthcare monitoring, and smart-home cities.In this thesis, we propose to apply the modern machine learning methods called deep learning for SED. The relationship between the commonly used timefrequency representations for SED (such as mel spectrogram and magnitude spectrogram) and the target sound event labels are highly complex. Deep learning methods such as deep neural networks (DNN) utilize a layered structure of units to extract features from the given sound representation input with increased abstraction at each layer. This increases the network’s capacity to efficiently learn the highly complex relationship between the sound representation and the target sound event labels. We found that the proposed DNN approach performs significantly better than the established classifier techniques for SED such as Gaussian mixture models.In a time-frequency representation of an audio recording, a sound event can often be recognized as a distinct pattern that may exhibit shifts in both dimensions. The intra-class variability of the sound events may cause to small shifts in the frequency domain content, and the time domain shift results from the fact that a sound event can occur at any time for a given audio recording. We found that convolutional neural networks (CNN) are useful to learn shift-invariant filters that are essential for robust modeling of sound events. In addition, we show that recurrent neural networks (RNN) are effective in modeling the long-term temporal characteristics of the sound events. Finally, we combine the convolutional and recurrent layers in a single classifier called convolutional recurrent neural networks (CRNN), which emphasizes the benefits of both and provides state-of-the-art results in multiple SED benchmark datasets.Aside from learning the mappings between the time-frequency representations and the sound event labels, we show that deep learning methods can also be utilized to learn a direct mapping between the the target labels and a lower level representation such as the magnitude spectrogram or even the raw audio signals. In this thesis, the feature learning capabilities of the deep learning methods and the empirical knowledge on the human auditory perception are proposed to be integrated through the means of layer weight initialization with filterbank coefficients. This results with an optimal, ad-hoc filterbank that is obtained through gradient based optimization of the original coefficients to improve the SED performance

    Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016)

    Get PDF

    Efficient and Accurate Spiking Neural Networks

    Get PDF

    Proceedings of the Detection and Classification of Acoustic Scenes and Events 2017 Workshop (DCASE2017)

    Get PDF

    A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4

    Full text link
    Large language models (LLMs) are a special class of pretrained language models obtained by scaling model size, pretraining corpus and computation. LLMs, because of their large size and pretraining on large volumes of text data, exhibit special abilities which allow them to achieve remarkable performances without any task-specific training in many of the natural language processing tasks. The era of LLMs started with OpenAI GPT-3 model, and the popularity of LLMs is increasing exponentially after the introduction of models like ChatGPT and GPT4. We refer to GPT-3 and its successor OpenAI models, including ChatGPT and GPT4, as GPT-3 family large language models (GLLMs). With the ever-rising popularity of GLLMs, especially in the research community, there is a strong need for a comprehensive survey which summarizes the recent research progress in multiple dimensions and can guide the research community with insightful future research directions. We start the survey paper with foundation concepts like transformers, transfer learning, self-supervised learning, pretrained language models and large language models. We then present a brief overview of GLLMs and discuss the performances of GLLMs in various downstream tasks, specific domains and multiple languages. We also discuss the data labelling and data augmentation abilities of GLLMs, the robustness of GLLMs, the effectiveness of GLLMs as evaluators, and finally, conclude with multiple insightful future research directions. To summarize, this comprehensive survey paper will serve as a good resource for both academic and industry people to stay updated with the latest research related to GPT-3 family large language models.Comment: Preprint under review, 58 page
    corecore