
Efficient and Accurate Spiking Neural
Networks

Bojian Yin

Copyright © 2022 by Bojian Yin. All Rights Reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Yin, B

Efficient and Accurate Spiking Neural Networks by Bojian Yin.
Eindhoven: Technische Universiteit Eindhoven, 2022. Proefschrift.

Cover design by DALL·E 2

A catalogue record is available from the Eindhoven University of Tech-
nology and Centrum Wiskunde & Informatica Library

ISBN 978-90-386-5629-8

Keywords: Spiking Neural Network, Efficient Learning

The work in this thesis has been sponsored by Imec.

Efficient and Accurate Spiking Neural
Networks

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen op woensdag

14 december 2022 om 11:00 uur

door

Bojian Yin

geboren te China

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

Voorzitter:
Prof.dr.ir. P.G.M. (Peter) Baltus

Promotoren:
Prof. dr. S.M. Bohté Centrum Wiskunde & Informatica

Universiteit van Amsterdam
Rijksuniversiteit Groningen

Prof.dr. H. Corporaal
Co-promotor:

dr. F. Corradi
Promotiecommissieleden:

Prof.dr.ir. A. de Vries
Prof.dr. E. Chicca Rijksuniversiteit Groningen
dr.ing. F. Zenke University of Basel
Prof. dr. M.A.J. van Gerven Radboud University Nijmegen
dr.ir. Y.B. van de Burgt

Het onderzoek of ontwerp dat in deze thesis wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Contents

1 Introduction 1
1.1 Background . 3

1.1.1 Feedforward ANNs . 5
1.1.2 Recurrent Neural Networks (RNNs) 6
1.1.3 Spiking Neural Networks (SNNs) 8
1.1.4 Neural Dynamics . 9
1.1.5 Training SNNs as RNNs . 15

1.2 Challenges when training SNNs . 21
1.2.1 Challenge 1: Discontinuity of the spike generation function 21
1.2.2 Challenge 2: Cumbersome gradient flow 23
1.2.3 Challenge 3: Memory . 23
1.2.4 Challenge 4: Continual running 24

1.3 Contributions . 24

2 Multi-timescales Spiking Recurrent Neural Networks 27
2.1 Introduction . 28
2.2 Methods . 31

2.2.1 Spiking Recurrent Neural Networks (SRNN) 33
2.3 Experiments . 38

2.3.1 Datasets . 38
2.3.2 Results . 40

2.4 Discussion . 48

vi CONTENTS

3 Training SRNN Through Truncated BPTT 53
3.1 Introduction . 54

3.1.1 Background . 55
3.2 Related work . 56
3.3 Methods . 58

3.3.1 Model . 58
3.3.2 Dataset . 59
3.3.3 Depth encoding . 61
3.3.4 Sparsity . 62
3.3.5 Truncated Backpropagation-Through-Time 63

3.4 Experiments . 64
3.4.1 Overall Performance . 65
3.4.2 Early classification . 65
3.4.3 Sparsity . 67
3.4.4 Truncated Backpropagation-Trough-Time 68
3.4.5 Energy Requirements . 69

3.5 Discussion . 71

4 Training SRNN Through Forward Propagation Through Time 73
4.1 Introduction . 74
4.2 Methods . 78

4.2.1 Forward Propagation Through Time. 78
4.2.2 Liquid Time-Constant Spiking Neurons 81

4.3 Experiments . 83
4.3.1 Datasets . 83
4.3.2 Results . 88
4.3.3 Large-scale Object-detection: Spiking YOLO 92

4.4 Discussion . 95

5 Network Continual Inference on Streaming Data 97
5.1 Introduction . 98
5.2 Related Work . 100
5.3 Methods . 100

5.3.1 Attentive Spiking Recurrent Neural Networks 101
5.3.2 Streaming Decision Making 102

5.4 Experiments . 108
5.4.1 Datasets . 108
5.4.2 Results . 108

5.5 Discussion . 112

CONTENTS vii

6 Discussion & Research directions 115
6.1 Challenge 1: Discontinuity of the spike generation function . . . 115
6.2 Challenge 2: Cumbersome gradient flow 117

6.2.1 Offline learning . 117
6.2.2 Online learning . 117

6.3 Challenge 3: Memory . 119
6.4 Challenge 4: Continual running . 120
6.5 Outlook . 121

List of Publications 123

Summary 125

Acknowledgments 127

Bibliography 135

Curriculum Vitae 149

Chapter 1
Introduction

Research in artificial intelligence has made tremendous strides in recent years
based on developments in the capacities and architectures of neural networks,
from simple handwritten number recognition [1] to nuclear reactor control [2],
and from multilayer perceptrons (MLPs) to over thousand-layers transform-
ers [3]. This construction of larger and deeper neural networks has been driven
by the increasing complexity of the problems to which they have been applied.
Increasing the size of neural networks increases their number of parameters,
which consequently increases the computational and energy requirements for
model training and inference [4]. As a result, large neural networks almost
invariably must be trained and deployed on supercomputers or in the cloud.
However, such in-cloud training of neural networks based on large amounts of
personal data has privacy risks and thus may prohibit the provision of person-
alised network services. A potential solution to this problem is to develop more
energy-efficient, robust, and hardware-friendly neural network models that can
function with low-latency on increasingly popular wearable smart devices, as
this would facilitate more private use of large amounts of personal informa-
tion [5,6].

We look to the human brain, the most powerful learning machine in the
world, for inspiration. The brain is the culmination of millions of years and
is the physical basis of most biological intelligence. It is composed of approx-
imately 100 billion neurons [7] that use electrical pulses called spikes, or ac-
tion potentials, to communicate sparsely and robustly via trillions of junctions
called synapses (Figure 1.3). These neurons and synapses form a large-scale

2 Introduction

entangled, multilayer network structure that consists of increasingly abstract
features stacked on top of each other, which realises increasingly complicated
functions [8,9].

In the brain, information is continuously routed between network layers,
and spikes flow in complex circuits, with information in the nervous system
typically encoded by the frequency and timing of these spikes [10]. At a micro-
scopic level, neurons accumulate action potentials and “fire” spikes of electrical
signals. These spikes are initiated near the neuron cell body and transmitted
along extensions of its body, called axons, which connect to the next neuron
(Figure 1.3). Once a spike reaches the end of an axon, neurotransmitters (small
molecules) are released to transmit the message to the connected neuron via a
junction called a synapse. Thus, neurons encode neurotransmitter signals into
spikes to transmit to their connected neurons via synapses [11]. This process is
termed synaptic transmission and occurs only when input spikes are received at
the synapse. The resulting in event-based approach allows low-precision spikes
to efficiently and robustly transmit accurate information throughout the nervous
system.

The efficient communication mechanism of the biological nervous system
also means it has an extraordinary ability to learn new skills and adapt to new
environments. In particular, our brain learns new knowledge and skills by tun-
ing the weight and properties of the connections between neurons in its net-
work (i.e. the strength of synapses). Moreover, during learning, the time dif-
ference between pre- and post-synaptic spikes can be used to adjust the weight
of a synaptic connection [12]. It follows that by utilising sparse temporal lo-
cal pulses to dynamically modulate the strength of a connection in a sparse
neural network [13], it should be possible to solve contextual or abstract prob-
lems in a event-based manner that consumes ultra-low levels of power, like our
brain [14].

Brain-inspired neural networks, especially spiking neural networks (SNNs),
simulate the activity of neural networks in the brain by abstracting the activity
patterns of biological nervous systems [15, 16]. SNNs use mathematical mod-
els of simplified biological neurons to construct multilayer neural networks that
ideally approximate or exceed the high accuracy of artificial networks with the
high energy-efficiency of biological networks. The neurons in classical artificial
neural networks (ANNs) are bio-inspired but abstract from the brain at a more
coarse level, with each artificial neuron principally modeling the joint activity
in a pool of biological spiking neurons [17] (see Fig 1.1). The binary and sparse
nature of communication between spiking neurons in principle enables more
energy efficient computation compared to ANNs. In ANNs, the contribution

1.1 Background 3

from one neuron to another requires a Multiply-Accumulate (MAC) for every
timestep, multiplying each input activation with the respective weight before
adding to the internal sum. In contrast, for a spiking neuron a transmitted
spike requires only a cheap Accumulate (AC) at the target neuron, adding the
weight to the potential, and where spike inputs may be quite sparse. As cal-
culating MACs is much more energetically expensive compared to ACs (e.g.,
31x on 45nm CMOS [18]), the relative efficiency of SNNs is determined by the
number of connections times activity sparsity and the spiking neuron model
complexity. Thus, SNNs have the potential to be incorporated into edge devices
to equip them with energy-efficient artificial intelligence [19,20]. However, the
performance of current SNNs has remained lacking compared to artificial neural
networks (ANNs).

This thesis aims to contribute to the effective training of large-scale, energy-
efficient, and accurate spiking neural networks that are applicable to complex
tasks. As such, it considers the training of SNNs from the perspective of current
well-established deep learning techniques, with a focus on advanced learning
algorithms.

1.1 Background

Artificial neural networks attempt to understand the underlying computations
that occur in the dense network of interconnected neurons making up the ner-
vous system, and apply these knowledge to solve complex real-world problems.
Originally, in 1943, McCulloch and Pitts took inspiration from the human ner-
vous system to establish the fundamental concept of artificial neural networks
(ANNs) [17]. An ANN consists of a network of connected neural units typi-
cally organized into layers: an input layer, one or more hidden layers, and an
output layer. Each neural unit or artificial neuron is a node in a network; it is
connected to another node with an associated weight. The earliest ANNs were
perceptrons and were composed of single-layer networks comprising of simple
binary neurons [21,22] (see Figure 1.1).

A perceptron uses a weighted sum to simulate the information integration
function of a neuron and emits a binary output when its input surpasses a cer-
tain threshold. Subsequently, the ability of perceptrons to solve complex prob-
lems was discovered, which resulted in an intense period of research. This was
however abruptly halted when 1969, Minsky and Paper shown that a single-
layer perceptron could not even solve the simple “XOR” problem [24], and sim-
ilar non-linearly sparable classification problems by extension.

4 Introduction

In more recent years, the development of mathematical tools has facilitated
a resurgence in the use of ANNs and artificial intelligence. In 1885, the Stone–
Weierstrass theorem was developed [25]; this theorem shows that a polyno-
mial function can uniformly approximate any continuous function defined on a
closed interval. More than a hundred years later, the universal approximation
theorem was devised [23]; this theorem extends the Stone–Weierstrass theo-

Figure 1.1: Neural Network Architectures: Top: A classical perceptron [21, 22] neural
unit computes a weighted sum over input activations and then computes an
output activation from this sum using a step function. Time is modelled as an
iterated recomputation of the network graph. Middle: A classical artificial
neural [23] unit computes a weighted sum over input activations and then
computes an output activation from this sum using a non-linear transfer func-
tion f (). Bottom: Spiking neurons [15] receive spikes that are weighted and
added to their internal state (membrane potential), which further develops
over time following a pattern that can be described by differential equations.
When the membrane potential of spiking neurons crosses a threshold, they
emit a spike and their potential is then reset.

1.1 Background 5

rem by proving that an ANN can approach any continuous functions whose
input and output are both in Euclidean space. In parallel, Hinton, Rumelhart,
and Williams [26] developed the error backpropagation algorithm for training
ANNs. The core task of this algorithm (which is detailed in the next section) is
to perfectly backpropagate gradients through an ANN, which it achieves by ap-
plying a continuous and differentiable function instead of the threshold-based
discrete activation function used in Perceptrons (Figure 1.1). In the 21st cen-
tury, advancements in information technology and microelectronics have led to
the construction of high-performance parallel computing devices for training
ANNs, which has ushered in another intense period of research.

Several typical ANNs are introduced in this section.

1.1.1 Feedforward ANNs

ANNs are composed of a set of artificial neurons (nodes), inspired by a simpli-
fied biological neuron model, that compute a nonlinear weighted sum of input
vectors (see Figure 1.1). They generally have the following form:

h j = f (W j
x x +b j), j ∈ 1,2, ...,m, (1.1)

where h j is the activation value of an output neuron j , x = {xi |i = 1,2, ...n, xi ∈Rn}
is the input vector, f : R → R is a piece-wise differentiable nonlinear activa-
tion function such as ReLU (x) = max(0, x), W j

x ∈ R1×n is the connection strength
(synaptic weight) controlling the contribution of connections between input
neurons to the output neuron j , and b j is a scalar bias.

ANNs that serve as feedforward networks are structured as multiple con-
nected layers of nonlinear neurons. When an input x is fed into a typical ANN
with L layers, the ANN generates a prediction ŷ by performing the forward
propagation culation:

ŷ =WL ... f (Wl ... f (W2 f (w1x +b1)+b2)...+bl)...+bL , (1.2)

where, if only using the linear activation function f , ŷ can only approximate the
linear features in the data. However, ANNs are designed to learn the implicit
and nonlinear relationship between input data and desired outputs, given that
they use nonlinear activation functions, f (·). The greater the nonlinearity of an
ANN, the more complex decisions it can make [23]. Therefore, increasing the
number of layers in ANNs enables them to generate more powerful represen-
tations of nonlinear and high-dimensional features [27]. However, overfitting

6 Introduction

Figure 1.2: Recurrent Neural Networks. Compressed (left) and unfolded (right) basic
recurrent neural network. When a recurrent neural network received an
input x t , the instantaneous activation at and the prediction ŷt are updated
following Eq 1.3 and 1.4. The blue square is the recurrent weight Waa

problems1 can occur if an ANN has too many parameters, i.e., it is too deep or
wide [28].

Moreover, although a feedforward network structure can generally learn the
implicit spatial features in an input, none of their feature computations involv-
ing a time dimension. Therefore, feedforward ANNs cannot learn temporal
characteristics in time series 2.

1.1.2 Recurrent Neural Networks (RNNs)

To overcome the above-mentioned disadvantages of feedforward ANNs, Recur-
rent Neural Networks (RNNs) are used to capture the temporal information
hidden in time series. Thus, unlike feedforward networks, which read all of
their input data simultaneously, RNNs read their input data sequentially. In ad-
dition, some RNNs can store historical data in hidden variables, which function
as memory units. This enables these RNNs to memorise and summarise tempo-
ral information hidden in a given sequence of input data. Many advanced RNNs
have been devised to solve problems using different-scale memories, such as
the long short-term memory (LSTM) network [30] and the gated recurrent unit

1Overfitting is a modeling error in statistics that occurs when the model learns both data and
noise in the training dataset to the extent that it poorly generalized on a new dataset.

2 A Temporal Convolutional Network (TCN) [29] are a novel forward architecture that can be
successfully applied on sequence modeling by compute over part or all of the sequential inputs.

1.1 Background 7

(GRU) network [31]. Here, a vanilla RNN is taken as an example.
With RNNs, previous outputs can be used as inputs. Thus, for each timestep

t , an input x t ∈ {x1, x2, x3, ..., xT } flows into the network, and the instantaneous
activation at and the prediction ŷt are updated as follows:

at = f1(Waa at−1 +Wxa x t +ba), (1.3)

ŷ t = f2(Way at +by), (1.4)

where at are the hidden states that are initialised as zero; Wax ,Waa ,Way ,ba ,by

are coefficients that are shared temporally, and f1, f2 are activation functions.
The computation of an RNN at each time step t depends not only on the input
x t but also on the hidden network variables at−1. This function theoretically
allows a network of a given size to cope with sequences of any length. Thus,
for a sequence of length T , an RNN can be unrolled into an ANN with T hidden
layers (Figure 1.2): at each moment, the RNN corresponds to a layer of this
ANN, and all weights are shared across time.

RNNs are dynamical systems Eq 1.3 can be simplified as follows:

at = f (at−1, x t), t ∈ {0,1,2, ...T }. (1.5)

From a mathematical point of view, these iterative updates can be considered
as Euler discretisations of the continuous transform [32], which suggests that
RNNs can be interpreted as discrete or continuous dynamical systems akin to
physical waves [33]. This interpretation serves as a scalable computational
framework within which to implement the dynamics of biological neuron mod-
els, as discussed in Subsection 1.1.5.

Nevertheless, RNNs have some disadvantages. First, as network inputs are
sequential, the hidden states of RNNs must be updated to allow inputs to be
received. This slows the simulation and training speed of RNNs. Second, RNNs
only have access to historical inputs, not future inputs, which limits their per-
formance. Bidirectional RNN solved this issue by adding another hidden layer
to propogate information in the backward direction and process them more dy-
namically. Third, as detailed in Subsection 1.1.5, RNNs experience gradient
vanishing or explosion problems and thus struggle to learn long-range depen-
dencies [30,34,35].

8 Introduction

Figure 1.3: A membrane potential is the difference between the voltage inside and out-
side a membrane. It is converted into an action potential that is transmitted
via the axon of a neuron to the dendrites of the next neuron via chemical
synapses. An action potential also generates postsynaptic potentials that can
propagate along the axon of a neuron by summing to generate other action
potentials.

1.1.3 Spiking Neural Networks (SNNs)

The brain constantly processes the vast amount of information it acquires from
the environment via the senses, and the high-performance neural networks con-
structed by biological neurons are far more complex than ANNs. In particular,
neurons connect to each other via synapses and communicate with each other
using electrical pulses known as spikes, which leads to a binary and event-
based representation of information in the brain. In contrast, artificial neurons
in ANNs/RNNs use floating-point numbers 3 to iteratively transmit information.

A biological neuron can be described by a highly complex nonlinear dynamic
system that stores its state, for example, in the form of membrane potential (i.e.,
the difference between the voltage inside and outside of its cell membrane).
When the membrane potential of a neuron reaches a specific threshold, it sends
a spike to the neurons to which it is connected. When this spike reaches a
synapse, it is converted via a series of biochemical reactions into a chemical sig-
nal that transfers the signal to the connected neuron. This process encodes in-

3A recent study [36] shows that the optimzied DNNs are also flexible in numerical precision
during inference.

1.1 Background 9

formation in the SNN as the firing frequency or time difference between spikes.
A typical neuron in the human brain fires at frequencies of less than 1 Hz (one
spike per second) to 10 Hz [37]. However, it can also fire at a frequency greater
than 100 Hz when necessary [38]. In comparison, the population average firing
rate in the rat cortex is 1 to 5 Hz in vivo [39]. Spikes thus serve as a sparse
form of information representation, which is more robust and energy-efficient
than other forms of information representation.

SNNs [15] are networks constructed using models of spiking neurons that
mimic characteristics of biological neurons. These spiking neurons use abstract
mathematical models of biological neurons rather than the simple nonlinear
weighted sums used in ANNs. Synaptic strength (or weight) is the strength of
the connection between neurons, which means that it functionally represents
the contribution of a pre-synaptic neuron to a post-synaptic neuron. Each spik-
ing neuron in an SNN is a modelled cell that converts a sequence of input spikes
into an output spike, where the delayed response to the input represents the
nonlinearity of a given bio-realistic neuron. Section 1.1.4 describes how the
dynamics of spiking bio-realistic neurons contribute to various nonlinear func-
tions. As SNNs encode the information in the time of binary spikes, they have
the potential to exhibit an energy advantage over ANNs and RNNs in computa-
tion and communication tasks, as further discussed in Chapter 2.

1.1.4 Neural Dynamics

Neuronal function is the result of a complex dynamic system and is a source of
natural intelligence. The sophisticated mechanisms embedded in the dynamics
of neurons must be characterised and then incorporated into SNNs to enable
their accuracy and energy efficiency to be improved [40]. This section briefly
introduces various neuronal models and the components of neurons that affect
their nonlinearity.

Neurons are highly complex

The physiological structure of the brain is the basis of human intelligence and
enables humans to accomplish complex tasks. Although ANNs have already
reached or surpassed the performance of humans in specialised tasks, the hu-
man brain consumes only ∼20 W [14] of power to perform these specialised
tasks, far less than the power consumed by (super)computer-based processing
of ANNs. This high energy efficiency is attributable to the greater complexity of

10 Introduction

biological nervous systems compared with ANNs. The complexity of biological
nervous systems is the result of three key characteristics, as described below.

1. The diversity of neurons. The brain contains a wide variety of biologi-
cal neurons, which differ in size, shape and nature. This further results
in varying speed of response to input, sensitivity to noise, and computa-
tional complexity. These differences empower our brain to deconstruct
complex information and handle diverse tasks, and thus, specific neurons
are responsible for each type of neural activity.

2. The high complexity of individual neurons. An individual neuron is a
cell and therefore is itself a complex system whose dynamic behaviour is
affected by many factors, such as temperature and ageing. Recent stud-
ies [41] have shown that a large and deep temporal convolutional net-
work with 5–8 layers is required to approximate the activity of a single
pyramidal single neuron.

3. The plasticity and complexity of synapses. Neuroplasticity is the ability
of a neuronal system to modify its structure or activity to modulate its
actions in response to intrinsic or extrinsic stimuli. Similarly, a fundamen-
tal characteristic of neurons is their synaptic plasticity, i.e., their ability to
alter their synaptic strength via complex activity-dependent biochemical
mechanisms. Synapses in biological nervous systems are therefore essen-
tial to their dynamic functioning, and unlike the fixed connection weights
in ANNs, the synaptic strength of biological nervous systems constantly
evolves over time. Synaptic strength in this context is the magnitude of
the postsynaptic potential generated by a neuron after a single synaptic
event, as the strength of a synapse changes according to its activity his-
tory and other factors. The synaptic strength of two connected neurons is
assumed to result in information storage and thus the creation of mem-
ory. In biological neural networks, synapses use their plasticity to build
new neural pathways to learn new knowledge. The process of synaptic-
strength evolution is closely related to neurological development, learn-
ing, and adaptation. The synaptic strength between some neurons can be
increased by long-term high-frequency activity, which is called long-term
potentiation, or it can be decreased by long-term low-frequency activity,
which is called long-term depression.

The development of SNNs is based on the diversity of neurons and the inter-
nal dynamics by which they achieve information transmission.

1.1 Background 11

�
�
��
�
��
��
�
�
�
�
�
�

����

Figure 1.4: To demonstrate the activity of the leaky integrate-and-fire (LIF) neuron
model, we define a LIF neuron with a threshold θ =−55mV , a time constant
τm = 10ms, and a reset potential ur = −75mV . (a) The voltage response of
the LIF neuron when receiving a direct current of 300 pA. (b) The input–
output transfer function of the LIF neuron to the input current (frequency–
current curve) with various time constants τm .

A basic spiking neuron: the leaky integrate-and-fire (LIF) neuron model

Figure 1.3 shows that spiking neuron model’s internal dynamics are conceptu-
ally governed by three functions: 1) differential equations that describe how
the membrane potential evolves and the input information is integrated over
time; 2) the mechanism that generates the outgoing spike, which converts con-
tinuous information into a discrete signal; and, 3) the function that resets the
membrane potential after spike emission.

The LIF neuron model is the most simple spiking neuron model and serves
as a coarse approximation of the complex dynamics of real neurons. Here, this
model is used to elaborate the mechanisms of the above three characteristics of
biological nervous systems.

(1) Potential updating As a spiking neuron is a dynamic system, its hidden
state – the action potential ut – evolves over time according to the following
linear differential equation [42]:

τm
du

d t
=−(ut −ur)+RIi n , (1.6)

where Ii n is the input current; ut is the membrane potential; R = 1 is the the
linear resistor,ur is the reset membrane potential; and τm is the so-called time

12 Introduction

constant of the membrane potential, which is the characteristic time of the de-
cay function. Equation 1.6 illustrates how the membrane potential integrates
successive inputs in the time dimension. The membrane potential is updated
based on the previous states ut−1 and the current input Ii n .

The time constant τm determines the response pattern of the neuron to the
input and is the main parameter regulating its nonlinearity. Figure 1.4(b) shows
how a smaller τm triggers a higher spike-firing frequency in response to the
same fixed input current. Each time a neuron sends out a spike, it resets its
memory. This means that the length of memory that a LIF neuron can maintain
is inversely proportional to the value of τm .

The membrane voltage is updated only when an input pulse arrives, such
that the neurons’ potential updating is event-triggered. Thus, when these input
events are sparse, SNNs can be more efficient than RNNs, as the latter, dynami-
cally perform updating at each timestep.

(2) Spike generation A neuron emits an output spike st = 1 when its mem-
brane potential ut exceeds the threshold θ. The spike-generation process is
defined as a discontinuous nonlinear function fs:

st = fs (ut ,θ) =
{

1, if ut ≥ θ and if u̇t > 0

0, otherwise,
(1.7)

where fs thus converts a continuous signal ut to discrete binary spike st . As
SNNs are limited by the precision of a single spike, they can perform high-
precision information transmission using either the spike train of a single neu-
ron or a group of neurons [43]. This is the feature that potentially allows SNNs
to communicate more efficiently and robustly than RNNs.

(3) Potential resetting Biological neurons not only have memory mechanisms
but also have forgetting mechanisms. To mimic the forgetting function of a
biological neuron, a neuron’s hidden state ut is reset to a certain level ur – the
reset potential – when the neuron triggers a spike (st = 1). This process can be
described as follows:

ut = ut (1− st)+ur st . (1.8)

This denotes a “hard reset” as it forcibly updates the membrane voltage to

1.1 Background 13

the reset voltage. Analogously, a “soft reset” is defined as

ut = ut − stθ. (1.9)

In contrast to a hard reset, a soft reset preserves some memories from previous
spikes.

Here, the resetting potential ur is a constant. However, in some neurons, ur

is dynamic and history-dependent and thus controls the adaptation of the spike
rate. This is explained in the next Subsection 1.1.4.

Neurons use a resetting mechanism to remove the traces of previous inputs
from their voltage to prepare for saving upcoming memories. The collabora-
tion between different neurons ensures that a network can learn different time-
scales of input dependencies [44].

To demonstrate the described dynamics, in Figure 1.4(a), the LIF neuron
encodes a fixed input current into an output spike at a particular time or into
a spike train with a specific firing rate (spikes/s). Figure 1.4(b) shows that
the output frequency is nonlinearly proportional to the input intensity, with
some delay. The intensity of an input value can thus be represented by neural
activities such as the firing frequency or inter-spike-interval [42,45].

Advanced neural models

In this Subsection, a biological neuron model is introduced as a complex dynam-
ical system. The LIF neuron is a highly simplified neural model as it lacks many
properties of biological neurons. Thus, several more complex and biologically
plausible neuronal models are described here.

One of the main problems of LIF neurons is that their membrane potential
is reset to a certain level after the neuron fires. This results in a LIF neuron
not holding any memory of previous spikes. Consequently, a LIF neuron cannot
retain long-term memory which is desirable in many applications with long-
range dependencies. To circumvent this limitation, we introduce adaption – an
important property of biological neurons – into a spiking neuron model.

Bio-plausible spiking neuron In biophysical terms, action potentials are gen-
erated by the opening and closing of ion channels in the cell membrane. This
complex process cannot be described by a simple linear differential equation,
such as that which describes the LIF neuron. A more accurate model of biologi-
cal neurons was demonstrated by Hodgkin and Huxley in 1952, who measured
squid axon currents and described their dynamics using differential equations.

14 Introduction

The resulting Hodgkin–Huxley model represents the membrane potential as a
function of the input current and activation of various ion channels:

Cm
du

d t
=− ∑

k∈{K ,N a,l }
Ik (t)+ Ii n(t) (1.10)

=−[gK (ut −uK)+ gN a(ut −uN a)+ gl (ut −ul)]+ I (t) (1.11)

=−[ḡK n4
t (ut −uK)+ ḡN am3

t ht (ut −uN a)+ ḡl (ut −ul)]+ I (t) (1.12)
d pi

d t
=αn(ut)(1−pi)−βpi (ut), (1.13)

where Ii n is the input current; Ik is the activation of various channels; Cm is the
membrane capacitance, gK and gK are the potassium and sodium conductances,
respectively; uK and uN a are the reverse membrane potential of potassium and
sodium, respectively; ḡk is the maximal value of the channel conductance; the
parameters ḡl and ul are the leaky conductance and leak potential respectively;
and pi ∈ {nt ,mt ,ht } represents the probability of gate i being in the permissive
state. Hodgkin and Huxley introduced three gating variables – h, m, and n – to
mimic the probability of N a+ and K + channels opening at a specific time. The
joint cooperation of m and h controls the N a+ channel, and the K + gate is gov-
erned by n. Equation 1.12 shows that the sodium conductance is governed by
three n-type gates and one h-type gate. Similarly, the potassium conductance
is modelled with four n-type gates. Although the Hodgkin–Huxley model accu-
rately models the action potential of neurons using a general equation coupled
with three parametric equations, it is computationally complex.

In 2003, the Izhikevich model was introduced. It is a simpler model that
combines much of the biological plausibility of the Hodgkin–Huxley model with
more of the computational efficiency of the LIF model, and is specified by the
following two equations:

τm
du

d t
= (ut −ur)(u −θ)−ω+ Ii n (1.14)

τω
dω

d t
= a(ut −ur)−ω+bτω

∑
t f

δ(t − t f), (1.15)

where τω is the time constant for adaption, and t f is the previous firing time.
As this models a spiking neuron, both membrane potential ut and ωt evolve
over time. Then, when the neuron fires, the membrane potential ut is reset

to ur (ut ≥ θ). The Dirac-delta δ(t − t f) =
{

1 if t = t f ,
0 otherwise

function implies

1.1 Background 15

that the adaption current ω increases by an amount b during neuron firing.
Subthreshold and spike-triggered adaption are entangled in adaptive spiking
neurons. Subthreshold adaption results from coupling of the adaptive current
ω and the potential ut and is dominated by the parameter a, whereas spike-
triggered adaption is activated when a neuron fires and is determined by the
parameters a and b.

The adaptive LIF (ALIF) neuron model The adaptive nature of biological
neurons is partly due to the dynamics of neurotransmitters and synapses. This
means that the interval between output pulses varies, even with a fixed input
current; in contrast, a fixed input into a LIF neuron results in spikes with a fixed
rate. Theoretically, adaption is built on several successive spikes, which means
that the contribution of previous spikes to the current spike must be considered.
The ALIF neuron model incorporates a new, biologically inspired variable – the
adaption current ω – into a neuron’s state. Unlike the membrane voltage, ω is
not reset when an ALIF neuron fires, which means that the historical informa-
tion of spikes is integrated into the ALIF neuron’s input by the coupling voltage
and adaption current. This function allows ALIF neurons to retain longer mem-
ories than LIF neurons. More details will be described in Chapter2.

The ALIF neuron is defined by two differential equations:

τm
du

d t
=−(u −ur)−∑

k
ωk + Ii n , (1.16)

τk
dωk

d t
= a(u −ur)−ωk +bkτk

∑
t f

δ(t − t f), (1.17)

where τk is the time constant for adaption in the k channel.
ALIF neurons exploit historical spiking information by introducing adaptive

currents. Although this adaption increases computational expenditure, it helps
ALIF neurons to maintain a more durable memory than LIF neurons.

1.1.5 Training SNNs as RNNs

The behaviour of biological neurons is determined by a series of complex bio-
chemical reactions that are almost impossible to simulate on a computer. The
analysis of numerous experimental and observational data has enabled scien-
tists to model the procedure of neurons sending out spikes as a dynamic system.
Spiking neural networks are a type of ANN built using this simplified dynamic

16 Introduction

Figure 1.5: Computational graph of a LIF neuron. The red arrow represents the resetting
function.

system, which has potential to efficiently solve complex problems. The per-
formance of SNNs however has remained lacking compared to artificial neural
networks (ANNs). The best way to train SNNs is therefore an open question.
This section describes how to optimize the training of SNNs using modern deep-
learning techniques.

Formulating SNNs as RNNs

To numerically simulate the membrane potential dynamics of a LIF neuron, we
discretise the continuous dynamics of Eq 1.6 based on its Euler expansion, as
follows:

τm
∆u

∆t
=−(ut −ur)+ Ii n,t ; ut+∆t = ut +∆u. (1.18)

A more accurate approximation of the trajectory of Eq 1.6 can be obtained by
running the simulation at a higher temporal resolution. The smaller the value
of ∆t , the more accurate the approximation, and the longer the simulation time.
In most cases, to simplify and accelerate the computations, we set ∆t = 1ms 4.
This discretised LIF neuron can then be reformulated as ut+1 = f (ut , Ii n), which
is almost the same as the general expression of the recurrent neuron (Eq 1.5).

4We typically choose such a value as the time constant of most spiking neuron falls in the range
10∼20 ms.

1.1 Background 17

Therefore, we can simulate the discretised spiking neuron as a recurrent neuron
with a complex circuit (Figure 1.5).

SNNs also have some other features that distinguish them from RNNs. For
example, in SNNs, neurons communicate with each other using binary spikes
instead of floating-point numbers. This underpins the lower energy consump-
tion of SNNs compared with RNNs, Chapter 2 explains the specifics in detail. In
addition, the computation of neurons in SNNs is event-based: in principle, each
neuron in an SNN only needs to update its state when it receives or emits an
impulse. Thus, if input is sufficiently sparse, an SNN consumes less power and
computes faster than an RNN.

In general, SNNs and RNNs are computationally equivalent, in Figure 1.5,
which enables existing training methods to be applied or modified to SNNs to
develop new learning algorithms for SNNs. This approach is the conceptual
framework of this thesis.

Learning algorithms: From animal learning to network training

The brain modulates the synaptic strength of connections between neurons
during the learning process to learn features for classification and optimize
decision-making for control purposes. Neurons form a multi-layered network
structure in the brain that serves as the human cognitive system. The synap-
tic strength in this network significantly affects its activity and output, and the
problem of measuring the contribution of the synapse to network performance
is called the “credit assignment” problem and is complicated by the multilayer
structure in the brain. Many details of learning and cognitive functions in the
brain remain unknown [46, 47], which means that its efficient learning algo-
rithms cannot yet be applied to train SNNs. In contrast, traditional ANNs have
been fully developed with the aid of mathematical tools such as statistics and
optimization theories.

In recent years, the Backpropagation (BP) algorithm [26] has been exten-
sively applied for solving the credit assignment problem in the training of deep
ANNs. Although it has been argued that BP algorithm is biologically unrealis-
tic [48], it remains the most common algorithm used for the core training of
deep neural networks and has been effective in solving a variety of problems.
BP adjusts synaptic strength by computing the error signal and flows gradient
through backward connections during training. The error gradient of the weight
therefore represents the credit of the network connections. Learning algorithms
can be classified based on error signal sources as supervised algorithms, unsu-
pervised learning algorithms, and reinforcement learning algorithms.

18 Introduction

Figure 1.6: Back-propagation through time. The black and red arrows depict forward
and backward propagation, respectively.

Supervised learning [49, 50] involves a network being trained under the
supervision of labelled data to learn a specific relationship or structure between
the input x and the target output y . The learning signal (error signal) arises as a
feature of the difference between the well-labelled target y and the network pre-
dictions ŷ . Supervised learning includes classification and regression tasks; in
the former, the network maps inputs to discrete category labels, whereas in the
latter, the network projects inputs to continuous outputs. Unsupervised learn-
ing [50,51] differs from supervised learning by not involving signals with labels
or desired outputs in the network training. Therefore, the network has to anal-
yse and cluster the hidden information in the unlabelled data x. The resulting
ability of unsupervised learning to discover similarities and differences in the
data means it can be applied for exploratory learning. Reinforcement learning
(RL) [52, 53] explores how to evolve an intelligent body to take actions in an
environment that maximise the obtained cumulative reward. Unlike supervised
learning, RL does not need to learn from any labelled input or output, nor does
it need to be supervised by ideal actions. Instead, RL focuses more on learning
from the exploration in the environment and using that knowledge to maximize
rewards. The network can thus solve the control problem by combining BP with
RL in a supervised learning-like approach.

Next, we explore the training of SNNs by focusing on the approaches used to
train RNNs. RNNs and SNNs are designed to function as machines that learn the
unknown temporal features in training data. Consequently, in network training,
the credit assignment problem becomes a spatial and temporal credit assign-
ment problem. Based on a weight-updating approach, SNN training algorithms
can be classified as involving either offline learning or online learning, as de-

1.1 Background 19

tailed below.

Offline learning: the back-propagation through time (BPTT) RNNs/SNNs
operate as deep neural networks along a temporal expansion over a sequence.
Therefore, the BPTT algorithm [54], which is a temporal variant of the BP al-
gorithm, is used to optimize RNNs. The BPTT algorithm unfolds all of the input
time-steps (each time-step has one input, one network copy, and one output)
and then calculates and accumulates the error lt at each time-step (Figure 1.6).
It also uses gradient descent to adjust the network parameters in the direction
of the gradient that reduces the error as effectively as wnew = wold − ∂L

∂w , which
is the approach used by the BP algorithm in feedforward neural networks. How-
ever, in this context, the different gradients of the weights for each moment are
summed. Finally, the averaged gradients over all timesteps are used to update
the network weights.

In Figure 1.6, the forward path of a state update in an RNN is defined by
Eq 1.3. The RNN has an instantaneous loss lt at each time step, which is calcu-
lated based on the current prediction ŷt and the target label yt . After reading
through the entire sequence, the gradient signal ∂L

∂w is used to update the pa-
rameters.

∂L

∂w
= 1

T

T∑
t=1

∂lt

∂w
(1.19)

= 1

T

T∑
t=1

∂lt

∂ŷt

∂ŷt

∂at

∂at

∂w
(1.20)

= 1

T

T∑
t=1

∂lt

∂ŷt

∂ŷt

∂at

t∑
i=1

(
t∏

j=i+1

∂a j

∂a j−1

)
∂a j−1

∂w
(1.21)

The gradient calculation requires that both f1 and f2 (in Eq. 1.3) be non-
linear differentiable functions. BPTT is an easy understanding algorithm but its
complexity is quadratic to sequence length T .

The training mode in which the network updates weights only after reading
the entire sequence is called offline learning. Offline learning – in particular,
the BPTT algorithm – is the most widely used and effective training method for
RNNs. However, the BPTT algorithm updating mode requires all of the network
states to be stored to update the network parameters, which is the main reason
why the BPTT algorithm is regarded as biologically problematic [48]. As a

20 Introduction

result, offline training is limited by the memory cost of training, which grows
linearly with sequence length.

From a computational perspective, two aspects of Eq 1.21 lead to RNNs
with low trainability, due to the well-known phenomenon of gradient explosion
or vanishing [34,55]:

∥∥ ∂a j

∂a j−1

∥∥2 < 1 ⇒Gradient Vanishing (1.22)

∥∥ ∂a j

∂a j−1

∥∥2 > 1 ⇒Gradient Explosion (1.23)

In Eq 1.22, the gradient vanishing problem is caused by the term ∂L
∂w de-

creasing to zero at an exponential rate, which makes it difficult for the network
to learn long-range dependencies. In Eq 1.23, the gradient Explosion problem
occurs because the terms ∂L

∂w exponentially increase to infinity and their values
become “NaN.”

The truncated BPTT algorithm [56] is a variant of the BPTT algorithm in
which the gradient flow is truncated after a constant time period. This ac-
celerates the training and reduces the memory requirements of the algorithm
but does not fundamentally eliminate the limitation requiring perfect recall of
prior memory. However, truncation only facilitates the short-term dependence
in the data because the gradient estimate of the truncated BPTT is biased [57].
Therefore, it benefit the limited degree from the stochastic gradient theory’s
convergence guarantees.

Online learning Online learning requires algorithms that can update network
parameters in real-time based on the current input. Compared with offline al-
gorithms, these algorithms are closer to human brain-learning processes based
on temporally local information. Like forward propagation, brain-like online
learning algorithms require weight updates that are local in time and space,
i.e., only the information of the most recent moments is used. Thus, after read-
ing the entire sequence, a network can use accumulated gradients for weight
updates. Alternatively, a network can perform updating only when the gradi-
ents are available. The real-time recurrent learning algorithm (RTRL) [58, 59]
and the sparse n-step approximation algorithm [60] are online learning variants
of the BPTT algorithm that are applied to the training of RNN to reduce memory
and computational consumption. Theoretically, the BPTT algorithm and its vari-
ants provide the best and most complete gradient signal based on the perfect

1.2 Challenges when training SNNs 21

Figure 1.7: Illustration of different surrogate gradient functions f̂ ′s as a function of the
neuron’s membrane potential ut and threshold θ.

recall of history [54,61]. RNNs are thus better trained by these offline learning
methods than by online algorithms on sequential tasks.

Summary Overall, the quality of the learning signal, in addition to the gra-
dient, determine the performance of an optimized neural network. This thesis
therefore thoroughly investigates gradient-based supervised learning of spiking
neural networks.

1.2 Challenges when training SNNs

The computational equivalence between SNNs and RNNs implies that SNNs
could theoretically be trained with typical RNN learning algorithms. In general,
all learning algorithms for RNNs are applicable to SNNs. However, the distinc-
tiveness of SNNs results in the following challenges when training SNNs with
RNN learning algorithms. These challenges further lead to SNNs being uncom-
petitive in performance compared to ANNs and difficult to apply to large-scale
networks for complex tasks.

1.2.1 Challenge 1: Discontinuity of the spike generation func-
tion

The nonlinear spike generation function fs (ut ,θ) is one of the primary sources
of nonlinearity in SNNs. It is discontinuous and therefore non-differentiable

22 Introduction

Figure 1.8: Gradient calculation for a spiking neuron

(Figure 1.7 a), which limits the training of SNNs possible by directly adopting
the RNN learning algorithms. In 2000, Bohte et al. [62] first introduced surro-
gate gradients, a function of the neuron’s membrane potential ut and threshold
θ, to approximate the derivative of the neural action function f̂ ′

s (ut ,θ). Subse-
quently, SNNs have been developed that can use gradient-based training algo-
rithms like RNNs [63,64]. Gradient-based learning algorithms, in particular the
BPTT algorithm, are currently the most popular and effective training method
for SNNs [65–68]. Various surrogate gradients [19,65] have presented to train
SNNs more deeply and more accurately than other methods.

However, the surrogate gradient f ′
s (ut ,θ) acts as an approximation to the

unknown derivative of spike ∂st
∂ut

coming from the non-differentiable spike gen-

eration function. Therefore, the error ∥ ∂st
∂ut

− f ′
s (ut ,θ)∥2 between the surrogate

gradient and the ideal gradient affects the performance of the trained networks
and their activities. For example, in the BPTT algorithm framework, the approx-
imation error accumulates continuously with the sequence length (Eq 1.21).
This accumulation of the gradient error causes SNNs to be more vulnerable to
gradient explosion or vanishing than RNNs.

In addition, most current surrogate gradients aim to obtain higher accuracy
on benchmarks and do not consider their performance in the context of network
sparsity.

1.2 Challenges when training SNNs 23

1.2.2 Challenge 2: Cumbersome gradient flow

Challenge 1 comprises problems associated with non-differentiable spike-genera
-tion functions during SNN training. Similarly, when training SNNs using the
BPTT algorithm, there remains the problem of gradient computation due to
complex computational loops.

The core of the BPTT algorithm is its learning of the association between
network activities in the time dimension, which is denoted as the sum of the
product terms, as noted in Eq 1.21:

∂at

∂w
=

t∑
i=1

(
t∏

j=i+1

∂a j

∂a j−1

)
∂a j−1

∂w
(1.24)

in Eq 1.21. SNNs have more complex computation circuits than RNNs in both
feedforward- and feedback propagation. In SNNs, hidden states – the spike and
membrane potentials – are entangled due to the reset mechanism. The mem-
brane potential is governed by the previous membrane potential and spikes,
such that the reset circuit leads to a more complicated gradient calculation in
the time direction in SNNs than in RNNs (Figure 1.8). In the SNN, the core part
of Eq 1.21 is transformed into

∂ut

∂w
=

t∑
i=1

[
t∏

j=i+1

(
∂ut

∂ut−1
+ ∂ut

∂st−1

∂st−1

∂ut−1

)]
∂u j−1

∂w
; (1.25)

In the BPTT algorithm framework, this gradient calculation amplifies the
error of the surrogate gradient: the longer the sequence, the greater the effect
of the gradient error. As a result, the network cannot effectively learn long-term
dependencies in a long sequence.

In sum, the cumbersome gradient computation path increases the difficulty
of back-propagating gradients in a deep model. It also obstructs the training of
SNNs constructed from more biologically realistic neuronal models with more
complex neuronal circuits.

1.2.3 Challenge 3: Memory

In offline learning algorithms, network parameter updates necessitate perfect
recall of all of the hidden states during the feedforward process. As a result, the
memory demand for network training increases with the sequence length. In

24 Introduction

RNNs, only one hidden state must be stored (at), whereas spiking neurons gen-
erally need to save at least two states – the spike st and the membrane potential
ut . Each additional differential equation has at least one new hidden state. For
example, the adaptive neuron needs to remember three states: spike st , mem-
brane potential ut , and adaption current ωt . Thus, the training of SNNs with
the BPTT algorithm requires more training memory than with other algorithms,
which further limits the training of deep SNNs on long sequences, as further
discussed in detail in Chapter 4.

1.2.4 Challenge 4: Continual running

In practice, a well-trained network is deployed on a device to run continuously
and accomplish the intended task. In addition to the training problem, SNNs,
like RNNs, exhibit accuracy degradation during continuous running [69]. In
contrast, the brain can efficiently and continuously process the information
flow from the body’s sensors. SNNs (as a type of brain-inspired algorithm) and
RNNs are also expected to maintain their performance over long testing peri-
ods. A model must therefore learn how to switch decisions during optimization
on long sequences, so that a network’s high performance is maintained dur-
ing continuous running. Thus, we have evolved the classification problem into
a decision-making problem that requires the network to make the correct de-
cision at the correct moment. However, it is difficult for a network to learn
effective decision transitions by being trained on short sequences.

In summary, the surrogate gradient-based SNN training in the BPTT algo-
rithm framework suffers from the above-described limitations, which prohibit it
from training highly accurate and deep SNN models on long sequences.

1.3 Contributions

SNNs inspired by biological nervous systems hold the potential of having lower
competitive accuracy with ANNs/RNNs. Ideally, the effective learning algorithm
of the brain would be used to optimize SNNs. However, our knowledge of the
brain is currently not sufficient to allow us to similarly train SNNs. Still, given
the computational equivalence between SNNs and RNNs, we can use recent
advanced deep-learning techniques to perform this task. Nevertheless, there
remains a lack of efficient training algorithms that can empower SNNs to obtain
accuracies that match or exceed those of traditional ANNs.

1.3 Contributions 25

In this thesis, we explore in detail how to solve the above-mentioned chal-
lenges (in Section 1.2) by exploiting our understanding of the brain and ANNs.
This enables SNNs to perform more complex tasks with higher accuracy and
lower power consumption.

• Chapter 2 proposes a solution to Challenge 1 that enables SNNs to achieve
higher accuracy and theoretically demonstrates how that SNNs can be
more energy efficient than RNNs.

• Chapter 3 demonstrates how the truncation of the BPTT learning, T-BPTT
algorithm, can be used to weaken the effect of gradient-related error, ac-
celerate the training process, and reduce the memory requirement.

• Chapter 4 shows how a novel training approach, FPTT, can be success-
fully solve SNNs training problems described in Challenges 1,2 and 3 using
novel Liquid Spiking Neurons, and presents the first end-to-end training
of a large SNN-based object-detection model.

• Chapter 5 introduces how the incorporation of local signal detection mea-
sures with brain-inspired decision circuits enables compact and high per-
formance SRNNs to be applied to continual running scenarios and to solve
Challenge 4.

Each chapter begins with a summary describing the core ideas of the cited
studies and their role in this thesis. In the final chapter, interesting related ideas
that have been explored as part of the work for this thesis are first discussed.
And related research questions that may merit further investigation are detailed.

Chapter 2
Multi-timescales Spiking
Recurrent Neural Networks

Significance: SNNs are commonly considered as energy efficient networks,
but a systematic analysis and comparison of network performance and en-
ergy consumption advantages is lacking. Here, we focus on solving Chal-
lenge 1. By introducing a new surrogate gradient for BPTT and parameter-
izing the time constants of neurons in SNNs, we demonstrate that SNNs can
achieve performance that rivals or even exceeds RNNs on various tasks.
We also thoroughly explored the theoretical power consumption advan-
tage gained by SNNs due to their sparse communication where we show
that SNNs can be one two three orders more energy efficient compared to
equally performaning ANNs.

This chapter is based on publications "Effective and efficient computa-
tion with multiple-timescale spiking recurrent neural networks" [20] and
"Accurate and efficient time-domain classification with adaptive spiking re-
current neural networks" [19].

Abstract: Inspired by more detailed modeling of biological neurons, Spiking
Neural Networks (SNNs) are investigated both as more biologically plausible and
as more performant models of neural computation: the sparse and binary commu-
nication between spiking neurons potentially enables more powerful and energy-
efficient neural networks. The performance of SNNs however has remained lacking
compared to artificial neural networks (ANNs). Here, we demonstrate how an

28 Multi-timescales Spiking Recurrent Neural Networks

Figure 2.1: Top: a classical artificial neural unit computes a weighted sum over input
activations and then computes an output activation from this sum using a
non-linear transfer function f (). Time is modeled as iterated recomputa-
tion of the network graph. Bottom: Spiking neurons receive spikes that are
weighted and added to the internal state (membrane potential) that further
develops through time following differential equations. When the membrane
potential crosses a threshold, a spike is emitted and the potential is reset.

activity-regularizing surrogate gradient combined with recurrent networks of tun-
able and adaptive spiking neurons yields state-of-the-art for SNNs on challenging
benchmarks in the time domain, like speech and gesture recognition. This also ex-
ceeds the performance of standard classical recurrent neural networks (RNNs) and
approaches that of the best modern ANNs. As these SNNs exhibit sparse spiking,
we show that they are theoretically one to three orders of magnitude more com-
putationally efficient compared to RNNs with similar performance. Together, this
positions SNNs as an attractive solution for AI hardware implementations.

2.1 Introduction

The success of brain-inspired deep learning in AI is naturally focusing attention
back onto those inspirations and abstractions from neuroscience [70]. One such
example is the abstraction of the sparse, pulsed and event-based nature of com-

2.1 Introduction 29

munication between biological neurons into neural units that communicate real
values at every iteration or timestep of evaluation, taking the rate of firing of
biological spiking neurons as an analog value (Figure 2.1). Spiking neurons, as
more detailed neural abstractions, are theoretically more powerful compared to
analog neural units [15] as they allow the relative timing of individual spikes
to carry significant information. A real-world example in nature is the efficient
sound localization in animals like Barn Owls using precise spike-timing [71].
The sparse and binary nature of communication similarly has the potential to
drastically reduce energy consumption in specialized hardware, in the form of
neuromorphic computing [72].

Figure 2.2: Example architecture of a Spiking Re-
current Neural Network: an input layer
projects to a layer of recurrently con-
nected spiking neurons. Recurrent layers
then project to a read-out layer. Multi-
ple recurrent layers can be connected in a
feedforward fashion, here shown for two
recurrent layers.

Since their introduction,
numerous approaches to learn-
ing in spiking neural net-
works have been developed
[62, 64, 73–75]. All such
approaches define how input
signals are transduced into
sequences of spikes, and how
output spike-trains are inter-
preted with respect to goals,
learning rules, or loss func-
tions. For supervised learn-
ing, approaches that calcu-
late the gradient of the loss
function with respect to the
weights have to deal with
the discontinuous nature of
the spiking mechanism inside
neurons. Local linearized ap-
proximations like SpikeProp
[62] can be generalized to
approximate “surrogate” gra-
dients [65], or even calcu-
lated exactly in special cases
[76]. The use of surrogate
gradients in particular has recently resulted in rapidly improving performance
on select benchmarks, closing the performance gap with conventional deep
learning approaches for smaller image recognition tasks like CIFAR10 and (Fash-
ion) MNIST, and demonstrating improved performance on temporal tasks like

30 Multi-timescales Spiking Recurrent Neural Networks

TIMIT speech recognition [77]. Still, spiking neural networks (SNNs) have
struggled to demonstrate a clear advantage compared to classical artificial neu-
ral networks (ANNs) [78,79].

Here, we introduce a novel approach to Spiking Recurrent Neural Networks
(SRNNs) [20], networks that include recurrently connected layers of spiking
neurons (Figure 2.2). We demonstrate how these networks can be trained to
high performance on hard benchmarks, exceeding existing state-of-the-art in
SNNs on all-but-one benchmark, and approaching or exceeding state-of-the-art
in classical recurrent artificial neural networks. The high-performance in SRNNs
is achieved by applying back-propagation-through-time (BPTT) [54] to spik-
ing neurons using a novel Multi-Gaussian surrogate gradient and using adap-
tive spiking neurons where the internal time-constant parameters are co-trained
with network weights. The Multi-Gaussian surrogate gradient is constructed to
include negative slopes, similar to the gradient of the sigmoid-like dSilu activa-
tion function [80, 81]: we find that the Multi-Gaussian surrogate gradient con-
sistently outperforms other existing surrogate gradients. Similarly, co-training
the internal time-constants of adaptive spiking neurons proved always benefi-
cial. We demonstrate that these ingredients jointly improve performance to a
competitive level while maintaining sparse average network activity.

We demonstrate the superior performance of SRNNs for well-known bench-
marks that have an inherent temporal dimension, like ECG wave-pattern classi-
fication, speech (Google Speech Commands, TIMIT), radar gesture recognition
(SoLi), and classical hard benchmarks like sequential MNIST and its permuted
variant. We find that the SRNNs need very little communication, with the av-
erage spiking neuron emitting a spike once every 3 to 30 timesteps, depending
on the task. Calculating the theoretical energy cost of computation, we then
show that in SRNNs, cheap Accumulate (AC) operations dominate over more
expensive Multiply-Accumulate (MAC) operations. Based on relative MAC vs.
AC energy cost [78,79], we argue that these sparsely spiking SRNNs have an en-
ergy advantage ranging from one to three orders of magnitude over RNNs and
ANNs with comparable accuracy, depending on network and task complexity.

2.2 Methods 31

2.2 Methods

In the SRNNs, the LIF spiking neuron is modeled as:

ut−1 = ut−1(1−St−1)+ur St−1 (2.1)

ut = ut−1(1−1/τm)+Rm It /τm (2.2)

St = fs (ut ,ϑ) (2.3)

where It =∑
ti

wiδ(ti)+ Ii n j ,t is the input signal comprised of spikes at times
ti weighted by weight wi and/or an injected current Ii n j ,t ; u is the neuron’s
membrane potential which decays exponentially with time-constant τm , ϑ is
the threshold, Rm is the membrane resistance (which we absorb in the synap-
tic weights). The function fs (ut ,ϑ) models the spike-generation mechanism as
function of the threshold ϑ, which is set to 1 when the neuron spikes and oth-
erwise is 0 (where the approximating surrogate gradient is then f̂ ′

s (ut ,ϑ)). The
value for the reset potential ur was set to zero. The ALIF neuron is similarly
modeled as :

ut =αut−1 + (1−α)Rm It −ϑSt−1 (2.4)

ηt = ρηt−1 + (1−ρ)St−1 (2.5)

ϑ= b0 +βηt (2.6)

St = f̂s (ut ,ϑ), (2.7)

where α,γ are parameters related to the temporal dynamics, α = exp(−d t/τm)
and ρ = exp(−d t/τad p), ϑ is a dynamical threshold comprised of a fixed minimal
threshold b0 and an adaptive contribution βηt ; ρ expresses the single-timestep
decay of the threshold with time-constant τad p . The parameter β is a constant
that controls the size of adaptation of the threshold; we set β to 1.8 for adap-
tive neurons as default. Similarly, α expresses the single-timestep decay of the
membrane potential with time-constant τm .

The SRNNs were trained using BPTT, various spiking neuron models with
plastic time-constants and with various surrogate gradients. The standard val-
idation sets were used where available to determine overfitting; for SHD we
held out 5% of the training data and for (P)S-MNIST 10%. Apart from the
SSC and SHD datasets, analog input values are encoded into spikes either us-
ing spikes generated by a level-crossing scheme (ECG) or by directly injecting
a proportional current into the first spiking layer (S-MNIST, PS-MNIST, SoLi,
TIMIT, GSC). To decode the output of the network, we used one of two meth-
ods: either spike-counting over the whole time-window, for the (P)S-MNIST

32 Multi-timescales Spiking Recurrent Neural Networks

task, non-spiking LIF neurons (TIMIT, SHD, SoLi, and GSC), or spiking ALIF
neurons (ECG). With spike-counting, classification is decoded from the sum of
the output spikes as ŷ = softmax(

∑
t S t

i ,out) where S t
i ,out is the spike of the out-

put neuron i at time t . For either non-spiking LIF neurons and spiking ALIF
neurons as outputs, a softmax classification is computed from the output neu-
rons’ membrane potential uout ,t at each timestep as ŷt = softmax(uout ,t). For
ECG, we used spiking ALIF neurons for outputs as they performed best, which
we believe is related to the fact that this is the only task where classification
switches within the sample - the spiking then functions effectively as resets.
We use a standard BPTT approach [77] to minimize the cross-entropy (CE) or
negative-log-likelihood (NLL) loss for each task using the Adam [82] optimizer,
where we unroll all input timesteps from end to the start. The error-gradient is
calculated and accumulated through all timesteps after which the weights are
updated. BPTT for the spiking neurons is calculated retrogradely along with
the self-recurrence circuits. As shown in Figure 2.5, given an input sequence
X = x0, x1, x2, . . . , xT , and a neuron with initial states {uh,0,uo,0,Sh,0,So,0}, we ob-
tain for each timestep t ∈ {0,T } the spiking neuron states {uh,t ,Sh,t ,uo,t ,So,t },
where Sh,t refers to a neuron firing-or-not in a hidden layer and So,t to an
output neuron (if spiking), and uh,t and uo,t denote hidden and output neu-
rons’ membrane potentials. We then obtain a classification ŷ(t) either for each
timestep or for the whole sequence ŷ and an associated loss. In classification
tasks with C classes, the prediction probability of class c – ŷc is computed after
having read the whole sequence, and then the loss of the network is calculated
as L = ∑C

c=1 yc log ŷc , where yc is the target probability of class c. In stream-
ing tasks (ECG, SoLi), the total loss is computed as the sum of the loss at each
timestep – L =∑T

t=1 Lt . For the BPTT-derived gradient, we compute ∂L
∂z = ŷ − y ,

and for recurrent weights Wh2o , we compute ∂L
∂Wh2o

= ∂L
∂z

∑T
t ′

∂So,t ′
∂Wh2o

, where each
term can be computed at each timestep t ′ as

∂So,t ′

∂Wh2o
= ∂So,t ′

∂uo,t ′

∂uo,t ′

∂Wh2o
+

t ′−1∑
ξ=0

∂So,t ′

∂ut ′

∂uo,t ′

∂uo,ξ

∂uo,ξ

∂Wh2o

and
∂So,t ′

∂Wh2h
=

t ′∑
ξ=0

∂So,t ′

∂uh,ξ

∂uh,ξ

∂Wh2h

, and where Wh2h refers to weights between neurons in the hidden layers, and
Wh2o to weights between hidden and output neurons. The discontinuous spiking

2.2 Methods 33

xt,1

1
5

5

∑
k=1

[S→,k, S←,k]

xt,2 xt,3 xt,4 xt,5

̂yt

xt−1,5xt−1,4 xt+1,1 xt+1,2

S←,k S→,k

.

Wm,n
t

Input_dim, output_dim

Time

RNN

GRU

(mn + 2nn + 4n)EMAC

Total:

3(mn + nn)EMAC
+12nEMAC

ht = σh(Whxt + Uhht−1 + bh)
yt = σy(Wyht + by)

zt = σg(Wzxt + Uzht−1 + bz)
rt = σg(Wrxt + Urht−1 + br)

ĥt = ϕh(Whxt + Uh(rt ⊙ ht−1) + bh)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ ĥt

ba

Figure 2.3: a, Bi-directional SRNN architecture. b, Computational cost computation of
different layers for regular RNNs and GRU units. The computational com-
plexity calculation follows [83].

function enters the gradient as the term ∂S
∂u , and here we use the differentiable

surrogate gradients [65].
For the Multi-Gaussian surrogate gradient, we found effective parameter

values h = 0.15 and s = 6. based on a grid search, and we set σ to 0.5. The
standard surrogate gradients were defined following [65], with the Linear sur-
rogate gradient as f̂s

′
(ut |ϑ) = ReLU (1−αl i near |ut −ϑ|); the SLayer [73] gradi-

ent as f̂s
′
(ut |ϑ) = exp(−αsl ayer |ut −ϑ|), and the Gaussian surrogate gradient as

f̂s
′
(ut |ϑ) = N (ut |ϑ,σG); for all gradients, α is positive. We optimized all surro-

gate gradients hyperparameters in the experiments using grid searches; in the
experiments we used αl i near = 1.0, αsl ayer = 5.0, and σG = 0.5.

2.2.1 Spiking Recurrent Neural Networks (SRNN)

We focus here on multi-layer networks of recurrently connected spiking neu-
rons, as illustrated in Figure 2.2; variations include networks that receive bi-
directional input (bi-SRNNs; Figure 2.3a).

Spiking neurons are derived from models that capture the behavior of real
biological neurons [84]. While biophysical models like the Hodgkin-Huxley
model are accurate, they are also costly to compute [85]. Phenomenological
models like the Leaky-integrate-and-fire (LIF) neuron model trade-off levels of
biological realism for interpretability and reduced computational cost: the LIF

34 Multi-timescales Spiking Recurrent Neural Networks

Figure 2.4: The decaying threshold and membrane potential of the LIF and ALIF neurons
can be modeled as an internal state induced by self-recurrency.

neuron model integrates input current in a leaky fashion and emits a spike
when its membrane potential crosses its threshold from below, after which the
membrane potential is reset to the reset membrane potential; the current leak
is determined by a decay time-constant τm .

As an exceedingly simple spiking neuron model, the LIF neuron lacks much
of the complex behavior of real neurons, including responses that exhibit longer
history dependency like spike-rate adaptation [85]. Bellec et al. [86] demon-
strated how using a spiking neuron model that uses a generic form of adaptation
improved performance in their SNNs. In this adaptive LIF (ALIF) neuron, the
LIF neuron model is augmented with an adaptive threshold that is increased af-
ter each emitted spike, and which then decays exponentially with time-constant
τad p . Both LIF and ALIF neurons can be thought of as neural units with self-
recurrency, as illustrated in Figure 2.4.

2.2 Methods 35

Figure 2.5: Roll-out of the computational graph of a spiking neuron as used for
backpropagation-through-time.

BPTT, Surrogate-Gradient and Multi-Gaussian Given a loss-function L (t |θ)
defined over neural activity at a particular time t , the error-backpropagation-
through-time (BPTT) algorithm [54] updates network parameters θ in the direc-
tion that minimizes the loss by computing the partial gradient ∂L (t)/∂θ using

Figure 2.6: Illustration of different surrogate gradi-
ent functions f̂ ′s as a function of the neu-
ron’s membrane potential and threshold
, where the Multi-Gaussian is parame-
terized as in the experiments below (s =
6,h = 0.15).

the chain-rule. Here, the
parameters θ include both
the synaptic weights and
the respective neural time-
constants. In recurrently con-
nected networks, past neu-
ral activations influence the
current loss and by unrolling
the network the contribution
of these past activations to a
current loss is accounted for.
The roll-out of network activ-
ity through which the gradi-
ent is computed is illustrated
in Figure 2.5.

The discontinuous nature
of the spiking mechanism in
spiking neurons makes it dif-
ficult to apply the chain-rule
connecting the backpropagat-
ing gradient between neural

36 Multi-timescales Spiking Recurrent Neural Networks

output and neural input [62]; in practice, replacing the discontinuous gradi-
ent with a smooth gradient function, a “surrogate gradient” has proven effec-
tive [63, 65, 77] and has the added benefit of allowing the mapping of spik-
ing neural networks to recurrent neural networks in optimized Deep Learn-
ing frameworks like PyTorch and Tensorflow [65]. Multiple surrogate gradient
functions have been proposed and evaluated, including Gaussian, linear [86]
and SLayer [73] functions; for these functions however, no significant differ-
ences in performance are reported [65].

We here define the Multi-Gaussian (MG) as a novel surrogate gradient f̂s
′
(·)

comprised of a weighted sum of multiple Gaussians N where the hyperparam-
eter h and s are chosen such that the Multi-Gaussian contains negative parts:

f̂s
′
(ut |ϑ) =(1+h)N (ut |ϑ,σ2)−hN (ut |σ, (sσ)2)−hN (ut |−σ, (sσ)2), (2.8)

Figure 2.7: LIF, ALIF and LSTM internal op-
eration schematic.

where ut is the spiking neuron’s
membrane potential and ϑ its inter-
nal threshold. The Multi-Gaussian
surrogate gradient is inspired by the
dSilu [80] activation-function which
was shown to outperform the stan-
dard sigmoidal activation function
both for accuracy and learning speed,
and which has a derivative simi-
lar to the Multi-Gaussian. Effec-
tively, the negative parts of multi-
Gaussian gradient regularize activ-
ity, as it penalizes both relatively
large inputs and small inputs [81].
he gradient function thus aids the
SNN to achieve high accuracy with
sparse neural activity. The shape of
the Multi-Gaussian (MG) and various
other surrogate gradient functions is
illustrated in Figure 2.6.

Computational Cost To estimate
the efficiency of SNNs and compare
them to ANNs, we calculate the num-
ber of computations required in terms

2.2 Methods 37

of accumulation (AC) and multiply-and-accumulate (MAC) operations [87]. We
do this for an SRNN network with LIF or ALIF neurons and compare to a com-
plex recurrent ANN structure like an LSTM [88] in Figure 2.8 – for other ANNs,
see Figure 2.3b.

In ANNs, the contribution from one neuron to another requires a MAC for
every timestep, multiplying each input activation with the respective weight be-
fore adding to the internal sum. In contrast, for a spiking neuron a transmitted

Figure 2.8: Theoretical energy computation of different layers. The computational com-
plexity calculation follows Hunger [83]. Complexity is computed for a sin-
gle recurrently connected layer where each neuron receives n feedforward
inputs with average spike probability F ri n and m recurrent inputs with av-
erage spike probability F rout ; E AC and EM AC denote the energy cost for AC
and MAC operations respectively.

38 Multi-timescales Spiking Recurrent Neural Networks

spike requires only an AC at the target neuron, adding the weight to the po-
tential, and where spike inputs may be quite sparse. In addition, the spiking
neuron’s internal state requires updating every timestep at the cost of several
MACs depending on the spiking neuron model complexity [79]. As calculat-
ing MACs is much more energetically expensive compared to ACs (e.g., 31x on
45nm CMOS [18]), the relative efficiency of SNNs is determined by the number
of connections times activity sparsity and the spiking neuron model complex-
ity. Additionally, we remark that in hardware, multiplication circuits require
substantially more die area compared to addition circuits [89].

2.3 Experiments

Recurrent neural networks (RNNs) provide state-of-art performance in var-
ious sequential tasks that require memory [90] typically in small and compact
networks and can operate in an online fashion. We distinguish two kinds of se-
quential tasks: streaming tasks, where many inputs map to many specified out-
puts (many-to-many), and classification tasks where an input sequence maps
to a single output value (many-to-one). Sequential classification tasks can ad-
ditionally be computed in an online fashion, where classification is determined
for each timestep.

2.3.1 Datasets

We selected benchmark tasks with an inherent temporal dimension that can also
be computed with recurrent neural networks of modest size to fit the dynamics
and constraints of spiking neural networks. For these tasks, we trained several
different SRNN network architectures with various gradients, hyperparameters,
and spiking neuron models and compared them to classical and state-of-the-
art RNN architectures. Hyper-parameters were selected using three-fold cross-
validation on the training data.

The electrocardiogram (ECG) [91] signal is composed of six different char-
acteristic waveforms – P, PQ, QR, RS, ST, and TP – whose shape and duration
inform clinicians on the functioning of the cardiovascular system. The task
requires the continuous recognition of all six waveforms, where we use sig-
nals from the QTDB dataset [91]. The ECG-wave labeling is an online and
streaming task using only past information. The sequential- and permuted-
sequential S/PS-MNIST datasets are standard sequence classification tasks of

2.3 Experiments 39

length 784 derived from the classical MNIST digit recognition task by present-
ing pixels one at a time. The permuted version also first permutes each digit-
class removing spatial information. The Spiking Heidelberg Dataset (SHD) and

Figure 2.9: Examples of a, a single ECG
signal channel labeled for each
timestep; b, the input spike-
trains for the spoken number
“seven” in the SHD dataset and
c, example of gesture data – the
temporal evolution of the ges-
ture (upper row) and the corre-
sponding RDI (bottom row);

Spiking Speech Command (SSC)
Dataset [92] are SNN specific se-
quence classification benchmarks com-
prised of audio converted into spike
trains based on a detailed ear model.

The SoLi dataset [93] gesture
recognition task is comprised of a
set of gestures where each gesture is
measured as a sequence of radar re-
turns collected from the SoLid-state
millimeter-wave radar sensor (SoLi).
We treat the SoLi task as both an on-
line streaming and classification task
by processing frames sequentially -
we thus obtain two measures for the
SoLi task, per-frame accuracy and
whole sequence accuracy for stream-
ing and classification respectively.

Both the Google Speech Com-
mands (GSC) dataset [94] and
the TIMIT dataset [95] are classi-
cal speech recognition benchmarks
where for TIMIT, we compute the
Frame Error Rate (FER) and where,
similar to [77], we apply a bidi-
rectional architecture such that also
future information is used to clas-
sify each frame (illustrated in Figure
2.3a). Samples from the ECG, SHD
and SoLi datasets are shown in Fig-
ures 2.9a-c.

Network initialization. Compared
to ANNs, SRNNs require initializing
both weight and also the spiking neu-

40 Multi-timescales Spiking Recurrent Neural Networks

rons’ hyperparameters (i.e, neuron type, time constants, thresholds, starting
potential). We randomly initialize the time constants following a tight normal
distribution (µ,σ) with per-layer specific parameters given in Appendix A Table
A1. For all neurons, the starting value of the membrane potential is initialized
with a random value distributed uniformly in the range[0,ϑ]. The bias weights
of the network are initialized as zero and all feedforward weights are initial-
ized using Xavier-uniform initialization; weights for recurrent connections are
initialized as orthogonal matrices. We compared networks with constant, uni-
form, and normal initializers for the time-constants and found that the normal
initializer achieved the best performance (Figure 2.10).

2.3.2 Results

For the various tasks, the loss-function, sequence length, maximum number of
epochs, learning rate and decay schedule, and minibatch-size are specified in
Appendix A Table A1. Validation showed that the SRNNs were not prone to
overfitting and test accuracy was measured at the last epoch. Unless specified
otherwise, the network architecture consists of inputs densely connected to one
or more fully recurrently connected layers of spiking neurons connected to a
layer of output neurons, as illustrated in Figure 2.2. For the ECG task, the QTDB
dataset [91] consists of two channels of ECG signals. We apply a variant of level-

0.035

0.045

0.055

0.065

0 10 20 30 40 50 60 70 80

MG Constant MG Uniform MG Std=5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

MG Constant MG Uniform MG Std=5MG Constant MG Uniform MG Std=5

Epochs Epochs Epochs

(a) Training Accuracy (b) Training Loss (c) Mean Firing Rate

Figure 2.10: Effects of different time constant initialization schemes on network
training and performance on the SoLi dataset. (a), Training accuracy
(b), Training Loss (c), Mean Firing rate of the network. The MGconst ant is
the network where τ is initialized with a single value; for MGuni f or m the
network is initialized with uniformly distributed time-constants near the
single value of MGconst ant ; for MGstd5, a normal distribution with std 5.0
is used near the same single value.

2.3 Experiments 41

crossing encoding [96] threshold on the derivative of the normalized ECG signal
to convert the original continuous values x into a spike train: each channel was
transformed into two separate spike trains representing value increasing events
and value decreasing events respectively. The level crossing encoding we used
is defined as

S+ =
{

1, if xt −xt−1 ≥ L+
0, otherwise

, S− =
{

1, if xt−1 −xt ≥ L−
0, otherwise

where x is the signal being encoded, S+,S− denote spikes for the positive and
negative spike-train respectively and we used L+ = 0.3 and L− = 0.3.

For the Spiking Heidelberg Dataset (SHD), the audio records were aligned
to 1s by cutting or completing with zeros. As in Cramer et al [92], two speakers
were held out for the test dataset, and 5% of samples from other speakers were
also added into the test dataset. The training dataset thus comprised of 8156
samples and test dataset contains 2264 samples. For the Spiking Speech Com-
mand Dataset, the speech commands were also uniformly aligned to 1s with
a 250hz sampling frequency, and the dataset was randomly split into training,
validation and test dataset with a ratio of 72%-8%-20% respectively. For the
SoLi dataset, the sequence of 40 Range-Doppler images (RDI) was fed into the
model frame-by-frame as input and split into training and testset as in Wang
et al [93]. The original RDIs have 4 channels, but we found empirically that
using one channel was sufficient. For the SoLi task, the first layer of the SRNN,
we use a feedforward spiking dense layer, followed by a recurrent layer. As in
Wang et al, [93], separate networks were trained for per-frame accuracy (Accs)
and per-sequence accuracy (Accc), for the streaming and classification version
of the task respectively. In the S-MNIST tasks, the network read the image pixel
by pixel; for the PS-MNIST task, pixels are read into the network using a sliding
window of size 4 with stride 1. For both tasks, the pixel value is fed into the
network directly as injected current into the neurons of the first hidden layer as
a fully connected layer with its own weights. We use the Google Speech Com-
mand v1 [94]. For preprocessing, Log Mel filters and their first and second-
order derivatives are extracted from raw audio signals using Librosa [97]. For
the FFTs, a window of 30ms and a hop of 10ms is used. The timestep of the sim-
ulation is 10 ms. We calculate the logarithm of 40 Mel filters coefficients using
the Mel scale between 20 Hz and 4kHz. Additionally, spectrograms are nor-
malized to ensure that the signal in each frequency has a variance of 1 across
time; we then selected the first three derivative orders as three distinct input
channels. The input to the SRNN is thus a sequence of 101 frames, where each

42 Multi-timescales Spiking Recurrent Neural Networks

Table 2.1: Comparison of SRNN performance to respective RNN and SNN state-of-
the art accuracy (Acc.).

Task Network Method Acc. Task Network Method Acc.

ECG
RNN-SoTa Bi-LSTM 80.8%

SSC

RNN-SoTa LSTM [92] 73.1%
SRNN Ours 85.9% CNN-SoTa CNN [92] 77.7%

SMNIST

RNN-SoTa IndRNN [98] 99.5% SNN-base LIF [92] 50.1%
RNN LSTM [99] 98.2% SRNN-SoTA SNN [100] 60.1%
SRNN-SoTa LSNN [86] 96.4% SRNN Ours 74.2%
SRNN Ours 98.7%

SoLi
CNN-SoTa CNN [93] 77.7%

PSMNIST
RNN-SoTa IndRNN [98] 97.2% RNN-SoTa CNN+LSTM [93] 87.2%
RNN LSTM [99] 88% SRNN Ours 91.9%
SRNN Ours 94.3%

GSC

RNN-SoTa Att RNN [101] 95.6%

SHD

RNN-SoTa Bi-LSTM 87.2% CNN-SoTa SCNN [102] 94.5%
CNN-SoTa CNN [92] 92.4% SNN-SoTa LSNN [77] 91.2 %
SNN-base LIF [92] 71.4% SRNN Ours 92.1%
SNN SNN [103] 82.2%

TIMIT
RNN-SoTa Bi-LSTM [104] 68.9%

SNN-SoTa SNN [100] 82.7% SNN-SoTa LSNN [86] 65.4%
SRNN Ours 90.4% Bi-SRNN Ours 66.1%

frame comprises of a 40-by-3 matrix.

Figure 2.11: a,b, Grid search for h and s parameters for the Multi-Gaussian surrogate
gradient on the SoLi dataset. The dotted line demarcates the top-left area of
solutions with high accuracy (>0.91) in a, and high firing sparsity (>0.09)
in b. The green box denotes the selected h and s values.

The TIMIT database contains 3696 and 192 samples in training and test
data respectively. We preprocessed the original audio data as in Bellec et al
[77] using MFCC encoding; 10% of the training dataset was randomly se-
lected as validation dataset, and the network was trained on the remainder.
Similar to bi-directional LSTMs, we use a bi-directional Adaptive SRNN for

2.3 Experiments 43

Figure 2.13: a, Effects of various surrogate gradients on performance. b, Effects of train-
ing the time constant hyperparameters τm and τad p ; the legend denotes
which hyperparameters are trained; ReLU denotes the non-spiking analog
SRNN.

this task, illustrated in Figure 2.3a: we use two SRNN layers in the network,
reading the sequence from the forward and backward direction respectively.

Figure 2.12: The per timestep spike proba-
bility of the SRNNs on various
tasks.

The mean of these layer’s output is
then fed into the last layer, an inte-
grator, to generate the class predic-
tion.

As shown in Table 2.1, we find
that these SRNNs achieve novel state-
of-the-art performance for Spiking
Neural Networks on all-but-one tasks,
exceed conventional RNNs like LSTM
models, and approach or exceed the
state-of-the-art of modern RNNs. For
GSC, we exceed current SNN state-
of-the-art for recurrent and online
processing and approach the non-
streaming result of [102]. Moreover,
we see that SRNNs substantially close
the accuracy gap (SHD, SSC, GSC)
compared to non-recurrent architec-

44 Multi-timescales Spiking Recurrent Neural Networks

Figure 2.15: Variants of Multi-Gaussian gradient. As illustrated, we remove either the
left(MG-R) or right(MG-L) negative part of the Multi-Gaussian gradient for
comparison, leaving on the ablated part the positive Gaussian gradient.

tures like convolutional neural networks (CNNs) and Attention-based networks
– the latter networks however are typically comprised of many more neurons or
parameters and cannot be computed in an online or streaming fashion.

We plot the accuracy for the various tasks using different surrogate gradients
in Figure 2.13: while we see that there is little difference between previously
developed gradients like Gaussian, Linear, and SLayer, we find that the Multi-
Gaussian function consistently outperforms these gradients. To better under-
stand why the Multi-Gaussian is beneficial, we removed either the left or right
negative part of the gradient for comparison.

Figure 2.14: Total average Spike Opera-
tions (SOP) per sample and
SOPs per sample per step
(timestep/frame).

We found consistently that both
performance and sparseness improved
for both parts (Table 2.2, Figures
2.15. and 2.16), demonstrating
that the negative parts of the Multi-
Gaussian act as effective regularizers.

We also find that independently of
the surrogate gradient used, training
the time-constants in the Adaptive
LIF neurons consistently improves
performance, as shown in the abla-
tion study in Figure 2.13a: not train-
ing either τm or τad p , or neither,
reduces performance. Much of the
power of the SRNNs seem to derive
from their multi-layer recurrent and
self-recurrent architecture. When we make the spiking neurons non-spiking by

2.3 Experiments 45

Task Setting Accuracy Sparsity Task Setting Accuracy Sparsity

ECG

MG 81 0.1652

SoLi

MG 91.89 [0.042,0.0967]
MG-R 76.58 0.1494 MG-R 88.14 [0.0515,0.105]
MG-L 76.62 0.1718 MG-L 88.4 [0.0521,0.0977]
MG-Dense 66.28 0.1623 MG-Dense 86.41 [0.0547,0.1459]

ECG-LIF

MG 69.04 0.3711

GSC-V1

MG 92.13 [0.0975,0.1156]
MG-R 57.13 0.5424 MG-R 87.32 [0.108,0.137]
MG-L 58.83 0.3402 MG-L 87.14 [0.0968,0.1357]
MG-Dense 49.14 0.1288 MG-Dense 83.6 [0.0964,0.0857]

SMNIST

MG 98.34 [0.0302,0.123,0.135]

SHD

MG 90.31 0.0575
MG-R 96.28 [0.0293,0.1531,0.1456] MG-R 84.84 0.0618
MG-L 96.43 [0.04,0.1451,0.1851] MG-L 85.02 0.0605
MG-Dense 93.85 [0.0586,0.2224,0.2333] MG-Dense 81.757 0.058

Table 2.2: Ablation study of different forms of Multi-Gaussian gradient, including
results for dense (non-recurrent SNNs. We apply two variants of Multi-
Gaussian (MG) gradient – MG-L and MG-R to explore asymmetric shapes of
the Multi-Gaussian. The MG-L and MG-R variations only have negative parts
on the left or right part of the gradient respectively. To study the effect of
recurrent connections in the network, we removed these connections to create
the MG-Dense SRNNs. The sparsity value in the table is calculated by the
average number of spikes at each time step. For MG-Dense SRNNs, we find
removing the recurrent connections consistently lowers accuracy. All reported
values are best of three runs. In addition, both ECG and ECG-LIF were run for
50 training epochs for comparison.

eliminating the spiking mechanism and communicating the RELU value of the
membrane potential, we find that for almost all tasks we achieve performance
that slightly exceeds that of the spiking SRNNs.

The trained SRNNs communicate sparingly: most networks exhibit sparse-
ness less than 0.1, and only the ECG task requires more spikes as it was tuned
to use the smallest SRNN network (46 neurons). Sparseness of neural activity,
expressed as average firing probability per timestep per neuron, is plotted in
Figure 2.12.

In general, we find that increasing network sizes improves accuracy while
decreasing average sparsity (Figure 2.18) – though the total number of spikes
used in the network increases. The total average number of spikes required per
sample (SOPs) and per sample per step (SOP/step) for the highest performing
SRNNs are given in Figure 2.14. We also evaluated to what degree the internal
recurrency of spiking neurons contributes compared to the intra-layer recur-
rent connectivity: we find that the addition of intra-layer recurrent connections
consistently improves accuracy (Table 2.2 in Supplementary Information).

Plotting the performance of networks

46 Multi-timescales Spiking Recurrent Neural Networks

a b��
��
 ��
��

Figure 2.16: Study of different forms of gradients on ECG-LIF. (a,b) shows the result of
the using various Multi-Gaussian negative gradient ablations on the ECG-
LIF task where the σ of the central (positive) Gaussian as defined in Eq (2.8)
is varied. The effect of varying σ is shown for test accuracy (a) and spar-
sity (b). We find that also then, the standard Multi-Gaussian outperforms
variations in terms of accuracy and sparsity.

Figure 2.17: Evolution of spiking neuron
time constants evolving before
and after training

using either ALIF or LIF neurons, we
find that using ALIF neurons con-
sistently improves both performance
and activity sparseness in the net-
works (Figure 2.18a). Similarly, split-
ting a single large recurrent layer into
two layers of recurrently connected
layers in the SRNN architecture im-
proves both performance and sparsity
in the SHD task (Figure 2.18b); we
observed similar improvements in the
other tasks.

We carried out a grid search on
the SoLi and SHD datasets for the h
and s hyperparameters to determine
the optimal parameter values for the Multi-Gaussian surrogate gradient using
cross-validation. We find that there is a range of values where we can obtain
both competitive accuracy and high sparsity (areas top-left of the orange dot-
ted line in Figures 2.11a-b) – we used a similar hyper-parameter search for
the other tasks using selected values only from the high-accuracy/low activity
area identified here. The training procedure also substantially ‘learns’ the time-
constants for the respective tasks: as shown in Figure 2.17 for the SHD task,

2.3 Experiments 47

starting from a tight distribution of time-constants, the spiking neurons in the
trained network converge to using a wide variety of time-constants - the same
effect is observed in the other tasks (not shown).

The streaming and online nature of several of the tasks allows the network to
make any-time decisions. Figure 2.19a shows the classification for the various
ECG waveforms for every timestep. When a new wave is presented, there is
a brief delay before this class is correctly identified. In Figures 2.19b-f, the
average online classification performance is shown for the S-MNIST, PS-MNIST,
SHD, SSC, and SoLi datasets. We see that the S-MNIST and PS-MNIST digits
can be recognized reliably quickly, while the SSC sounds require distinctly more
time. The SHD sound recognition is much more erratic, and inspection of the
data shows that this is caused by the various classes being placed at different
times in the sound clip. Figure 2.19f plots the accuracy as a function of the
number of frames shown for the SoLi task. Most gestures can be recognized
reliably already after having presented only 25 out of the 42 frames - comparing
favorably with [93]: the SRNN allows decisions to be made earlier and with
better accuracy.

Given the relative AC and MAC energy cost from [18,79,105] and the com-
putational complexity calculations from Figure 2.8, we plot in Table 2.3 the rela-
tive energy efficiency of the various networks. We see that for the more complex
tasks, SRNNs are theoretically at least 59x more energy efficient compared to

Figure 2.18: a,Effect of neuron types in terms of test accuracy and sparsity with various
gradients (shown for SoLi dataset); the size of the nodes indicates the net-
work size and the color of nodes represents the gradient type; b, Effect of
the number of hidden recurrent layers on test accuracy and sparsity with
various gradients (shown for SHD dataset).

48 Multi-timescales Spiking Recurrent Neural Networks

Figure 2.19: a, example of ECG streaming classification: the prediction probability of
each output label is calculated from the normalized output neurons’ mem-
brane potential (dashed lines, bottom); top: the color-coded true labels. b-f
Temporal evolution of classification accuracy for the S-MNIST recognition
task c, the PS-MNIST task d, the SHD recognition task e„ the SSC dataset f„
and for the SoLi dataset i

RNNs at equivalent performance levels, where for most tasks the non-spiking
(ReLU) SRNN compares most favourably.

More classical RNN structures like LSTMs require many more parameters
and operations, often being 1000x less efficient – we also calculate similar esti-
mates for other RNN structures in Appendix Table A2.

2.4 Discussion

We showed how multi-layered recurrent network structures are able to achieve
new state-of-the-art performance for SNNs on sequential and temporal tasks.
This was accomplished by using adaptive spiking neurons with learned temporal
dynamics trained with backpropagation-through-time using a novel surrogate
gradient, the Multi-Gaussian, where the Multi-Gaussian gradient proved to con-
sistently outperform the other surrogate gradients. These results approach or
equal the accuracy of conventional RNNs, where the non-spiking ReLU-SRNNs
consistently slightly outperformed the spiking version, demonstrating the effec-
tiveness of the SRNN network architecture. When expressed in terms of compu-

2.4 Discussion 49

Table 2.3: Comparison of SRNN energy consumption to respective RNN and SNN
state-of-the-art accuracy. Relative energy cost is calculated using the number
of MACs and ACs required during inference with Ener g ynn =∑

t∈T 3.1M AC +
.1AC [18]; f r denotes the average spiking probability in the SRNNs per
timestep. The Bidirectional-LSTM network 290∗ contains 290 LSTM units.
The accuracy in SoLi dataset is per frame accuracy. For GSC, the ReLu SRNN
did not converge. ∗∗ For TIMIT, the complexity of comparably accurate net-
works was not available.

Task Method Network Acc
Energy/Step

Ratio
MAC AC*fr

ECG

Bi-LSTM 290 80.8 181.8k 1.7Kx
ReLU 4+36+6 86.4 1.9k 18x
Ours (LIF) 4+36+6 49.7 42 .5k 0.5x
Ours 4+36+6 85.9 90 .5k 1x

S-MNIST
ReLU 64+256+256 99.0 157.3k 59x
Ours 64+256+256 98.7 2k 20k 1x

PS-MNIST
ReLU 64+256+256 94.5 157.3 63x
Ours 64+256+256 94.3 2k 15.3k 1x

SSC
ReLU 400+400 74.4 766.6k 236x
Ours 400+400 74.2 2.4k 26.1k 1x

SHD
Bi-LSTM 128+128+100 87.2 1.1M 1.7Kx
ReLU 128+128 88.9 142.6k 125x
Ours (ALIF) 128+128 90.4 788 10.7k 1x

SoLi
LSTM 512+512 77.7 2.7M 604x
ReLU 512+512 79.6 1.1M 246x
Ours 512+512 79.8 3.1k 42.4k 1x

GSC
ReLU 300+300 222.6k 167x
Ours 300+300 92.2 1k 10.1k 1x

TIMIT** Ours 256+61 66.1 1.6k 56.7k 1x

tational operations, they demonstrate a decisive theoretical energy advantage
of one to three orders of magnitude over conventional RNNs. This advantage
furthermore increases for more complex tasks that required larger networks to
solve accurately.

The Multi-Gaussian gradient was inspired by a sigmoid-style saturating acti-
vation function developed for standard artificial neurons, the dSilu, which has
a similarly shaped gradient. As with the dSilu, we also find that the negative

50 Multi-timescales Spiking Recurrent Neural Networks

parts of the gradient help improve accuracy, and in the SRNN also sparseness.
The latter suggests that the negative parts of the gradient act as effective regu-
larizers.

Neither the SRNNs nor the presented RNNs were optimized beyond accu-
racy and (for the SRNNs) sparsity: no optimizations like pruning and quantiza-
tion were applied. When we compare the SRNN for the GSC task against the
Attention-based CNN-network TinySpeech [87], representing the recent state-
of-the-art in efficiency-optimized speech recognition, we find that at an equiva-
lent performance level, the SRNN still requires 19.6x fewer MACs, and where,
unlike TinySpeech, the SRNN operates in an online and streaming fashion (data
in Appendix Table A2).

We focused on temporal or sequential problems with relatively limited in-
put dimensionality. With RNNs, such problems can be solved with relatively
small neural networks and hold direct promise for implementation in ultra-low
power EdgeAI solutions. This also was the reason for emphasizing streaming
or online solutions where no or fixed preprocessing and buffering is required:
problems where a temporal stream first has to be segmented and where these
segments are then classified greatly increase the complexity of such solutions.
As we demonstrated, most classification decisions could be made early with
near-optimal accuracy.

The datasets discussed here were all selected for being amenable to stream-
ing and online processing by SRNNs with very limited pre-processing, such
as calculating Log Mel filters. In preliminary work, the use of conventional
convolutional network layers to extract useful features proved helpful for sim-
ple subsequent layers of spiking neurons [67]. We similarly find1 that deep
pre-processing improves accuracy substantially on tasks like GSC and also the
DVS128 dataset [106] where SRNNs obtained scores exceeding those reported
by [67, 107]. This suggests that for even larger problems than those studies
here, deep pre-processing holds much promise when balanced against the im-
pact on complexity and energy requirement and also on the ability to process
event-based streaming data.

Using surrogate-gradients, the BPTT-gradient in the SRNNs can be computed
using standard deep learning frameworks, where we used PyTorch [108]. With
this approach, complicated architectures and spiking neuron models can be
trained with state-of-the-art optimizers, regularizers, and visualization tools.

1With a hybrid CNN-SRNN we obtained an accuracy of 97.91% on the DVS128 dataset and
96.5% on the GSC dataset, with CNN-SRNN code available at https://github.com/byin-cwi/
Efficient-spiking-networks/tree/main/DVS128

https://github.com/byin-cwi/Efficient-spiking-networks/tree/main/DVS128
https://github.com/byin-cwi/Efficient-spiking-networks/tree/main/DVS128

2.4 Discussion 51

At the same time, this approach is costly in terms of memory use and training
time, as the computational graph is fully unrolled over all timesteps, precluding
online and on-chip learning. Additionally, the abundant spatial and temporal
sparsity is not exploited in the frameworks. This also limits the size of the
networks to which this approach can be applied: for significantly larger net-
works, either dedicated hardware and/or sparsity optimized frameworks are
needed [109]. Approximations to BPTT like eProp [77] or alternative recurrent
learning methods like RTRL [110] may also help alleviate this limitation.

We remark that the energy advantage of SRNNs we computed is theoretical:
while the computational cost in terms of MACs is well-accepted [87, 105], this
measure ignores real-world realities like the presence or absence of sufficient
local memory, the cost of accessing memory, and the potential cost of routing
spikes from one neuron to another. In many EdgeAI applications, the energy-
cost of conventional sensors may also dominate the energy equation. At the
same time, the numbers we present are unoptimized in the sense that other
than optimizing the surrogate gradient for both sparsity and accuracy, we did
not prune the networks or applied other standard optimization and quantization
techniques. Substantial improvements here should be fairly straightforward.
Training parameters of spiking neuron models in the SRNNs can be extended
further to approaches that include parameterized short-term plasticity [111]
and more complicated spiking neuron models.

The effectiveness of adjusting time-constant parameters to the task may also
have implications for neuroscience: though effective time-constants of real spik-
ing neurons are variable and dynamic [84], the benefit of training these pa-
rameters in SRNNs suggests these neural properties may be subject to learning
processes in biology.

Data Availability

All the datasets in the study are open source and publicly available; links to the
datasets are listed in our repo.

Code Availability

The code used in the study is publicly available from the GitHub repository
https://github.com/byin-cwi/Efficient-spiking-networks.

https://github.com/byin-cwi/Efficient-spiking-networks

52 Multi-timescales Spiking Recurrent Neural Networks

Acknowledgements

Bojian Yin is funded by the NWO-TTW Programme Efficient Deep Learning
(EDL) P16-25. The authors gratefully acknowledge the support from the or-
ganizers of the Capo Caccia Neuromorphic Cognition 2019 workshop and Neu-
rotech CSA, as well as Jibin Wu and Saray Soldado Magraner for helpful discus-
sions.

Chapter 3
Training SRNN Through
Truncated BPTT

Significance: The previous chapter, we found that SNNs face many prob-
lems in their training. As described in Challenge 2, this results in a longer
time for training and might leads to an unstable training process. As de-
scribed in Challenge 3, training SNNs takes up absolutely more memory
than RNNs. To alleviate these problems, we used Truncated-BPTT (TBPTT)
in LIDAR image recognition to obtain lower energy consumption for event-
based object detectors. To this end, we also introduce a new and open
dataset for event-based LIDAR object recognition. This chapter is based
on publication "Real-time classification of LIDAR data using discrete-time
Recurrent Spiking Neural Network" [112].

Abstract: With the advancement of Edge AI and autonomous systems, AI appli-
cations are increasingly subject to energy, latency and environmental constraints.
Biological neural systems naturally adhere to these constraints and, as such are a
source of inspiration. Spiking Neural Networks (SNNs) are a more detailed model
of biological neural processing. Recent work shows that they perform well in object
recognition and detection in general, and in Autonomous Driving tasks based on
ranged LIDAR data in particular. However, these LIDAR-SNN approaches do not
optimize for latency, as they require the entire frame to be scanned before process-
ing. They also require large SNNs, limiting the energy efficiency achieved. To reach
both low-latency and high energy efficiency in LIDAR object recognition, we develop

54 Training SRNN Through Truncated BPTT

a compact recurrent SNN. First, we propose and examine an open LIDAR labeled
dataset by processing the point clouds from the KITTI Vision Benchmark. We then
train our recurrent SNNs on this dataset and propose specific optimizations, includ-
ing input encoding, sparse connectivity and truncation of error-backpropagation.
With these optimizations, we show that compact recurrent SNNs can exceed the
performance of classical RNNs like LSTMs and approach the performance of large
non-spiking CNNs. Additionally, they significantly reduce latency by allowing early
and online object classification before the end of the sequence.

3.1 Introduction

With the increasing attention for untethered AI applications – Edge AI – there
are multiple factors to consider when developing such solutions, from the en-
ergy usage of autonomous systems, to the latency of time-sensitive decisions, to
the interference of environmental conditions on the sensors. For the technology
to scale well, these requirements have to be integrated with the design from
the ground up, and may require the use of specialized tools such as event-based
sensors. LIDAR, in particular, can provide exact distance measurements and is
less affected by lighting conditions, making it a key sensor for the Autonomous
Driving industry. However, equipping Autonomous Systems with such instru-
ments needs efficient algorithms that can process and make decisions on LIDAR
data with low latency and high energy efficiency.

Latency, in particular, can benefit: considering the sensor used for the KITTI
dataset as an example, it can rotate at up to 20Hz, with a significant loss in res-
olution (down to 1042 points per revolution). To get its full resolution (4167
points per revolution), the sensor needs to spin at 5Hz. Classifying objects on-
line, throughout the scanning process, would potentially significantly increase
the reaction speed of a vehicle while allowing the sensors to move at a slower
pace and provide sharper input signals.

Spiking Neural Networks (SNN) are a variant of Artificial Neural Networks
based on more detailed models of biological neurons. Neurons in SNNs com-
municate through binary signals – spikes – and can encode information in the
relative timings of these spikes. The asynchronous, event-based and sparse com-
munication of SNNs can lead to sizably reduced energy requirements when run-
ning these networks on specialized neuromorphic hardware [113].

To achieve both low latency and high energy efficiency, we turn to a recur-
rent variant of Spiking Neural Networks that is highly suitable for processing
time series and that can directly process raw LIDAR data as input. We show

3.1 Introduction 55

that a discrete-time Recurrent Spiking Neural Network (RSNN) can efficiently
classify LIDAR data, in real-time, throughout the scanning process. This setup
would assist an Autonomous System in confidently perceiving the environment
before a full revolution of the sensor is finished. Moreover, predicting object
types before they are fully scanned could allow a system to make low latency
decisions.

We develop a reproducible and challenging benchmark for online LIDAR
processing from the KITTI Vision Benchmark, by extracting point clouds repre-
senting objects and creating a LIDAR object recognition dataset. On this labeled
dataset we train a discrete-time RSNN and study performance, latency and en-
ergy efficiency.

To achieve satisfactory classification performance, we study the effect of dif-
ferent input encoding methods on the performance of the network. We further
show effective solutions can be optimized for better accuracy, shorter training
times and better energy efficiency. In particular, we show that large sparsely
connected SNNs achieve better accuracy than smaller networks with the same
number of non-zero parameters. We present the benefits of using Truncated
Backpropagation-Through-Time [57], which improves the training time of the
networks, and can have a positive effect on the accuracy.

3.1.1 Background

SNNs are comprised of spiking neurons that capture varying degrees of complex
processing in biological neurons. The Leaky-Integrate-and-Fire (LIF) spiking
neuron [84, Chapter 4] is a simple phenomenological spiking neuron model that
is used in many SNNs. Its behaviour is described by a single variable equation
(3.1) and associated spiking condition:

τm
du

d t
=−u(t)+RI (t), (3.1)

S(t) = f̂s (u(t),υ)

u(t) = u(t) (1−S(t))+ur eset S(t),

where u represents the membrane potential of the neuron, τm is the neuron’s
time constant, such that τm = RC , and υ is the threshold the membrane po-
tential has to reach for an output spike to be created; S(t) is the binary spike
indicator, ur eset denotes the potential to which the emission of a spike resets
the membrane potential, and f̂ () is the spike-function. Compared to other spik-
ing neuron models, the LIF preserves only a few features of biological spiking

56 Training SRNN Through Truncated BPTT

neurons [85], but has low implementation cost.
Training SNNs is particularly challenging due to the discontinuous nature of

the spiking mechanism, which makes such networks not amenable to standard
gradient descent and error-backpropagation as generally used for training Ar-
tificial Neural Networks [16]. Various solutions to learning in SNNs have been
proposed, including switching to another learning style [114], using a different
method of encoding information within the network [115], or changing the way
gradients are computed [65, 116]. Most alternatives for computing the gradi-
ent tend to be intimately tied to how information is represented by spikes. For
example, one can compute the exact time of each spike and then use these con-
tinuous values for gradient computation, or consider discrete time steps in the
network and approximate the gradient for any given step. The former method
has been successfully used in multiple projects [16], [116], [117], including
related work on LIDAR data [118]. However, by using such temporal encoding,
these networks are generally constrained to one spike per cell for every input,
which is not desirable in a setting where information is continuously processed.

The gradient approximation method, also used to train our networks, inserts
a function for the non-existing gradient through the spike-function, as a “Surro-
gate Gradient” [65] [119]. Many choices for this function have been examined
in the literature, such as a piece-wise linear function, the derivative of a sigmoid
or the exponential function [65]. The Surrogate Gradient method provides flex-
ibility in implementation, in particular in relation to existing ANN frameworks
like PyTorch and Tensorflow, and enables convenient handling of both spatial
and temporal credit assignment.

3.2 Related work

LIDAR scans the distance to objects in the environment by sweeping the sur-
rounding area with a stream of laser pulses and measuring the return time to
work out the distance for each pulse and angle. A full scan is done progressively
for different azimuths and elevations.

Previous solutions for solving LIDAR based object-recognition tasks have re-
quired the data to be fully scanned and then processed into a point cloud that
can then be the input of a classification system. Early work by Himmelsbach
et al. [120] split the frame into a grid, computed the connected components of
the cells and then used the results for object segmentation and feature compu-
tation, which became the input of an SVM classifier. In SqueezeSeg [121], the
whole point cloud is projected to a 2D image and then fed into a CNN, which

3.2 Related work 57

Figure 3.1: LIF and Adaptive spiking neuron behaviour.(a,d) The decay of the membrane
potential and adaptation can be modeled as self-recurrent connections. (b,c)
Impinging input spikes (red) increase (or decrease) the membrane potential
(blue) which then decays back to the resting potential (0). When the poten-
tial reaches the fixed threshold θ0 (yellow dotted line), an output spike is
emitted (green cross) and the potential is reset to the resting potential. In
the Adaptive spiking neuron (c), the threshold is increased for every emitted
spike, and then decays back to the resting threshold b0.

outputs point-wise labels to detect three types of objects: cars, pedestrians and
cyclists. Prokhorov [122] processes the point cloud as a time series of points,
which represents the input to a small Recurrent Neural Network that classifies
objects as vehicles and non-vehicles. This approach can be used through the
scanning process. All these ANN-based solutions are not analyzed from the
point of view of energy consumption, which is a strong advantage of SNNs as
well as an important factor in autonomous systems.

Zhou et al. and Wang et al. [118] [123] [124] propose SNN-based solutions
for object detection and classification from LIDAR data. In [118], image classi-
fication is carried out using a modest-sized feed-forward network applied to a
simple synthetic dataset obtained by simulating a LIDAR sensor that perceives
different types of roads populated with cars, pedestrians and trucks. In [123]
the authors expand this approach using feed-forward and convolutional SNNs
for object recognition in three datasets: simulated LIDAR, objects extracted from
the KITTI dataset and DVS_barrel [125]. Furthermore, [124] contains a Spiking
Convolutional Neural Network approach to object detection, by incorporating
the YOLOv2 architecture. This is tested on the bird’s eye view and 3D detection
benchmarks from the KITTI dataset.

Both [124] and [123] contain promising estimates for the energy consump-
tion the networks would have if they were running on neuromorphic hardware.
All of these SNNs networks have the constraint that each neuron is only al-
lowed to spike once per input, which complicates effective implementations of

58 Training SRNN Through Truncated BPTT

recurrent connections and processing incoming information as a time series.

3.3 Methods

3.3.1 Model

To sequentially process information like raw LIDAR data, we turn to recurrent
SNNs as described by Yin et al. [20]: the network consists of LIF neurons simu-
lated at discrete time points. These SNNs contain layer-wise recurrent connec-
tions and are trained using Backpropagation-Through-Time (BPTT) and Surro-
gate Gradients.

The neuronal behaviour of LIF neurons can be simulated at discrete time
points using the forward-Euler first-order exponential integrator method, as de-
scribed by (3.2)–(3.3):

ut = αut−1 + (1−α)Rm It −St−1θ (3.2)

α = exp(−d t/τm), (3.3)

where at each time step t , ut represents the membrane potential of the cell,
It the input current and St the binary activity of the neuron. The parameter
α relates to the decay of the membrane potential, while Rm is the membrane
resistance, τm the decay time constant of the membrane potential and θ is the
threshold.

Neural adaptation is a feature of the biological neuron that can be added to
the LIF model of (3.2). Its implementation is expressed by (3.4)–(3.6):

θ = b0 +βηt (3.4)

ηt = ρηt−1 + (1−ρ)St−1 (3.5)

ρ = exp(−d t/τad p). (3.6)

Here, the threshold becomes a function of time, with a fixed minimal value
of b0 and an adaptive contribution {βηt }. The adaptive contribution decays
with parameter ρ, which also depends on an additional time constant τad p . The
behaviour of the variables in the LIF neurons with and without adaptation given
a modulated spike-rate input is shown in Fig. 3.1.

The LIF and Adaptive LIF neurons are stateful cells that can be building
blocks for feed-forward and recurrent networks. By replacing the gradient com-
putation of the neuronal activation with a Surrogate Gradient, such networks

3.3 Methods 59

can be trained using Backpropagation-Through-Time in the same manner as
more traditional ANNs [65]. Our SNNs, in particular, use a difference of Gaus-
sian functions as a Surrogate Gradient for the neuron activation, where the
highest values reside around the point where the membrane potential is equal
to the threshold [19]. The network is implemented using the PyTorch frame-
work [108] and relies on the autograd feature for all gradient computations.

3.3.2 Dataset

The KITTI Vision Benchmark [126] was created by collecting data on static and
dynamic objects in diverse scenarios, such as city streets, rural areas and free-
ways. The data was captured using a vehicle equipped with multiple sensors;
the laser scanner used for developing this benchmark is the commercially avail-
able Velodyne HDL-64E. The data from the various sensors was synchronized
and processed in order to form a set of benchmarks [127], where we are using
the 3D object detection benchmark.

We have developed an object extraction pipeline that creates 2D images of
the same size, each containing one object, where the values of the pixels are de-
rived from the depth of the 3D points1. For this, the 3D point cloud is projected
to 2D and all the points that fall inside the specified window are selected. Each
window is of constant size and contains the bounding box annotation of the
respective object in its center. Annotated objects that are too big or too small in
comparison with the window size are ignored. Then all the 3D points whose 2D
projections fall inside the computed window are associated with the respective
object. Thus, each object is encoded by a 2D image where the value of each
pixel is associated with the depth of the corresponding point. The pixels where
no points are projected are assigned the value 0, and in the cases where multiple
points in the 3D point cloud project to the same pixel, the highest value is used
(as in practice this gave most contrast and worked best). The images are then

1 https://github.com/ancadiana23/RSNN_LIDAR

Figure 3.2: Example distribution by class of the original and resampled dataset.

https://github.com/ancadiana23/RSNN_LIDAR

60 Training SRNN Through Truncated BPTT

scaled down by a predefined factor to have the resulting objects of a particular
size, and the depth values in the dataset are normalized to be between 0.0 and
1.0.

Analyzing the class and value distribution of the resulting dataset shows
that the dataset class distribution is severely imbalanced (Fig. 3.2). To resolve
this, we use the torch WeightedRandomSampler in order to create a balanced
training set. Testing uses the test set with the original class distribution in most
experiments, unless explicitly stated that the test set is also resampled.

We also find that the resulting pixel values are mostly clustered in the inter-
val [0.1, 0.4], with a long tail using the remaining dynamic range [0.4, 1.0].
To increase the effectively used dynamic range, we apply a depth clip to all
the values, where we empirically select the maximum depth from the original
values. These depth values are then normalized to be between 0.0 and 1.0.
The result of this process can be observed in Fig. 3.3, which presents the value

Original Depth Clip

Va
lu

e
di

st
ri

bu
ti

on
Sa

m
pl

e

Figure 3.3: Value distribution of the original and clipped data, followed by example im-
ages.

3.3 Methods 61

distributions and sample images from the original and depth clipped set.
The dataset generation configuration was empirically determined by visu-

ally inspecting the results. The size of the windows applied to the 2D image is
232x392, which are then resized by a factor of 8, resulting in samples of size
30x50. We ignore any object that is either larger than the window or smaller
than a fifth of the window. Since the testing examples of the KITTI bench-
mark are not publicly available, we used the first 5000 frames for constructing
a training dataset and the last 2481 examples as our test dataset. As there can
be multiple objects in the same frame, this procedure results in having 15892
extracted objects for training and 7926 objects in our testing set.

3.3.3 Depth encoding

When classifying the objects in the dataset, we use a sliding window whose
stride and size can be adjusted through model hyper-parameters. For each
point the sensor measures the delay between emitting and receiving a laser

Rate

RBF

Temporal

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4: Encoding methods. The first
row shows 6 equally spaced val-
ues between 0.0 and 1.0, which
are examples of the raw val-
ues. The following rows show
the output of different encod-
ing methods, where the horizon-
tal space represents neighbour-
ing cells in one layer, and the
vertical space signifies different
time steps [128].

beam, from which the distance to the
reflecting surface can be computed.
Thus, the input to an object classifica-
tion model can be either a binary sig-
nal at the receiving time, or the value
of the time delay as a floating point
number.

In order to simulate these two in-
put types, we use the temporal and
rate encoding respectively. Rate en-
coding signifies that the network re-
ceives the values described in the
dataset section directly as current in-
jection into the input neurons.

Our temporal encoding method
receives float values which are trans-
lated into binary spikes, at specific
discrete times, thus relaying one in-
put window over multiple time steps.
The value interval (0.0, 1.0] is split
into equal segments, and then each
value is replaced by a binary signal at

62 Training SRNN Through Truncated BPTT

a time step corresponding to the value’s segment (Fig. 3.4). The values strictly
equal to 0.0 correspond to inactive input cells.

In addition to the two input types, rate and temporal encoding, we also
use Radial Basis Functions (RBF) [128]. This type of Receptive Field Coding
is a population coding method that uses multiple cells with different receptive
fields to encode each input value. The receptive fields used here are described
by Gaussian functions of identical shapes but with different means. Thus, for
small input values, the leftmost neurons are activated, while larger values move
the activation towards the right of the neuron population (Fig. 3.4).

Experimentally, we find that the effectiveness of RBF encodings varies de-
pending on the number of neurons used to represent each pixel. Smaller val-
ues, such as 4 neurons per pixel, show less over-fitting but also decreased per-
formance. Higher values however result in lower training accuracy and much
lower testing accuracy. For the experiments with RBF encoding, we selected 8
neurons per pixel as the optimal value.

Table 3.1: Weight sparsity comparison. For each sparsity level here are the total number
of parameters (weights), the number of non-zero weights, and the number
of neurons. The default network here contains 128 and 64 neurons in the
hidden layers.

Sparsity Level #Param #Non-Zero Param #Neuron
0 % 35520 35520 199
30 % 48564 34033 235
50 % 66831 33343 278
70 % 107235 32082 356
80 % 158444 31584 436
90 % 307242 30884 613

3.3.4 Sparsity

Recent work has shown that making Recurrent Neural Networks sparser can be
advantageous not only for expediting the training process but also for improving
performance [129]. Distinctively, in [60,130], the authors show that keeping a
constant number of non-zero parameters while increasing the size and sparsity
of a network leads to increased accuracy. They do so by creating larger net-
works at the beginning of the training process and populating a binary mask
throughout the training process, always setting the smallest weights to zero.

3.3 Methods 63

Here, we test this idea in the context of RSNNs, by randomly constructing a
binary mask at the beginning of the training process. Starting with the default
sized networks (two layer RSNNs, see section IV), the layers are then scaled
and masked with a probability p such that they use an approximately constant
number of non-zero parameters. The mask remains constant throughout the
training process. The sparsity and corresponding network sizes are shown in
Table 3.1.

3.3.5 Truncated Backpropagation-Through-Time

Even with our down-sampled dataset, event sequences are relatively long, creat-
ing issues in training and testing the model with BPTT; these issues would only
be exacerbated by scaling to a real-life object detection task. To mitigate this, we
implement Truncated Backpropagation-Through-Time (T-BPTT). T-BPTT splits a
long sequence into several segments and then computes the gradient and weight
updates only using one segment at a time. This training optimization is selected
when training the model and the number of backpropagation steps is controlled
by a hyper-parameter, backprop_step .

In detail, BPTT follows the flow of information through time in reverse,
unfolding the recurrent influences in the network, including self-recurrences in
the neural cell: Fig. 3.5 shows the connections of one cell unfolded in time. The
membrane potential and adaptive threshold create self-recurrent connections
for each cell, which are depicted in pink and yellow, respectively. There is also
a layer-wise recurrent connection (green) from the spikes in the previous time
step to the membrane potential of the current one. The inset in Fig. 3.5 zooms
in on the actual computation, and shows the interaction between variables from
(3.2) – (3.6): the red parameters are learned, and the recurrent connections are
represented in the same colors in all three views of the network.

To apply truncation of the unfolded sequence, we detach the internal param-
eters of the model from the computational graph every backprop_step number of
time steps, such that future gradients with respect to these variables will not be
backpropagated past the specified time point. Importantly, all variables have to
be detached, including the membrane potentials and the firing activities of the
cells, as they also persist through multiple time steps. Moreover, these variables
effectively construct the memory of the network, and thus should maintain their
values and not be reinitialized at truncation.

64 Training SRNN Through Truncated BPTT

Y

 L

∑S

S S1 S2 S3 ... Sn

Unfold u1 u2 u3 ... un

u ɳ

i i1 i2 i3 ... in

Figure 3.5: Recurrent SNN with adaptive LIF neurons. The membrane potential (pink)
and the adaptive threshold (yellow) are represented as self recurrent con-
nections. The layer-wise recurrent connections are represented by the green
arrows. Inset: detailed graph for spiking neuron variables and parameters.

3.4 Experiments

To test the encoding and optimization methods, as well as the efficiency of the
RSNN approach, we construct a default RSNN containing two hidden layers
of 128 and 64 cells, respectively, and two traditional ANNs for comparison:
an RNN with two LSTM layers of 128 neurons and one fully-connected layer
(architecture optimized for the task); the second is a CNN with 2 convolutional
layers and 3 fully connected ones. For all the Recurrent Networks (RNN and
SNN) we split the images into time sequences using a sliding window, which by
default covers one row at a time (window = stride = 50 px).

3.4 Experiments 65

Table 3.2: Accuracy and number of active neurons for the best performing models (mean
results from 5 trained networks). All RSNN networks are of default parameter
size.

Model Test Accuracy Spikes/Frame
Rate 80.4 1127

Rate + sparsity(90%) 79.3 3355
RBF 83.7 1235

RBF + sparsity(90%) 88.2 3458
Temporal Coding (4) 75.7 2944

LSTM 84.0% N/A
CNN 92.3% N/A

3.4.1 Overall Performance

The RSNN and RNN models and their accuracy on the original test set are pre-
sented in Table 3.2. The RSNN results surpass those of the LSTM and approach
that of the frame-based CNN: pairing RBF encoding and 90% sparsity results in
88.2% test accuracy.

At the same network size in terms of parameters, rate-coding and temporal
coding are substantially less accurate. At the same time however, rate-coding
in particular requires substantially fewer spikes per frame for classification. We
also find that for non-sparse RBF-RNNs, modest sized networks are needed,
with most network sizes performing approximately as well as the default-size
network (Fig 3.9). Overall, these results confirm that RSNNs are able to suc-
cessfully classify LIDAR data.

3.4.2 Early classification

The sequential nature of processing in RSNNs enables the network to classify
objects already during the scanning process and provide tentative results before
the end of the input sequence. Fig. 3.6 shows the classification performance
along the sequence, where the model’s accuracy is plotted at different sequence
steps or scanning percentages. The left plot presents a monotonically increas-
ing accuracy over the length of the sequence, demonstrating that the RSNN is
able to classify partial inputs correctly. Viewed as a function of the object, the
right plot shows the accuracy of the network against the percentages of object
area scanned. For this plot, we use the original 2D bounding boxes and plot

66 Training SRNN Through Truncated BPTT

0 5 10 15 20 25 30
Sequence step

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 o
bj

ec
ts

Figure 3.6: Network performance over sequence steps (left) and over the object scan
percentage (right).

0 5 10 15 20 25 30
Sequence step

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f a
ct

iv
e

ne
ur

on
s

0 5 10 15 20 25 30
Sequence step

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 o
bj

ec
ts

Figure 3.7: Network activity (left) and performance (right) as a function of sequence
steps.

percentages scanned in order to normalize over objects of multiple sizes – we
note again the monotonous increase in accuracy. An example of the resulting
online classification is shown in Fig. 3.8.

We furthermore study the average activity in the network while processing
a sequence. Fig. 3.7 presents on the left the mean percentage of active neurons
over the sequence, and on the right the model’s accuracy over the sequence.
We find that on average around 20% of neurons emit a spike at any time step.
There is also a noticeable increase in activity between time steps 5 and 15,
which corresponds to a steep increase in accuracy.

3.4 Experiments 67

0 10 20 30 40

0

5

10

15

20

25

Car, Van, Truck, Pedestrian, Person_sitting
Car, Van, Pedestrian, Person_sitting
Car, Van, Pedestrian, Person_sitting
Van, Pedestrian, Person_sitting
Van, Pedestrian, Person_sitting
Pedestrian
Pedestrian
Pedestrian
Car, Van, Pedestrian
Car, Van
Van
Van
Van
Van
Van
Van
Van
Van
Van
Van
Van
Van
Car, Van
Car, Van
Car
Car
Car
Car
Car
Car

Car

Figure 3.8: Examples of network output over row by row sequences. Above the image
is the correct label of the object, and to the right of each row is the network
output after processing the row.

These findings suggest that, in a practical setting, not only would the RSNN
model be able to classify objects before the end of a 360◦ scan, but it would also
be capable of predicting its type before the object is fully scanned.

128, 64 152, 76 181, 90 233, 116 286, 143 404, 202

76

78

80

82

84

86

Te
st

 a
cc

ur
ac

y

Figure 3.9: Non-sparse RBF network accu-
racy as a function of network
size.

3.4.3 Sparsity

As shown in Table 3.2, we find that
(when using the RBF encoding) net-
work performance is improved for
increased network sparsity. This
technique maintains a fixed number
of network non-zero parameters -
and increases the number of neural
cells. At the same time, we find that
networks with sparse connections
show increasing average network ac-
tivity, especially for very sparsely
connected networks (Fig. 3.10).

To further explore its effects, we
plot the mean and standard devia-

68 Training SRNN Through Truncated BPTT

tion of the network’s accuracy for network size and sparsity, as calculated over
the last 25 epochs of training and test accuracy. Fig. 3.11 shows that sparsity
improves the network accuracy when using the RBF encoding, but it is not ben-
eficial with rate-coded input. Our experiments revealed that sparsity works well
with rate coding only on the resampled test set.

Figure 3.10: Number of spikes per image for RBF
models at different levels of sparsity.

We speculate that larger
sparser networks manage bet-
ter class separation due to
their larger latent space. When
having a highly skewed test-
ing set, class separation is less
important than learning to
classify the majority class, and
thus the network has good re-
sults without using sparsity;
however, in this case, spread-
ing the predictions over more
classes can lead to worse re-
sults.

Overall, using the RBF en-
coding consistently results in
better accuracy, especially on the skewed (original) test set, which leads us
to believe that this coding method improves the class separation for the major-
ity class. Thus, when both sparsity and RBF are employed they improve the
performance of the network regardless of the testing set.

3.4.4 Truncated Backpropagation-Trough-Time

The effect of Truncated Backpropagation-Trough-Time on the training process is
shown in Fig. 3.12, plotting the training time in seconds from experiments with
various input encodings for the default RSNNs. Invariably, we find that using
Truncated Backprop Through Time leads to shorter training times.

The effect of T-BPTT on testing and training set accuracies is shown in Fig.
3.13, when using RBF coding and varying length for the truncation intervals.
We find that truncation leads to relatively good results, approaching full BPTT
accuracy, with 10 steps proving to be the sweet spot for this particular encoding
method.

We conclude that Truncated Backpropagation-Through-Time always short-
ens the training time of the model. Concerning performance, however, it can be

3.4 Experiments 69

a) Rate b) RBF

Figure 3.11: Sparsity effect on the original test set for rate-coding (left) and RBF(8)
coding (right).

a useful tool in certain cases.

3.4.5 Energy Requirements

Next to classification accuracy, energy requirements of the networks are an im-
portant secondary concern, as the practical applications of such systems are
Autonomous System often subject to energy constraints.

We study the energy requirements of the network in more detail by approx-
imating the number of required computations. Table 3.3 calculates the energy
usage of a particular network layer with respect to the energy of multiply-and-
accumulate operations (MAC) and accumulate operations (AC) [20].

With these equations, we calculate the corresponding energy use for the
LSTM, default RSNN, and best performing RSNN. As calculated in Table 3.4,
we find that then that the theoretical energy required by the default RSNN is
one order of magnitude lower than that of a traditional recurrent network even

70 Training SRNN Through Truncated BPTT

rate RBF TC rate sparsity
RBF sparsity

TC sparsity

0

2500

5000

7500

10000

12500

15000

17500

20000

tra
in

in
g

tim
e

(s
)

BPTT
TBPTT(10)
TBPTT(15)

Figure 3.12: Training times using BPTT and T-BPTT with 10 and 15 steps truncation
intervals.

Figure 3.13: The mean testing accuracies of the last
25 epochs of training, using T-BPTT
with different truncation intervals and
RBF(8) encoding.

before factoring in the sparse
activation rates. Using 20%
firing rates the energy usage
of both SNNs falls well below
that of the RNN.

We can also approximate
the energy requirements the
SNN would have when imple-
mented on actual neuromor-
phic hardware, using the data
published by the Intel Loihi
Team [72]. They measured
the energy of a neuronal up-
date when the cell is active/i-
nactive as 81 pJ and 52 pJ,
respectively. Our default RSNN has 199 cells resulting in 11nJ energy usage per
step when running with 20% firing rate. The larger, better performing RSNN
with 90% sparsity and RBF(8) encoding reaches 35nJ usage with the same fir-

3.5 Discussion 71

Table 3.3: Energy requirement formulas for different types of NN layers. Here E AC and
EM AC represent the energy cost per AC and MAC respectively, m is the input
size and n is the output size of the layer, while Fr is the firing rate.

Network Layer type Energy/Layer

SNN
Adaptive (mn +2n)E AC F r +2nEM AC

Adaptive &
Recurrent

(mn +nn +2n)E AC F r +2nEM AC

Traditional FC mnEM AC

NN LSTM (4mn +4nn +3n)EM AC

Table 3.4: Approximate amount of energy required to process one input (one line of
an image) using a traditional recurrent neural network, compared to a spik-
ing neural network. The networks used in these computations are the ones
presented in the previous experiments. The theoretical approximations are
computed using the computation complexity formulas from Table 3.3, while
the practical ones depend on the Intel Loihi 1 measurements [72].

Encoding Theoretical Practical
RNN - 223,872 EM AC -
SNN
128 × 64 Rate

35,918FrE AC

+398EM AC
11 nJ

SNN
90% sparse RBF

449,868FrE AC

+1226EM AC
35 nJ

ing rate. In the scenario where a Velodyne sensor was moving at 20Hz with 50
images per 360◦ frame, running the larger SNN would require about 1mW. The
caveat of this calculation is that a Loihi implementation of our approach has yet
to be constructed. Thus, we do not have the certainty that this network’s time
steps would match onto the neuronal updates used in their measurements.

3.5 Discussion

We find that we can train compact RSNNs to successfully processes LIDAR data
using various types of input encoding, where adding an RBF-style population
encoding significantly improves the network’s results. We also find that net-
work sparsity improves the RSNN performance when using a) rate encoding
and training and testing sets with the same class distributions; b) RBF encoding.

72 Training SRNN Through Truncated BPTT

Even though the number of non-zero parameters stays the same, the number of
cells grows with the size of the network. At the same time, the number of spikes
per frame grows rapidly with the increasing number of neurons in the network,
which leads to higher computational and energy requirements for such sparse
networks.

Overall, we demonstrated that RSNNs successfully classifies the provided
LIDAR data, reaching over 88% accuracy on the testing set, exceeding the per-
formance of classical RNNs like LSTMs and approaching that of non-sequential
CNNs which process the entire frame. We find moreover the RSNNs can pre-
emptively classify examples before the end of the sequence and even before the
target object is fully perceived.

While theoretically highly efficient, the practical approximation of energy
consumption is a rough estimation, and an actual implementation on neuro-
morphic hardware, such as the Intel Loihi [72], would be required to confirm
this estimate. Building on the developed solution, we also note that the input to
the network can be expanded to also contain the reflectance values provided by
LIDAR, which may improve performance further. Other multimodal solutions
could also be considered, such as aggregating data from the multiple sensors
equipped in an Autonomous Driving Setup.

Chapter 4
Training SRNN Through
Forward Propagation Through
Time

Significance: Based on the previous works, we observed that: First, Chal-
lenge 1 is an unavoidable problem in the gradient-based training algo-
rithm, but we can mitigate it by simplifying the gradient computation pro-
cess (i.e., solving Challenge 2); Second, the memory problem described in
Challenge 3 cannot be fundamentally solved by the algorithm in the frame-
work of offline updates.

Therefore Challenges 1-3 are difficult to address by previous BPTT-like
algorithms. In this chapter, we will use FPTT [131] as an online training
algorithm to train SNNs, and then fundamentally solve Challenges 2-3 and
alleviate the errors introduced by Challenge 1. We present a new gated
spiking neuron model – the Liquid Time-Constant neuron – to obtain higher
performance SNNs when training of FPTT. In the FPTT framework, we can
train arbitrarily long sequences with constant memory. In addition, FPTT
also allows us to train larger and deeper neural networks with a more
complex neural circuit. With the help of FPTT, we demonstrate a first end-
to-end trained SNNs (SPYv4) for object detection and recognition network.

This chapter is based on publication "Accurate online training of dy-
namical spiking neural networks through Forward Propagation Through

74 Training SRNN Through Forward Propagation Through Time

Time" [132].

Abstract: With recent advances in learning algorithms, recurrent networks of
spiking neurons are achieving performance competitive with vanilla recurrent neu-
ral networks. Still, these algorithms are limited to small networks of simple spiking
neurons and modest-length temporal sequences, as they impose high memory re-
quirements, have difficulty training complex neuron models, and are incompatible
with online learning. Here, we show how recently developed ‘Forward-Propagation-
Through-Time’ (FPTT) learning combined with novel Liquid Time-Constant spiking
neurons resolves these limitations. Applying FPTT to networks of such complex
spiking neurons, we demonstrate online learning of exceedingly long sequences
while outperforming current online methods and approaching or outperforming
offline methods on temporal classification tasks. FPTT’s efficiency and robustness
furthermore enables us to directly train a deep and performant spiking neural net-
work for joint object localization and recognition, demonstrating for the first time
the possibility of training large-scale dynamic and complex spiking neural network
architectures.

4.1 Introduction

The binary, event-driven and sparse nature of communication between spiking
neurons in the brain holds great promise for flexible and energy-efficient AI.
Recent work has demonstrated effective and efficient performance from spiking
neural networks (SNNs) [133], enabling competitive and energy-efficient ap-
plications in neuromorphic hardware [134] and novel means of investigating
biological neural architectures [135, 136]. This success stems principally from
the use of approximating surrogate gradients [63, 65] to integrate networks of
spiking neurons into auto differentiating frameworks like Tensorflow and Py-
torch [108], enabling the application of standard learning algorithms and in
particular Back-Propagation Through Time (BPTT).

The imprecision of the surrogate gradient approach however expounds on
the existing drawbacks of BPTT. In particular, BPTT has a linearly increasing
memory cost as a function of sequence length T , Ω(T) and suffers from van-
ishing or exploding backpropagating gradients, which limits its applicability on
long time sequences [131] and large-scale SNN models [137]. Alternative ap-
proaches like real-time recurrent learning (RTRL) [138] similarly exhibit ex-
cessive computational complexity, and low complexity approximations to BPTT
like e-prop [77] or OSTL [139] at best approach BPTT performance. Training

4.1 Introduction 75

on long temporal sequences in SNNs is of particular importance when the tasks
require a high temporal resolution, for instance to match the physical charac-
teristics of low-latency clock-less neuromorphic hardware [134,140].

Kag et al. [131] recently introduced a novel online learning algorithm, For-
ward Propagation Through Time (FPTT), for online learning in recurrent net-
works, demonstrating better generalization on many benchmark tasks com-
pared to BPTT, improving in particular on long sequence training in Long Short-
Term Memory networks (LSTMs). FPTT differs from BPTT in that it does not
calculate a gradient through time, and instead considers learning-through-time
as a coordinated consensus problem. Using regularized synaptic tags, FPTT
enables immediate, online learning in RNNs similar to feedforward networks,
eliminating the problematic dependence of the gradient calculation in BPTT on
the products of partial gradients along the time dimension: FPTT exhibits linear
Ω(T) computational cost per sample. For training recurrent SNNs however, as
we demonstrate, a straightforward application of FPTT on long sequence train-
ing does not improve performance as it does in [131], and we observed this
also with vanilla RNNs. Therefore, we deduce that FPTT particularly benefits
from the gating structure inherent in LSTM-style gated RNNs, which is lacking
in vanilla RNNs and SRNNs.

Algorithm
Gradient
Update

parameter
Update

Memory
Storage

BPTT Ω(c(T)T) Ω(1) Ω(N T)
RTRL Ω(c(T)T 2) Ω(T) Ω(N T)
e-prop / OSTL Ω(c(1)T) Ω(T) Ω(N)
FPTT Ω(c(1)T) Ω(T) Ω(N)

Table 4.1: Computational complexity of gradients,
parameter updates and memory storage
per sample, with N the batch-size. Com-
putational expense increases as the length
T of the sequence grows. i.e. c(1) < c(T)
after [131].

Taking inspiration from
the concept of Liquid Time-
Constant (LTCs) [141], we
introduce a novel class of
spiking neurons, the Liquid
Time-Constant Spiking Neu-
ron (LTC-SN), where time-
constants internal to the neu-
ron are dynamic and input-
driven in a learned fash-
ion, resulting in functional-
ity similar to the gating op-
eration in LSTMs. We inte-
grate these neurons in net-
works that are trained with
FPTT and demonstrate that the resulting LTC-SNNs outperform various SNNs
trained with BPTT on long sequences while enabling online learning and dras-
tically reducing memory complexity. We show this for several classical bench-
marks that can easily be varied in sequence length, like the Add-task and the
DVS-GESTURE benchmark [67, 106]. We also show how FPTT-trained LTC-

76 Training SRNN Through Forward Propagation Through Time

SNNs can be applied to large convolutional SNNs, where we demonstrate novel
state-of-the-art for online learning in SNNs on a number of standard bench-
marks (S-MNIST, R-MNIST, DVS-GESTURE) and to near (Fashion-MNIST, DVS-
CIFAR10) or exceeding (PS-MNIST, R-MNIST) state-of-the-art performance as
obtained with offline BPTT.

Finally, the training and memory efficiency of FPTT enables us to directly
train SNNs in an end-to-end manner at network sizes and complexity that was
previously infeasible. We demonstrate this in a new You-Look-Only-Once (YOLO)
LTC-SNN architecture for object detection on the Pascal Visual Object Classes
(Pascal VOC) dataset [142]. Object detection is a challenging task, as it involves
accurate multi-object identification and precise bounding box coordinate com-
putation; previous SNN approaches have been limited to either ANN-to-SNN
conversions [143–145], requiring many thousands of time-steps at inference
time, or small scale and inefficient SNNs with performance far removed from
that of modern ANNs [124]. Our FPTT-trained YOLOv4 [146] implementation
– SPYv4 – uses 21 layers, 6.2M LTC spiking neurons, and 14M parameters to
achieve new state-of-the-art for SNNs, exceeding the performance of converted
ANNs while achieving extremely low latency.

With FPTT and LTC spiking neurons, we demonstrate end-to-end online
training of large and high-performance SNNs comprised of complex spiking
neuron models that were previously infeasible.

Related Work

The problem of training recurrent neural networks has an extensive history
[54,147,148]. To account for past influences on current activations in a recur-
rent network, the network can be unrolled, and errors are computed along the
paths of the unrolled network. The direct application of error-backpropagation
to this unrolled graph is known as Backpropagation-Through-Time [54]. BPTT
needs to wait until the last input of a sequence before being able to calculate
parameter updates and, as such, cannot be applied in an online manner. Al-
ternative online learning algorithms for RNNs have been developed, including
Real-Time Recurrent Learning (RTRL) [138] and approximations thereof [149].
RTRL however is prohibitive in time and memory complexity, and while approx-
imations improve complexity (see [139], and Table 4.1), they yield variable and
task-dependent accuracy deficits compared to exact gradients [77,150].

Spiking neural networks are neural networks composed of spiking neurons:
stateful neural units that communicate using binary values, i.e. spikes. Their

4.1 Introduction 77

Figure 4.1: Roll-out of the computational graph of a spiking neuron as used for BPTT
(left) and that of FPTT(right)

state is determined by current and past inputs, and this state then determines
the (binary) value of the emitted output through a spiking mechanism. The
discontinuity of the spiking mechanism challenges the application of error-
backpropagation, which can be overcome using continuous approximations [16,
63], so-called “surrogate gradients” [65]. Recurrent SNNs trained with surro-
gate gradients and BPTT now achieve competitive performance compared to
classical RNNs [20, 67, 133]. In these and other studies, more intricate spik-
ing neuron models, like those including adaptation, outperformed less complex
models such as standard Leaky-Integrate-and-Fire neurons [77]. Additionally,
training internal spiking neuron’s model parameters like the time-constants of
adaptation and membrane-potential decay then further improves performance [20,
133].

Still, the application of BPTT in SNNs has several drawbacks: in particu-
lar, BPTT accumulates the approximation error of surrogate gradients along
time. Moreover, the spike-triggered reset of some state variables in typical spik-
ing neuron models (e.g. the membrane potential) causes a vanishing gradi-
ent when applying BPTT. We found these effects to be particularly problematic
when training networks with complex and more biologically detailed neuron
models like Izhikevich and Hodgkin-Huxley models. Furthermore, because the

78 Training SRNN Through Forward Propagation Through Time

SNN training accuracy heavily depends on hyperparameters, obtaining conver-
gence using BPTT in SNNs is non-trivial.

For spiking neural networks, approximations to BPTT like e-prop [77] and
Online Spatio-Temporal Learning (OSTL) [139] achieve linear time complex-
ity and have proven effective for many small-scale benchmark problems, ATARI
GAMES and also large-scale networks like cortical microcircuits [151]. In terms
of trained accuracy, however, none of these approximations have been shown
to outperform standard BPTT and, applications to deeper networks use approx-
imate spatial credit assignment approaches like learning-to-learn [77].

4.2 Methods

As introduced in [131], FPTT can be implemented directly on the computa-
tional graph of SNNs, similar to BPTT approaches. This is illustrated in Fig. 4.1;
FPTT intuitively provides a more robust and efficient gradient approximation
for spiking recurrent neural networks than BPTT, as FPTT simplifies the com-
plex gradient computation path in SNNs. This potentially lessens surrogate
gradients’ cumulative effect, avoiding or reducing the gradient vanishing or ex-
plosion problem.

As we will show, FPTT applied directly to SNNs like the Adaptive Spiking
Recurrent Neural Networks (ASRNNs) from [133] converges but without the
learning improvements reported for RNNs [131] – and we observed this also
for vanilla non-spiking RNNs (not shown). As FPTT was successfully applied
to RNNs with gating structures (LSTM), we introduce the Liquid Time-Constant
Spiking Neuron (LTC-SN) as a spiking neuron model with a similar gating struc-
ture. We observe that in spiking neurons, the time-constant of the membrane
potential acts similar to the forget-gate in LSTMs; the LSTM forget-gate how-
ever is dynamically controlled by learned functions of inputs. Inspired also by
Hasani et al. [141], the LTC-SN’s internal time-constants are a learned function
of the inputs and hidden states of the network (illustrated in Fig. 4.3).

4.2.1 Forward Propagation Through Time.

FPTT considers learning as a consensus problem between the network updates
at different time-steps, where the network update at each single time-step needs
to move toward the same converged optimal weights. To achieve this, FPTT up-
dates the network parameters W by optimising the instantaneous risk function

4.2 Methods 79

ℓ
d yn
t , which includes the ordinary objective Lt and also a dynamic regularisa-

tion penalty Rt based on previously observed losses ℓ
d yn
t = Lt +Rt (see Ap-

pendix A). In FPTT, the empirical objective L (yt , ŷt) is the same as for BPTT,
representing a function of the gap between target values yt and real time pre-
dictions ŷt .

The FPTT-specific dynamic regularization is controlled by a form of running
average of all the weight-updates calculated so far W̄ , where the update schema
of this regularizer Rt is as follows:

R(Wt) = α

2
∥Wt −W̄t − 1

2α
∇lt−1(Wt) ∥2 (4.1a)

Wt+1 =Wt −η∇W l (Wt) (4.1b)

W̄t+1 = 1

2
(W̄t +Wt+1)− 1

2α
∇lt (Wt+1). (4.1c)

Here, the state vector W̄t summarises past losses: the update is first a normal
update of parameters Wt based on gradient optimization with fixed W̄t , after
which W̄t is optimized with fixed Wt . This approach allows the RNN parameters
to converge to a stationary solution of the traditional RNN objective [131]. Note
that in Equation 4.1c, ∇lt (Wt+1) is estimated as in [131], avoiding propagating
the gradient through Equation 4.1b.

The FPTT learning process requires the acquisition of an instantaneous loss
lt at each time step. This is natural for sequence-to-sequence modeling tasks and
streaming tasks where a loss is available for each time step; for classification
tasks however, the target value is only determined after processing the entire
time series. To adapt FPTT to classification tasks, or rather, to perform online
classification tasks, a divergence term was introduced [131] in the form of an
auxiliary loss to reduce the distance between the prediction distribution P̂ and
target label distribution Q:

lt =βlC E
t (ŷy , y)+ (1−β)l di v

t , (4.2)

where β ∈ [0,1]; lC E
t is the classical cross-entropy for a classification loss and

l di v
t = −∑

ȳ Q(ȳ) log P̂ (ȳ) is the divergence term. We use the auxiliary loss in all
experiments as in [131] with β= t

T .

Training networks of spiking neurons. To apply FPTT to SNNs, we define
the spiking neuron model and specify how BPTT and FPTT are applied to such

80 Training SRNN Through Forward Propagation Through Time

Figure 4.2: Example learning curves on the Add-task of LTC-SRNN trained with BPTT,
FPTT, FPTT and batchsize 1 (“LTC-SRNN_bz1”, red curve) and non-recurrent
LTC-SNN trained with FPTT (green curve).

networks. All networks were trained using batches to exploit GPU parallelism;
reduction to batch-size=1 yielded similar results (e.g. Figure 4.2).

An SNN is comprised of spiking neurons which operate with non-linear in-
ternal dynamics. These non-linear dynamics consist of three main components:

(1) Potential Updating: the neurons’ membrane potential ut updates fol-
lowing the equation:

ut = f (ut−1, xt , st−1∥W,τ) (4.3)

where τ is the set of internal time constants and W is the set of associated
parameters, like synaptic weights. The membrane potential evolves based on
previous neuronal states (e.g. potential ut−1 and spike-state st−1 = {0,1}) and
current inputs xt . Training the time constants τ in the spiking neurons is known
to optimize performance by matching the neuron’s temporal dynamics of the
task [20,67].

(2) Spike generation: A neuron will trigger a spike st = 1 when its mem-
brane potential ut crosses a threshold θ from below, described as a discontinu-
ous function:

st = fs (ut ,θ) =
{

1, if ut ≥ θ

0, otherwise
(4.4)

4.2 Methods 81

(3) Potential resting: When a neuron emits a spike (st = 1), its membrane
potential will reset to resting potential ur :

ut = (1− st)ut +ur st , (4.5)

where in all experiments, we set ur = 0.

BPTT for SNNs BPTT for SNNs amounts to the following: given a training ex-
ample {x, y} of T time steps, the SNN generates a prediction ŷt at each time step.
At time t , the SNN parameters are optimized by gradient descent through BPTT
to minimize the instantaneous objective ℓt =L (yt , ŷt). The gradient expression
is the sum of the products of the partial gradients, defined by the chain rule as

∂ℓt

∂W
= ∂lt

∂ŷt

∂ŷt

∂st

∂st

∂ut

t∑
j=1

[
t∏

m= j

(
∂um

∂um−1
+ ∂um

∂sm−1

∂sm−1

∂um−1

)]
∂sm−1

∂W
, (4.6)

where the partial derivative of spiking ∂st
∂ut

is calculated by a surrogate gradi-
ent associate with membrane potential ut . Here, we use the Multi-Gaussian
surrogate gradient function f̂ ′

s (ut ,θ) [133] to approximate this partial term.
The computational graph of BPTT is illustrated in Table 4.1 and shows that

the partial derivative term depends on two pathways. The product of these
partial terms may explode or vanish in RNNs, and this phenomenon becomes
even more pronounced in SNNs as the discontinuous spiking process is approx-
imated by the continuous surrogate gradient and the incurred gradient error
accumulates and amplifies.

FPTT for SNNs. FPTT can be used for training SNNs by minimizing the instan-
taneous loss with the dynamic regularizer ℓ

d yn
t =L (yt , ŷt)+R(W̄t). The update

function Equation (4.6) then becomes:

∂ℓ
d yn
t

∂W
= ∂l d yn

t

∂ŷt

∂ŷt

∂st

∂st

∂ut

∂ut

∂W
. (4.7)

Compared to Equation (4.6), Equation (4.7) has no dependence on a chain of
past states, and can thus be computed in an online manner.

4.2.2 Liquid Time-Constant Spiking Neurons

82 Training SRNN Through Forward Propagation Through Time

Figure 4.3: LIF neuron and Liquid Time-Constant
spiking neuron (LTC-SN) as recurrent
network structures.

The LTC-SN is modeled as
a standard adaptive spik-
ing neuron [77, 133] where
the time constants τ (here,
membrane time constant τm

and adaptation time con-
stant τad p) are a dynamic
and learned function of inter-
nal dynamic state variables
like membrane potential u
and deviation [77] b. In
the network, time-constants
are either calculated as a
function α = exp(−d t/τm) =
σ(Dense[xt ,ut−1]), for non-
convolutional networks, or
using a 2D convolution for
spiking convolutional networks, α = exp(−d t/τm) = σ(Conv(xt +ut−1)), where
we use a sigmoid function σ(·) to scale the inverse of the time constant to a
range of 0 to 1, ensuring smooth changes when learning. This results in a Liq-
uid Time-Constant Spiking Neuron defined as:

τad p upd ate :ρ = exp(−d t/τad p) =σ(Densead p [xt ,bt−1]) (4.8a)

τm upd ate :α= exp(−d t/τm) =σ(Densem[xt ,ut−1]) (4.8b)

θt upd ate :bt = ρbt−1 + (1−ρ)st−1; θt = 0.1+1.8bt (4.8c)

ut upd ate :du =−ut−1 +xt ; ut =αut−1 + (1−α)du (4.8d)

spi ke st : st = fs (ut ,θ) (4.8e)

r eset t i ng :ut = ut (1− st)+ur est st , (4.8f)

where the neuron uses an adaptive threshold θt as in the Adaptive Spiking
Neurons [77], resting potential ur est = 0, and time-constants τm and τad p are
computed as liquid time-constants.

I.e., for adapting spiking neurons, the time-constant of the membrane po-
tential decay, τm and the time-constant of the adaptation decay, τad p can be
made dynamic. A spiking neuron with such varying internal dynamics can re-
spond in flexible and unexpected ways to input currents: as shown in Fig. 4.4a,
depending on the effective weights Wτ, the current-spike-frequency response
curve can be muted-and-saturating, near-linear, or rapidly increasing-and-then-

4.3 Experiments 83

Figure 4.4: a, F-I curve of a LTC-SN spiking neuron model for different combinations
of effective LTC weights Wm = {−1− 0.5,0.5,1} and Wa = {−1− 0.5,0.5,1} as-
sociated with respective dynamic time constant functions σ subject to input
current I . b, Response F r of LTC-SN to varying current input I (top) for dif-
ferent combinations of effective LTC weights Wτm = {−1,1} and Wτad p = {−1,1}
.

saturating; when subject to a dynamically varying input current, a higher input
current into LTC-SN units can result in a reduced firing rate, and transient dy-
namics can be absent or present (Fig. 4.4b, samples of trained behavior are
shown in Fig. 4.5).

4.3 Experiments

We demonstrate the effectiveness of FPTT training for LTC-SNNs on several
classical benchmarks, including the Add-task as in [131] and several established
SNN benchmarks (the DVS-GESTURE and DVS-CIFAR10 classification tasks, and
the Sequential, Sequential-Permuted, rate-based and Fashion MNIST classifica-
tion tasks). We moreover demonstrate how the memory efficiency of FPTT
enables training large-scale LTC-SNNs for applications like object localization.

4.3.1 Datasets

The Add-task [88] is used to evaluate the ability of RNNs to maintain long-
term memory. An example data point consists of two sequences (x1, x2) of

84 Training SRNN Through Forward Propagation Through Time

Avg over sequencedt/τm

Av
g

 o
ve

r s
eq

ue
nc

e
ρ

=
ex

p(
−

dt
/τ

ad
p)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

76%

a c

b

d

dt
/τ

m

Figure 4.5: Dynamic neural responses of LTC-SNs. (a) an MNIST sample is sequentially
fed into the LTC-SNN, pixel-by-pixel along the row-direction. (b) for illustra-
tion, we calculated the histograms of the resulting average d t/τ values after
training for this single sample (c) average responses of neurons in terms of
firing rate binned by d t/τm ,exp(−d t/τad p) values (d) Example of dynamics
of inverse time constant d t/τm for four randomly selected neurons during
presentation of the sequence.

length T and a target label y . The sequence x1 contains values sampled uni-
formly from [0, 1], x2 is a binary sequence containing only two 1s, and the
label y is the sum of the two entries in the sequence x1, where x2 = 1. The
IBM DVS Gesture dataset [106] consists of 11 kinds of hand and arm move-
ments of 29 individuals under three different lighting conditions captured using
a DVS128 camera. DVS-CIFAR10 is a widely used dataset in neuromorphic vi-

4.3 Experiments 85

sion, where the event stream is obtained by displaying moving images of the
CIFAR-10 dataset [152]. The Sequential and Permuted-Sequential MNIST
(S-MNIST, PS-MNIST) datasets were developed to measure sequence recogni-
tion and memory capabilities of learning algorithms: the S-MNIST dataset is
obtained by reshaping the classical MNIST 28x28 pixel images into a set of one-
dimensional sequences consisting of 784 time-steps per sample, where pixels
are then sequentially entered one-by-one as input to the network; the PS-MNIST
dataset is generated by performing a fixed permutation on the S-MNIST dataset.
Theoretically and in practice, PS-MNIST is a more complex classification task
than S-MNIST because it lacks temporally correlated patterns. The rate-coded
MNIST (R-MNIST) is an SNN-specific benchmark where a biologically inspired
encoding method is used to generate the network input that produces streaming
events (a spike train), by encoding the grey values of the image with Poisson
rate-coding [45]. We also applied FPTT-trained LTC-SCNNs to the traditional
static MNIST and Fashion-MNIST datasets for comparison with other models
trained offline. Here, we input pixel values directly as injected current into the
spiking input layer of the network, repeated 20 times to mimic a constant input
stream. For object localization, we used the PASCAL VOC benchmark [142]
which is comprised of standard 416416 RBG images with 20 different objects
and corresponding bounding box locations.

Datasets and networks For the Add-task, the trained networks consist of 128
recurrently connected neurons of respective types LTC-SN (LTC-SNN), LSTM,
or Adaptive Spiking Neuron [77] (ASRNN), and a dense output layer with only
1 neuron.

For the DVS-GESTURE dataset, each frame is a 128-by-128 size image with
2 channels. Each sample in the DVS-GESTURE dataset was split into fixed-
duration blocks as in [67], where each block is averaged to a single frame.
This conversion results in sequences of up to 1000 frames depending on block
length. As input for the shallow SRNN as used in the increasingly long se-
quence setting, we first down-sample the frame of a 128-by-128 image into a
32-by-32 image by averaging each 4-by-4 pixel block. The 2D image at each
channel is then flattened into a 1D vector of length 1024. For each channel of
the image, the network consists of a spike-dense input layer consisting of 512
neurons as an encoder, where the information of each channel is then fused
into a 1D binary vector through concatenation. This 1D vector is then fed to
a recurrently connected layer with 512 hidden neurons. Finally, a leaky inte-
grator is applied to generate predictions, resulting in a network architecture

86 Training SRNN Through Forward Propagation Through Time

[1024,1024]-[512D,512D]-512R-11I1. All networks were trained for 30 epochs
using the Adam optimizer with initial learning rate 3e-3, using the same initial-
ization schemes and learning-rate scheme for all networks to compare the effect
of neural units. Hyperparameters for ASRNNs were taken from [133].

To achieve high performance with SCNNs, we applied FPTT with LTC-SNs to
high-performance architectures from the literature, where we used hyperparam-
eter settings for the surrogate gradient from [20] and from [131] for FPTT train-
ing. Specifically, in (P)S-MNIST, we used the networks architecture from [77], a
shallow network with one recurrent layer comprised of 512 hidden neurons and
an output layer consisting of 10 (number of classes) leaky integrator neurons.
The FPTT-trained LTC-SNNs are optimized using Adam [82] with a batch size of
128 using 200 training epochs. We set the initial learning rate to 3e-3 and decay
by half after 30, 80, and 120 epochs. For the S-MNIST and PS-MNIST tasks, we
also find that the leak time-constants of the output units after training averaged
87ms ±13ms (S-MNIST) and 65ms±12ms (PS-MNIST), substantially shorter than
the sequence length and demonstrating that the recurrent network maintains
working memory. For R-MNIST, we follow the architecture from [139]: an SNN
with two hidden layers of 256 neurons, each followed by 10 output neurons.
The SNN is given 20 presentations of the image, after which the classification is
determined. For the static MNIST and Fashion MNIST datasets, we apply the ar-
chitecture from [67]: an SCNN with 3 convolutional layers, 1 Dense layer and
1 leaky Integrator output layer (ConvK3C32S1P1-MPK2S2-ConvK3C128S1P1-
MPK2S2-ConvK3C256S1P1-MPK2S2-512D-10I1). The resulting LTC-SCNN net-
work was then optimized using FPTT and Adamax with a batch size of 64 and an
initial learning rate of 1e-3. For the DVS-GESTURE and DVS-CIFAR10 datasets,
we also follow the high-performance architecture from [67] and use 20 sequen-
tial frames, where the network makes a prediction only after reading the en-
tire sequence. The LTC-SCNN thus has a structure ConvK7C64S1P3-MPK2S2-
ConvK7C128S1P3-MPK2S2-ConvK3C128S1P1-MPK2S2-ConvK3C256S1P1-MPK2S2-
ConvK3C256S1P1-MPK2S2-ConvK3C512S1P1-MPK2S2-512D-11I. These networks
were optimized through Adamax [82] with a batch size of 16 and initial learn-
ing rate of 1e-3.

For all networks, to measure GPU memory consumption, the GPU manage-
ment interface “nvidia-smi” was used.

1To describe the network structure, we follow standard conventions as follows: ConvK7C64S1P1
represents the convolutional layer with out put channel s = 64, ker nel si ze = 7, str i de = 1 and
paddi ng = 3. MPK2S2 is the max-pooling layer with ker nel si ze = 2 and str i de = 2. 512D and 512R
represents the fully connected layer and recurrent layer respectively with out put f eatur es = 512.
10I indicates the leaky integrator with the out put f eatur e = 10.

4.3 Experiments 87

Spiking Tiny YOLOv4 – SPYv4. The SPYv4 network follows the Tiny YOLO-
v4 architecture [146,153]. The backbone of the network consists of three CSP-
Blocks in the cross-stage partial network. In contrast to regular additive resid-
ual connections, the CSP-Block is spike-based rather than event-based as resid-
ual connections are constructed by concatenation rather than using an adding
operation, ensuring that only binary spikes are used for information transfer
between layers. Raw pixel values are fed directly into the network as input cur-
rents. As the object recognition task necessitates a more precise output vector
to draw the bounding box, we use a single standard conventional convolutional
layer instead of a spiking convolutional layer.

We trained and evaluated our model on Pascal VOC dataset [142] as was
done in [143]: the network was trained using a combination of VOC2007 and
VOC2012 (16551 images), and evaluated on the validation dataset of VOC2007
(4952 images).

For target detection, we use a threshold on the Intersection Over Union
(IOU), i.e., the ratio of the intersection of the prediction box and the ground
truth box of the target, to indicate whether the detection is correct. A target is
considered to be correctly detected when the IOU exceeds the threshold. The
average precision (AP) is then computed as the average of all the precision for
all possible recall values, and the mAP is the average of the AP of multiple clas-
sification tasks. Training maximizes the mAP@ϑ: the mean average precision of
the calculated bounding box exceeding an overlap threshold ϑ over the actual
boundaries of the object in the dataset, where we use ϑ= 0.5.

Loss τm τm(x) τm(x,u)
τad p 0.17 0.0027 0.0025
τad p (x) 0.17 0.0024 0.003
τad p (x,b) 0.16 0.0021 0.0019

Table 4.2: Ablation study of LTC-SN performance
on Add Task where either τm , τad p , or
both, are trained (τm ,τad p), dynamic
from external input x (τm (x),τad p (x))
or both external and internal input
(τm (x,u),τad p (x,b)).

We applied both mosaic
data augmentation [153] and
label smoothing during train-
ing to obtain better perfor-
mance. In the mosaic en-
hancement, the network uses
a mosaic of 4 images dur-
ing training instead of a sin-
gle image; this is applied only
during the first 200 training
cycles. The network was op-
timized by Adagrad with a
batch size of 32 and an initial
learning rate of 1e-3.

88 Training SRNN Through Forward Propagation Through Time

4.3.2 Results

Figure 4.6: a, Example loss-curves for networks trained on the Add Task for a sequence
of length 1000 time steps. The loss of LTC-SNN becomes N aN after 2000
iterations when training with BPTT. b, plots the loss of the last 100 training
iterations averaged over 5 runs for sequence lengths.

FPTT-SNN requires Liquid Time-Constant Spiking Neurons. We apply both
BPTT and FPTT to the Add-task as originally studied in [131] to illustrate the
need for more complex spiking neurons like LTC-SNs when applying FPTT learn-
ing. We do this for various network types, including non-spiking LSTMs as a
baseline, ASRNNs [133], and LTC-SNNs.

For a long adding sequence of length 1000, example loss-curves are plot-
ted in Fig. 4.6a and averaged converged losses in Fig. 4.6b. We find that as
in [131], a standard LSTM network trained with BPTT fails to converge to zero
loss, while the same network does converge using FPTT. For SNNs, we find that
ASRNNs trained with either FPTT or BPTT do not fully converge, and for the
LTC-SNNs trained with BPTT learning rapidly diverges due to exploding gradi-
ents. LTC-SNNs trained with FPTT however successfully minimize the loss: ab-
lating the LTC-SN dynamics, we find that the input-dependent dynamic gating
of the membrane-potential time-constant is critical for convergence (Table. 4.2),
and the memory provided by the LTC-SN self-recurrence does in fact suffice for
solving this task (Fig. 4.2).

FPTT allows for longer sequence training. Next, we study the ability of
FPTT-trained LTC-SNNs to learn increasingly long sequences. For this, we use
the DVS-GESTURE dataset and systematically investigate the performance of a
fixed architecture shallow SRNN model on increasingly many frames sampled
from the same gesture signals as in [67], ranging from 20 to 1000 frames. For

4.3 Experiments 89

a b

Figure 4.7: Learning curve of ASRNN trained via FPTT and BPTT on a 100 frames, and
b 500 frames

each frame-encoded dataset, we train various networks types for a fixed number
of epochs with an identical number of neural units, and report the best perfor-
mance for BPTT and FPTT trained networks; networks either converged before
the final epoch or diverged (Fig 4.7a,b).

The results for different sampling frequencies are shown in Fig. 4.8. Of all
methods and networks, the LTC-SNN trained using FPTT achieves the best accu-
racy in all cases, also outperforming standard (BPTT-trained) LSTMs. Further-
more, the FPTT-trained LTC-SNNs and the ASRNNs exhibit constant accuracy
over the whole range of sequence lengths, where the LTC-SNNs consistently
outperform the ASRNNs.

In contrast, the accuracy of both LTC-SNNs and ASRNNs trained with BPTT
quickly deteriorates as sequence length increases. For the LTC-SNNs, the net-

Figure 4.8: The Bar chart of Performance comparison between BPTT and FPTT on the
DVS gesture dataset.

90 Training SRNN Through Forward Propagation Through Time

Figure 4.10: a, Memory Efficiency: GPU Memory required for network training of the
DVS Gesture dataset for different sequence length. b GPU Memory cost
required for training of the R-MNIST dataset.

works failed to converge for frame-lengths 200 and 500, and best validation
accuracy is reported in Fig. 4.8. For the baseline standard LSTM, this effect is
also there, albeit more moderate, as performance decreases from 88.9% at 100

Figure 4.9: Bar chart of mean firing rate
(fr) comparison between BPTT
and FPTT on the DVS gesture
dataset.

frames to 82.5% at 500 frames.
This suggests that indeed the gra-
dient approximation errors in SNNs
add up when training with BPTT.
The plot also illustrates the memory-
intensiveness of BPTT: when applied
to the 1000 frame-length data, GPU-
memory (24GB) was insufficient for
training LSTM, ASRNN and LTC-
SNN.

Comparing sparsity (average fir-
ing rate) for the different SNN
models, we find no meaningful
differences (Fig. 4.9); parameter-
matched networks showed similar
performance as unit-matched net-
works, and the inclusion of an aux-
iliary loss [131] only aided BPTT-
trained LSTMs but not BPTT-trained
SRNNs. Making only the membrane-
decay time-constant dynamic has a small negative impact (ASRNN− Table 4.3).

4.3 Experiments 91

Table 4.3: Performance comparison between BPTT and FPTT on the DVS gesture
dataset. Each number in the table is the average of three runs. All networks
have an equal number of neural units unless indicated otherwise. (*) denotes
that training diverged; reported accuracy is the best accuracy before diver-
gence. (+) denotes out-of-GPU-memory when training. The ASRN N+ is an
ASRNN with the same number of parameters as the LTC-SNN. LTC− denotes
an LTC-SNN network where only the membrane time constant is dynamic, and
the adaptation time constant is a learned fixed parameter. For the Eprop AS-
RNN, we use a single layer network with 1400 neurons, matching the number
of parameters in the LTC-SNN.

Frames
BPTT FPTT Eprop
LSTM+Aux LSTM LTC-SNN+Aux LTC-SNN ASRNN+Aux ASRN N++Aux LTC− LTC-SNN ASRNN ASRNN

20 86.69±0.43 82.29±2.46 83.42±1.35 84.37±2.27 86.82±0.31 80.78±1.99 87.83±1.21 90.39±0.71 87.51±0.85 75.46±1.73
40 88.77±1.71 84.95±0.71 85.96±1.16 84.37±1.24 87.29±0.87 82.99±0.70 88.53±0.57 90.39±0.71 87.61±0.43 75.92±0.87
60 87.61±0.86 85.15±0.75 85.62±1.18 83.91±0.71 87.02±1.19 81.77±0.34 88.08±1.40 90.74±0.16 87.62±1.15 75.42±0.86
80 87.97±0.14 84.83±1.42 85.30±0.71 80.44±3.6 86.34±0.87 76.84±0.85 88.66±1.14 91.31±0.98 87.60±1.06 77.54±1.34

100 88.89±0.49 83.79±0.71 83.21±0.43 78.70±0.91 86.22±0.71 74.61±1.25 89.93±1.13 91.89±0.16 87.40±0.28 75.46±1.15
200 85.76±0.49 81.87±2.58 51.39±6.0 (43.98±2.35)∗ 79.62±1.89 65.89±1.69 89.24±1.56 92.13±0.87 88.31±1.33 75.33±1.02
500 82.52±1.82 78.81±1.5 38.89±3.22 (36.46±1.5)∗ 49.03±1.52 52.43±1.32 86.69±0.43 90.64±1.56 85.76±1.30 75.04±0.97
1000 + + + + + + 90.05±1.56 91.28±1.05 84.24±1.23 74.86±1.08
Param 4.2M 4.2M 4.7M 4.7M 1.6M 4.7M 3.2M 4.7M 1.6M 4.8M

FPTT Requires Less Memory. FPTT-trained LTC-SNNs require increasingly
less memory as sequence length increases as measured on GPU. For the DVS-
GESTURE dataset (Fig. 4.10a), FPTT memory-use is both less and increases less
rapidly compared to BPTT as a function of the number of frames used per data
sample. FPTT’s increasing memory use can be attributed to the rapidly inflating
size of the frame-encoded dataset, increasing in size from 7.4 GB for 20 frames
to 368.1 GB for 1000 frames. We validated this by training an LTC-SNN network
on the R-MNIST classification problem, where longer sequences are simulated
by showing the same sample for an increasing number of frames. We then find,
as expected, that the memory required for FPTT training remains fixed. At the
same time, BPTT memory-use linearly increases (Fig. 4.10b).

FPTT with LTC Spiking Neurons improves over Online Approximate BPTT.
To demonstrate the power of FPTT as an online training method, we used

state-of-the-art deep spiking convolutional network architectures (SCNNs) for
standard sequential benchmarks from the literature and trained these architec-
tures with LTC-SN neurons and FPTT.

In Table 4.4, we compare the LTC-SNNs to existing state-of-the-art online
and offline SNNs. We find that LTC-SCNNs trained with FPTT consistently and
substantially outperform SNNs trained with online BPTT approximations like
OSTL and e-prop. Compared to offline BPTT approaches, the FPTT-trained LTC-

92 Training SRNN Through Forward Propagation Through Time

Table 4.4: Test accuracy of deep SRNNs/SCNNs on various tasks. Bold-faced denotes
state-of-the-art (SoTa) online performance, slanted bold denotes overall SNN
state-of-the-art. For S-MNIST, PS-MNIST and RMNIST, FPTT-LTC uses identi-
cal network structures as in [77, 139], for the other benchmarks the network
structure matches [67].

Task Online baseline This work Offline SoTa
S-MNIST - - FPTT+LTC 97.37% BPTT+ASRNN [133] 98.7%
PS-MNIST - FPTT+LTC 94.77% BPTT+ASRNN [133] 94.3%
RMNIST OSTL + SNU [139,154] 95.34% FPTT+LTC 98.63% BPTT+SNU [154] 97.72%
MNIST - FPTT+LTC 99.62% BPTT+PLIF [67] 99.72%
Fashion MNIST - FPTT+LTC 93.58% BPTT+PLIF [67] 94.38%
DVS-GESTURE DECOLLE+SNN [155] 95.54% FPTT+LTC 97.22% BPTT+PLIF [67] 97.57%
DVS-CIFAR10 - FPTT+LTC 73.2% BPTT+PLIF [67] 74.8%

Table 4.5: Memory efficiency and total training time. (*): the reported number is ob-
tained using a halved batch size compared to the other entries to fit into GPU
memory

GPU memory
S-MNIST R-MNIST MNIST DVS-Gesture

BPTT 11.1GB 1.5GB 9.67GB 15.72GB(*)
FPTT 1.9GB 1.4GB 2.23GB 3.75GB
Training Time per epoch
BPTT 2518s 192s 362s 108s
FPTT 1233s 204s 384s 112s

SNNs achieve new state-of-the-art for SNNs (PS-MNIST, R-MNIST) or achieve
close to similar performance (S-MNIST, DVS-GESTURE), DVS-Cifar10); addi-
tionally, the memory requirements for FPTT vs. BTTP trained networks were
lower by up to a factor of 5 while the training time was only slightly longer
(Table 4.5).

4.3.3 Large-scale Object-detection: Spiking YOLO

The memory efficiency of FPTT-trained LTC-SNNs enables us to train SNNs of
comparable complexity as modern ANNs: we demonstrate this by training a
large spike-based object-detection model based on the Tiny YOLO-v4 architec-
ture [146,153]. The ‘You-Only-Look-Once’ (YOLO) architecture calculates both
bounding boxes locations and object identities for all identifiable objects in an

4.3 Experiments 93

Figure 4.11: An example of object recognition process of Spiking-YOLO on a sequence of
images. Objects are localized and identified for each image independently.

Figure 4.12: SPYv4 applied to streaming video (example images on top), with raster plot
of spiking activity below. Spikes are shown for 100 random select neurons
from the in first and last layer.

image using a single pass through a deep neural network.
Our SPiking tiny Yolo-v4 network - SPYv4 - has 19 spiking convolutional lay-

Figure 4.13: The mAP@.5 calculation in the classi-
fication and recognition of 20 different
kinds of objects in SPYv4 on VOC07.

ers with about 6.2M spiking
neurons, 2 convolutional out-
put layers and 14M param-
eters in total, illustrated in
Fig.4.14a. This makes it both
larger and deeper than previ-
ous end-to-end trained spik-
ing models. Training a sin-
gle time-step in the network
requires less than 14GB of
GPU-memory, and as BPTT
scales linearly with the num-
ber of time-steps, learning
with BPTT in such a large
network over multiple time-
steps is infeasible.

94 Training SRNN Through Forward Propagation Through Time

CSP Block

Spike [52,52,128]

Maxpool 2x2 / stride : 2

Concat [26,26,384]

滚滚长江东逝水滚滚长江东逝水

Conv 75 x 1 x 1 / stride : 1

Conv 75 x 1 x 1 / stride : 1

Conv 32 x 3 x 3 / stride : 2

Spike [208,208,32]

Conv 64 x 3 x 3 / stride : 2

Spike [104,104,64]

Conv 512 x 3 x 3 / stride : 1

Spike [13,13,512]

Conv 256 x 3 x 3 / stride : 1

Spike [26,26,256]

Conv 512 x 3 x 3 / stride : 1

Spike [13,13,512]Conv 512 x 3 x 3 / stride : 1

Spike [13,13,512]

CSP Block

Spike [26,26,256]

Maxpool 2x2 / stride : 2

CSP Block

Spike [13,13,512]

Maxpool 2x2 / stride : 2

Conv 128 x 1 x 1 / stride : 1

UpSample

Spike [26,26,128]

Input: [416,416,3]

Input Spike [w, h, c]

Conv 3 x 3 / stride : 1

Spike [w, h, c]

Conv 3 x 3 / stride : 1

Spike [w, h, c/2]

Concat [w, h, c]Conv 1 x 1 / stride : 1

Spike [w, h, c]

Conv 1 x 1 / stride : 1

Spike [w, h, c/2]

Concat [w, h, 2c]

Back Bone
CSPBlock

y1 [26,26,75]

y2 [13,13,75]

�
������

Figure 4.14: Spiking YOLOv4 (SPYv4) neural network architecture.

To carry out object detection, the network uses multiple reads of the in-
put image, e.g. 4 or 8 times, as time-steps in the network to obtain the final
result; trained with FPTT, SPYv4 achieves a mean Average Precision (mAP)
of 51.38% at 4 reads and 53.25% at 8 reads (Fig. 4.13) on the VOC dataset
(see Methods); Fig. 4.11 shows examples of the detected and classified objects.
Neural activation in the network is highly sparse, with about 10% of neurons
active on average at each time-step. When receiving direct camera inputs im-
ages, inference achieves about 60 time-steps per second on an NVIDIA RTX3090
equipped workstation, corresponding to processing 7 or 15 images per second.
Fig. 4.12 shows example activity from neurons from respectively a shallow
(near input) and deep network layer: neurons in the deeper layer fall silent
when irrelevant stimuli are shown, while neurons closer to the inputs remain

4.4 Discussion 95

active. Earlier work like Spiking-YOLO [143] achieved mAP 51.83% with 8000
simulation time-steps; our SPYv4 network thus outperforms these networks in
performance, sparseness, and latency.

4.4 Discussion

We showed how a recently proposed novel training approach for recurrent neu-
ral networks, FPTT, can be successfully applied to long sequence learning with
recurrent SNNs using novel Liquid Time-Constant Spiking Neurons. Compared
to BPTT, FPTT is compatible with online training, has constant memory re-
quirements, and can learn longer sequences. The increased memory efficiency
of FPTT allows for training much larger SNNs as was previously feasible, as
we demonstrated in the SPYv4 network for object detection. In terms of accu-
racy, FPTT outperforms online approximations of BPTT like OSTL and e-prop,
and enabled a first demonstration of online learning in tasks like DVS-CIFAR10.
When training large convolutional LTC-SNNs with FPTT, excellent performance
is achieved, approaching or exceeding offline BPTT-based solutions using corre-
sponding network architectures – LTC-SNN specific architecture searches may
improve results further.

To achieve efficient and accurate online learning with FPTT, we introduced
Liquid Time-Constant Spiking Neurons (LTC-SNs), where the neuron’s time-
constants are calculated as a learned dynamic function of the current state and
input. When training on various tasks, BPTT failed to converge when applied
to LTC-SNNs on long sequences due to diverging gradients, while FPTT con-
sistently converged. As we speculated, this suggests that FPTT provides for
a more robust learning signal. LTC-SNs maintain binary communication be-
tween neurons, but impose additional calculations to determine the neuron
state. In neuromorphic implementations, LTC-SNs could be implemented as
multi-compartment neurons or require novel spiking neuron model implemen-
tations.

The LTC-SN is inspired by multi-compartment modeling of pyramidal neu-
rons in brains. Pyramidal neurons are known to have complex non-linear in-
teractions between different morphological parts far exceeding the simple dy-
namics of LIF-style neurons [41, 156], where the neuron’s apical tuft may cal-
culate a modulating term acting on the computation in the soma [157] that
could act similar to the trainable Liquid time-constants used in this work. In
a similar vein, learning rules derived from weight-specific traces may relate to
synaptic tags [158, 159] and are central to biologically plausible theories of

96 Training SRNN Through Forward Propagation Through Time

Table 4.6: Performance of SNNs with Izhikevich and Hodgkin Huxley models on DVS-
Gesture dataset. The network structure is same as the network in Table 4.3,
where for the Izhikevich the a and b parameters are trainable and we kept c
and d fixed, for the Hodgkin-Huxley model all neuron parameters were kept
fixed; the network structure and the training-related hyperparameters were
not further fine-tuned.

Frames Izhikevich Hodgkin Huxley
100 84.03% 87.50%

learning working memory [160]. In general, we find that FPTT, unlike BPTT,
can also train networks of complex biologically realistic spiking neuron mod-
els, like Izhikevich and Hodgkin-Huxley models (e.g. for the DVS-GESTURE
task, Table 4.6). These considerations suggest variations of FPTT may be poten-
tial candidates for temporal credit assignment mechanisms in the brain. As a
candidate for biologically plausible learning, the spatial error-backpropagation
employed in FPTT would need to be replaced with a plausible spatial credit
assignment solution, where we anticipate that at least some of the current pro-
posals [161,162] may be compatible. With such local spatial credit-assignment,
FPTT-training of LTC-SNNs can also likely be implemented efficiently on neuro-
morphic hardware.

FPTT also holds promise for network quantization: FPTT uses both (a form
of) synaptic traces in the form of W̄ and the actual weights W , where the
traces are only used for training. One could imagine networks where the two-
parameter sets are each calculated with different quantizations, where W could
potentially be computed with lower precision compared to W̄ . Once trained,
only the lower precision weights W are then needed for inference.

Taken together, our work suggests that FPTT is an excellent training paradigm
for large-scale SNNs comprised of complex spiking neurons, with implications
for both decentralized AI based on local neuromorphic computing and investi-
gations of biologically plausible neural processing.

Acknowledgements BY is supported by the NWO-TTW Programme “Efficient
Deep Learning” (EDL) P16-25, and SB is supported by the European Union
(grant agreement 7202070 “Human Brain Project”). The authors are grateful to
Henk Corporaal for reading the manuscript and providing constructive remarks.

Chapter 5
Network Continual Inference
on Streaming Data

Significance: SNNs, as a more complex type of RNNs, are trained to always
learn temporal and spatial information in the data stream. Besides the data
fragments that the network aims to learn, the time series also contains
many noise fragments. The ideal learning process should be to learn as
much as possible from the data fragments rather than the noise. Attention
mechanisms in the brain wake up the network for learning or inference at
specific moments.

After training, the trained model must be able to accurately perform
the given task over a long period of time. Unlike feedforward networks,
inference RNNs heavily relies on the history of hidden states. This leads
to performance degradation of the network on long sequences, that is,
Challenge 4.

In this Chapter, we transformed the continuous classification problem
on streaming data into a decision making problem. We uses a temporal
intensity of input data as an attention signal to locate data fragments in
the sequence. A brain-inspired decision circuit is also employed to collect
evidence and decide when to reset the network. With the help of the above
methods, the SNNs can maintain their performance for a long time run-
ning. This chapter is based on publication "Attentive Decision-making and
Dynamic Resetting of Continual Running SRNNs for End-to-End Streaming
Keyword Spotting" [163].

98 Network Continual Inference on Streaming Data

Abstract: Efficient end-to-end processing of continuous and streaming signals
is one of the key challenges for AI in particular for Edge applications that are
energy-constrained. Spiking neural networks are explored to achieve efficient edge
Artificial Intelligence (AI), employing low-latency, sparse processing, and small
network size resulting in low-energy operation. Spiking Recurrent Neural Networks
(SRNNs) achieve good performance on sample data at excellent network size and
energy. When applied to continual streaming data, like a series of concatenated
keyword samples, SRNNs, like traditional RNNs, recognize successive information
increasingly poorly as the network dynamics become saturated. SRNNs process
concatenated streams of data in three steps: i) Relevant signals have to be localized.
ii) Evidence then needs to be integrated to classify the signal, and finally, iii) the
neural dynamics must be combined with network state resetting events to remedy
network saturation.

Here we show how a streaming form of attention can aid SRNNs in localiz-
ing events in a continuous stream of signals, where a brain-inspired decision-
making circuit then integrates evidence to determine the correct classification.
This decision then leads to a delayed network reset, remedying network state
saturation. We demonstrate the effectiveness of this approach on streams of
concatenated keywords, reporting high accuracy combined with low average
network activity as the attention signal effectively gates network activity in the
absence of signals. We also show that the dynamic normalization effected by
the attention mechanism enables a degree of environmental transfer learning,
where the same keywords obtained in different circumstances are still correctly
classified. The principles presented here also carry over to similar applications
of classical RNNs and thus may be of general interest for continual running
applications.

5.1 Introduction

Many observational tasks are inherently of an intermittent and continuous na-
ture: while one has to continuously observe surroundings for dangers, the
proverbial tiger is fortunately present most sparingly. In a more applied con-
text, keyword spotting requires a similar continuous, or streaming, environmen-
tal monitoring with relevant stimuli appearing relatively rarely. In each case,
a proper balance has to be found between the false alarm rate (seeing a tiger
where there is none) and the false reject rate (overlooking the tiger).

Continuous online processing of streaming information is a particular chal-

5.1 Introduction 99

lenge in energy-constrained situations such as applications running on battery-
operated devices. Event-based neural networks like spiking neural network are
explored as a means to achieve both low-latency and sparse neural processing,
and Spiking Recurrent Neural Networks (SRNNs) in particular achieve good
performance on sample data at excellent network size and energy. When contin-
ually applied on streaming data however, for example a series of concatenated
keyword samples with or without extended pauses, SRNNs, like traditional
RNNs, recognize successive information increasingly poorly as the network dy-
namics become saturated [69]. For RNNs, including modern transformer-based
variants like the Conformer [164], solutions have been sought in periodically
resetting the internal state of the network, where resetting is typically done
using empirical measures tuned for the task at hand [69].

Here, we take inspiration from biology to dynamically reset compact SRNNs
to process concatenated continuous streams in continually. For this, we intro-
duce an efficient form of self-attention to localize relevant signals, which also
gates information to be integrated into the decision-making circuit to obtain a
classification of the detected event. The actual classification is then used as a
trigger for resetting the SRNN network state.

We show that compact spiking recurrent neural networks trained on single
samples integrated into such extended circuitry can then successfully classify
sequences of concatenated keywords. Moreover, they can do this without signal
buffers or additional post-processing, demonstrating an efficient and compact
end-to-end event-based solution. We also show that the dynamic normalization
effected by our attention mechanism enables a degree of environmental transfer
learning, where the same keywords obtained in different circumstances are still
correctly classified.

Figure 5.1: The model in the experiment learns on well-segmented samples, while in
practice, the model runs continually as decision-making process; note the
pauses in the speech signal where no utterance is present

100 Network Continual Inference on Streaming Data

5.2 Related Work

Current approaches to continuous and streaming keyword spotting include three
independent steps [165]. First, a stream is typically chunked into segments, for
example, using Voice-Activation-Detection algorithms [69]. Second, each seg-
ment is processed using a set of overlapping fixed windows on the signal into
a set of feature maps. Third, the concatenated features maps are processed
to determine a classification label. Single windows can be processed into fea-
ture maps with learned approaches, such as Convolutional Neural Networks
(CNNs), trained on single labeled samples. CNN’s outputs are then converted
into a sequence of labels using, for example, recurrent neural networks (RNNs)
trained on the Connectionist Temporal Classification loss (CTC) [166]. These
RNNs can also be replaced by modern transformers [164, 167] which improve
performance but are still applied to segmented utterances. In each of these
examples, a post-processing stage transduces observed signal sequences into a
labeled sequence.

In [168], a spiking neural network (SNN) version of a CNN is applied to sin-
gle keyword samples, demonstrating competitive performance with the equiva-
lent non-spiking CNN. The WaveSense model [68] is derived from the classical
WaveNet network [169] and is shown to effectively process single samples from
various benchmarks up to 5s in length.

Still, these approaches rely on pre-processing to obtain segments and buffer-
ing to map sequences into labels. For energy-constrained continuous-monitoring
applications, there is a need for continual running end-to-end SNN solutions
that minimize pre- and post-processing and have minimal memory and process-
ing requirements.

5.3 Methods

We are specifically interested in continual online keyword recognition and local-
ization in recurrent spiking neural networks, where the network omits buffering
and only has access to the current information. To achieve this, we turn to a
form of “attention” to help guide the recurrent spiking neural network in local-
izing and classifying utterances compatible with continual running.

5.3 Methods 101

5.3.1 Attentive Spiking Recurrent Neural Networks

Attention has been at the center of current Transformer models, where initially
attention was introduced to learn long-range dependencies on image classifi-
cation and Natural Language Processing (NLP) tasks [170]. In the context of
limited or no buffering, attention in recurrent spiking neural networks only
allows forms of local and causal self-attention without relying on long-term
temporal dependencies. We observe that a straightforward measure of current
signal-variability (Temporal Intensity) resembles a temporally local attention-
like signal with the potential for localizing speech patterns in a sequence.

Figure 5.2: Example of speech audio data and correspond-
ing MFCC figure. The red and green curves cor-
respond to the Temporal Intensity and smoothed
Temporal Intensity measures.

We define a spe-
cific version of Tem-
poral Intensity based
on the Mel-frequency
spectrum representa-
tion of the signal,
which is also the in-
put to the network.
We define a temporal
average over a sin-
gle time-step as µt =
|xt +xt−1|/2 and asso-
ciated signal variabil-
ity as σt = |xt − xt−1|
based on current in-
put xt . The real-time
Temporal Intensity t vart is then derived from µt and σt and rescaled to [0,1]
by the t anh function:

t vart = tanh(ησtµt), (5.1)

where η is a hyperparameter we emperically set to η= 4 in all experiments.
We further define a smoothed Temporal Intensity t var s

t as t var s
t = t var s

t−1+
(1−ϕ)(t vart−t var s

t−1) where ϕ= exp(−1/τt var) determines the smoothness. This
smoothed Temporal Intensity is used to facilitate the process of evidence accu-
mulation along speech as the the curve of t vart tends to be discontinuous (illus-
trated in Fig 5.2). In contrast to advanced attention models, our t var s

t directly
localizes speech patterns in ongoing speech sequences, is parameter free, and
can be computed in an online manner.

102 Network Continual Inference on Streaming Data

The t vart and t var s
t measures are illustrated on several keywords speech

audio samples and corresponding MFCC representation in Fig. 5.2: in the sam-
ples, we see that both measures map closely to the envelope of the signal.

SRNNs. To implement continual running spike-based RNNs, we use adaptive
Spiking Recurrent Neural Networks, SRNNs, as developed in [19], comprised of
adaptive spiking neurons [19,171]. Here, the SRNNs are comprised of an input
layer converting the input spectrum into spikes. This input layer is densely con-
nected to a single recurrent layer, where the t var s

t is also added as an input to
the recurrent layer. The final layer is comprised of leaky integrators to generate
the prediction probabilities, p i

t for the i th class at a timestep t . The structure is
illustrated in Fig 5.4, described as a structure of 512D-(512+1)R-(12/36+1)I,
where the number of output neurons (12 or 36) is task-dependent, and D de-
notes a dense layer, R the recurrent layer, and I the layer of integrators. The
network omits any bias units as they proved detrimental for continual running.
As illustrated in Fig 5.4, the SRNN reads the spectrum row by row at each time
step, where we call each row a frame; the SRNN thus makes an online predic-
tion at each time step.

We train the parameters of the SRNN using BPTT [19], with some modi-
fications. In the continual running model, the SRNN needs to extract a class-
probability label at every timestep. This means that also when learning, the
SRNN needs to assign a label to each timestep. For pre-segmented samples
however, in many cases only the label for the whole segment is given, and while
the actual signal is somewhat centered, it is often flanked by silence or noisy
frames. When trained on such pre-segmented samples, the ASRNN ideally only
learns from the actual signal and not from the silent or noisy flanks. To achieve
this, we introduce an instantaneous Temporal Intensity -gated loss-function be-
tween prediction ŷt and target y for the labeled sample:

lt = loss(y, ŷt)∗ t var s
t . (5.2)

As the Temporal Intensity calculates an envelope of the signal (i.e., Fig. 5.2),
this loss helps the network to learn primarily from actual signal data.

5.3.2 Streaming Decision Making

When a network continually generates class predictions for every frame, the
challenge is to concatenate this sequence of class predictions into a sequence
of predicted labels. Complex methods like the CTC exploit interdependence

5.3 Methods 103

between frames or segments combined with implicit sequence modeling to de-
termine the most likely sequence interpretation. However, in an online setting

Figure 5.3: An example of the different decision-making process on concatenate speech
audio sequence. Top: MFCC spectrum of four concatenated speech utter-
ances. Next is plotted the Temporal Intensity as directly calculated and
framewise classification probabilities pt and resulting classifications (green:
correct label, red: incorrect label). The plot below, ‘Periodic Reset’, demon-
strates the effect of smoothing the Temporal Intensity (t var s

t), the resulting
firing rate (f r) and gated action value (āt), and resulting framewise classifi-
cations given fixed periodic resets. The ‘Dynamic Reset’ plot illustrates what
happens when resets instead are triggered by the decision-making circuit,
and additionally winning actions inhibit other actions. Vertical black arrows
denote the time of resets.

104 Network Continual Inference on Streaming Data

of concatenated keywords and silence/noise parts, labels are independent and
temporally sparse, and the task is more closely related to sequential decision-
making. We take inspiration from neural models of decision-making [172,173],
and introduce a decision-making circuit with dynamic resetting modeled after
the Basal Ganglia brain structure, which is specifically involved in decision-
making and context-dependent gating.

The decision-making circuit is shown in Fig. 5.4, in the grey box: it ac-
complishes action selection by integrating class-probability inputs p i

t for class i ,
where actions correspond to labels. An action is selected when a pre-defined
threshold θ is reached, and results in the temporary inhibition of other actions.
Resetting of the network is triggered when the integrated evidence falls below
the threshold again while the Temporal Intensity signal is also rapidly declining
at the same time (the effect of this latter condition is that in Fig. 5.3, for dy-
namic resetting, the third sample is correctly classified even though initially the
wrong action/label is selected).

Action selection The activity of the action selection system is modeled as a
leaky integrator where a leak time-constant τρ is associated with the typical
duration of each action [173]. In the circuit, the action value ai

t of class i at
time t is computed as:

ai
t+1 = ai

t + (1−ρ)(ui
t −ai

t)

where ui
t =−w−

z I i
t +w+

z

n∑
j ̸=i

I j
t ,

(5.3)

and where the input I t
i = p i

t and ρ = exp(−d t/τρ). As in [172, 173] the balance
between disinhibition and inhibition is chosen as w+

z /w−
z = 1/n, where n is the

number of classes and τρ = 20, chosen to match the average speech length.
To pick up the prediction of the network only on the data, we use a gated

action value as a conditional prediction probability or confidence to determine
when speech is present. The gated action value is calculated as āi

t = tanh(t var s
t ai

t)
for class i . The frame-wise class label for each timestep is derived from the gated
action with minimal value (maximal disinhibited) as well as

zk
t =

1, if k = argmin
i∈1,2,...n

(āi
t)∧ min

i∈1,2,...n
(āi

t) <−θ.

0, otherwise.
(5.4)

where we use a default value θ = 0.3. Note that the same measure can be used
as an indicator for speech/no-speech at time t .

5.3 Methods 105

Action Inhibition. Once an action (class label) is selected, all other classes are
inhibited (where z j

t = 0, j ̸= i) when speech is first detected at time t . Inhibition
is implemented by providing negative inputs to the non-selected action values
in the action selection system: an exponentially decaying inhibitory current is
added at timestep t ′ as follows:

I k
t ′ =

{
pk

t ′ , if zk
t = 1.

−exp
(

t ′−t
τϕ

)
pk

t ′ , otherwise.
(5.5)

where τϕ controls the leaky speed of the inhibition current for un-selected
classes. We empirically set τϕ = 20 to match the average speech length.

Network resetting. To counter the state saturation problem associated with
continual running in RNNs, network state resets are one solution [69, 164],

Figure 5.4: End-to-end decision-making procedure. The Temporal Intensity measures
and MFCC spectrum are continually computed in an online manner. For
each frame t , the smoothed Temporal Intensity and MFCC spectrum are fed
into the SRNN, resulting in class probability outputs p t

j . These outputs are

integrated in the decision-making action value nodes at
j and associated gated

values āt
j . Once a threshold θ is reached, the most activated action is selected

and the other action values are suppressed. Once the action value for the
selected action falls below a set threshold again, at the end of the utterance
typically, the label is assigned and the network state is reset. The decision
duration T̂ i = t i

s , t i
s+1, ..., t i

r represents the period between the starting time
of decision collection t i

s and the reset timestep t i
r . acci

f is the framewise

accuracy and acci
p is the prediction accuracy for the sample i .

106 Network Continual Inference on Streaming Data

where the challenge is to determine when to reset the network state. Here,
we reset the network as a function of when a decision is made and when the
following empirically derived criterion is satisfied:

• min(āi
t) <−θ

• t var s
t is decreasing and t var s

t − t var s
t−1 < 0.1.

We see the effect of this condition in the ‘Dynamic Resetting’ bottom row in
Fig. 5.4, where the initially incorrect framewise classification in the third sample
does not result in a reset, and the sample is correctly classified according to
the accp measure. Resetting is only applied in the continual running inference
phase and not during training.

Metrics. For network accuracy, we measure two metrics: the framewise accu-
racy acc f and the prediction accuracy accp .

The framewise accuracy for a single sample i is computed as the average
accuracy during the network decision process as well:

acc i
f =

1

t i
r − t i

s

t i
r∑

t=t i
s

δ(ŷ i
t , y i), (5.6)

where ŷ i
t is the prediction at timestep t ∈ T̂ i , y i the correct label for the sample

i , and δ(ŷ i
t , y i) the Kronecker delta. The average framewise accuracy acc f is

computed as the average over all samples, 1
N

∑N
i acc i

f .

For a sample i , the prediction accuracy acc i
p is calculated as:

acc i
p = δ(ŷ i

tr
, y i) iff |T̂ i | > 10, (5.7)

where T̂ i represents the evidence collection duration calculated as the differ-
ence between starting time t i

s and reset time step t i
r in sample i , as in Fig. 5.4.

The average prediction accuracy over N samples accp is calculated as accp =
1
N

∑N
i acc i

p .

Summary In Algorithm 1, we illustrate the detail of the decision-making pro-
cedure, including network initialization, network prediction computation, ac-
tion value calculation based on inhibitory input, dynamic resetting, and metric
evaluation.

5.3 Methods 107

108 Network Continual Inference on Streaming Data

5.4 Experiments

We trained our SRNN on both single training samples from the Google speech
dataset v1 (GSCv1) or v2 (GSCv2) [94].

5.4.1 Datasets

We trained a conventional GRU network with an equal number of parame-
ters augmented with the same Temporal Intensity -gating and decision-making
structures to provide baseline performance – the GRU network was made up
of two densely connected GRU layers with 256 units each. We evaluated these
networks by training them to classify all 10 keywords in the GSCv1 and 35
keywords in the GSV2 dataset. Each dataset also contains an additional class
for “unknown”, and GSV1 also contains a “silence” class. In GSCv1, there
are 22,236 training samples and 3,081 test samples, GSCv2 dataset comprises
36,923 training samples and 11,005 test samples. The raw audio is pre-processed
via MFCC bandpass filters: each audio sample is passed through 40 2nd order
bandpass filters distributed along the Mel-scale between 20Hz and 4kHz. We
rescale the response of 40 bandpass filters at each timestep by dividing by the
standard deviation across the spectrum. Each keyword sample is converted to
a sequence of 101 timesteps in a 40-by-3 matrix representing the spectrum at
each time step.

Direct, single sample performance is measured on the respective test datasets.
We evaluate the continual running of both the SRNN and GRU on long se-
quences comprised of concatenations of keywords. To evaluate the network
performance on single keyword prediction, we define prediction accuracy accp

by comparing the prediction and the target when the speech pattern disappears
and the network is reset (see also Fig. 5.4). We also measure the network per-
formance on long sequences by comparing average frame-wise accuracy acc f as
measured over the whole sequence length. To evaluate the networks’ robustness
to noise, we applied background noise to each speech audio. Different levels of
synthetic noise were applied on the first 10 filter bandpass filters. The noise was
generated as Gaussian, r N (0,1) where r is the noise ratio.

5.4.2 Results

Performance on single samples. We evaluated the networks on single speech
audio samples. For this, we evaluated the GRU network including the Tempo-
ral Intensity gating and the decision-making circuit. Then, we compared it to

5.4 Experiments 109

Figure 5.6: Single sample performance. a) Classification accuracy accp and average
framewise accuracy acc f for various baseline networks for GSCv1, and b)
for GSCv2. c) average network activity (spike probability per timestep) for
GSCv1 and d) GSCv2.

SRNN networks with or without Temporal Intensity gating. Results are shown
in Fig. 5.6: we find that the SRNN with Temporal Intensity gating slightly out-
performs the other networks in terms of classification accuracy, including the
GRU network, for GSCv1 (Fig. 5.6a) and GSCv2 (Fig. 5.6b). Compared to the
literature, in [19] ASRNNs achieve 92.14% on GSCv1, slightly better than our
dynamic SRNN (89.98%), while the GSCv2 accuracy (87.31%) represents new
State-of-The-art (SoTa), exceeding the 79.6% reported in [174].

Noting average activity in the network (Fig. 5.6c,d), we see that using Tem-
poral Intensity gating lowers the required number of spikes by some 50% for

Figure 5.5: Effect of threshold θ on frame-wise accu-
racy and % of missing words. The calcu-
lation of framewise accuracy only accounts
upon detected words.

both GSCv1 and GSCv2
tasks. We also find that
68% of spikes in the net-
works are on average gen-
erated during the “active”
parts where Temporal In-
tensity exceeds the signal
threshold θ.

Effect of Threshold θ.
The parameter θ distin-
guishes between noise/quiet
and speech patterns. Smaller
θ will result in noise be-
ing more likely treated as
part of the speech pattern,
while larger θ will cause

110 Network Continual Inference on Streaming Data

Dataset Model T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128

GSC V1

GRU raw output 84.31 60.96 47.72 41.37 40.67 37.86 27.98 35.10
GRU Dynamic Reset 84.31 84.45 83.28 83.74 84.02 82.84 83.07 82.86
SRNN raw output 83.85 59.54 40.10 27.10 21.28 16.82 15.42 15.03
SRNN periodicc reset 83.85 83.31 83.07 83.05 82.95 82.98 82.92 82.84
SRNN action selection
with dynamic resetting 84.10 84.09 83.34 83.09 83.03 82.77 82.99 82.88

GSC V2

GRU raw output 80.82 55.25 44.46 39.95 37.59 35.73 35.30 33.02
GRU Dynamic Reset 80.82 79.58 80.11 79.46 79.77 79.85 79.94 79.82
SRNN raw output 79.39 48.53 31.45 21.58 15.62 13.49 12.24 11.70
SRNN periodic reset 79.42 79.38 79.03 79.02 79.31 78.98 78.93 78.88
SRNN action selection
with dynamic resetting 81.73 80.54 80.36 80.12 79.98 80.39 80.05 80.35

Table 5.1: Average frame-wise accuracy acc f when min āi
t < −θ for different concate-

nated sequence lengths.

the network to not identify
more words in the recogni-
tion process. As such θ directly controls the false positive and false negative
rates. In Fig. 5.5, we plot how θ influences keyword detection as measured in
terms of average framewise accuracy acc f . We see that indeed, as θ increases,
the number of missed words grows, and accuracy improves.

Continual running: long sequences. The same networks are also eval-
uated in the continual-running setting, carrying out continuous inference on
speech sequences over longer periods of time. In Table 5.1, we note the SRNN
and GRU networks’ performance on concatenated sequences of commands, rang-
ing from a single keyword to 128 concatenated keywords from either GSCv1 or
GSCv2. For easy comparison, we report average frame-wise accuracy acc f when
t var s

t > θ for raw output of the network, networks with periodic resetting, and
networks with dynamic resetting.

We make several observations from Table 5.1: first, without resetting both,
GRU and SRNN networks saturate, and recognition performance suffers dra-
matically. Including a periodical reset resolves this issue for the SRNN network
(and also for the GRU network, not shown). We then see that our dynamic
resetting scheme based on the action selection circuit provides essentially equal
(GSCv1) or even slightly better (GSCv2) accuracy.

We also find that with the dynamic resetting mechanism, adding longer si-
lences between concatenated speech samples does not affect the framewise clas-
sification accuracy; an example of such added silence is shown in Fig. 5.7.

To further quantify the quality of dynamic resetting, we calculate the editing

5.4 Experiments 111

�

Figure 5.7: Effect of long salience on SRNN. Label “-1” denotes the added silence audio
patches.

distance [175], both for the GRU and for the SRNN, on concatenated sequences
of samples that are correctly classified when presented as single samples. In
Fig. 5.8a, we plot the average number of editing operations needed when eval-
uating a sequence of 1000 concatenated samples on GSCv2: we find that for
both GRU and SRNN, the dynamic reset outperforms the fixed periodic reset
(159 vs 158 for GRU and 112 vs 70 for SRNN); we also find that the SRNN
network substantially outperforms the GRU network (70 vs 158 operations).

Temporal Intensity compensates distribution shift

While typical speech benchmarks are comprised of clean samples recorded un-
der essentially ideal conditions, new recordings processed under different cir-
cumstances may result in a shifted frequency distribution leading to degraded
performance. For example, in [94] a standard CNN model was trained on ei-
ther of the two versions of GSC datasets and then assessed on both datasets.
Depending on the type of CNN, performance was more or less degraded when
a network trained on one dataset was evaluated on the other.

Here, we optimized RNNs on either GSCv1 and GSCv2, and evaluated their
performance on both datasets. As shown in Fig. 5.8, we find that standard GRU
networks, not gated by Temporal Intensity, show substantial susceptibility to
distributions shifts, as average performance drops by 9% (GSCv1 vs. GSCv2)
and 7% (GSCv2 vs. GSCv1). For SRNN networks not gated by Temporal Inten-
sity, we find a similar issue; SRNNs with Temporal Intensity -based attention,

112 Network Continual Inference on Streaming Data

however, prove to not be sensitive to distribution shift and maintain accuracy
(GSCv1 vs. GSCv2) or even improve accuracy (GSCv2 vs. GSCv1, due to the
larger training dataset).

5.5 Discussion

We demonstrated how the inclusion of a local signal-detection measure com-
bined with brain-inspired decision-making circuitry allows compact and high-
performance SRNNs to be applied to continual running scenarios. For signals
comprised of concatenated keywords, this results in constant-accuracy contin-
ual running. Importantly, Temporal Intensity-gating resulted in much reduced
average activity in the SRNNs, potentially improving energy consumption. Mea-
sured in terms of editing distance, we find that dynamic resetting results in
substantially better accuracy, where the SRNN networks outperform GRU net-
works. We also showed how the decision-making criteria enable the trading-off
of false alarms versus missed keywords. A next step will be to evaluate SRNNs
on real-world continual running scenarios, which we omitted for lack of a cur-
rent suitable public benchmark to use and compare to.

We observed furthermore that the Temporal Intensity-gated SRNNs are in-

GRU SRNN

Av
g
Ed
it
Op

t

159

112

158

70

(a) Average edition distance
 1000 words sequence

Periodic
Dynnamic

GRU SRNN
 w/o tvar

SRNN
w/ tvar

ac
cv

2 p
/a
cc

v1 p

91%

97%

99%

(b) Train on GSC V1;
Test on GSC V2

GRU SRNN
 w/o tvar

SRNN
w/ tvar

ac
cv

1 p
/a
cc

v2 p

93%
94%

108%

(c) Train on GSC V2;
Test on GSC V1

Figure 5.8: (a) Average editing distance and (b,c) distribution shift robustness computed
as percentage of accuracy on the original distribution.

5.5 Discussion 113

sensitive to a distribution shift, as measured in terms of environmental transfer
performance from GSCv1 to GSCV2 and vice versa. We find this observation
somewhat curious, but as noted, similar observations have been made for CNN
architectures where some architectures are more or less susceptible to distribu-
tion shift.

The absolute classification performance achieved by the SRNN networks is
compelling and approaches or exceeds state-of-the-art for SNNs. Still, we be-
lieve that the accuracy of the SRNNs can likely be further improved by, for
instance, replacing the MFCC features with custom learned ones [176], and op-
timizing circuit parameters like reset intensity, decision thresholds, and action-
selection triggered via lateral inhibition for class specificity. Furthermore, more
complex SRNNs can additionally improve sample recognition rates [19], poten-
tially at the expense of increased computational complexity.

Our results open new possibilities in the design of always-on keyword-spotting
devices such as the one presented in [177]. This device exploits switched ring
oscillators for generating event-based frequency outputs from audio streams.
Today, these outputs are processed in a frame-based way using a GRU network.
By replacing the frame-based GRU network with SRNNs that directly process
event-based features, it will be possible to compute on-demand on the streamed
frequency output features, thus further reducing the overall system’s power and
latency [19] while increasing accuracy.

Chapter 6
Discussion & Research
directions

SNNs are simplified models of biological neural networks that elegantly fill part
of the gap between biological neural networks and ANNs. Thus, SNNs, like the
human brain, should exhibit highly accurate performance with low energy con-
sumption when applied to complex tasks. My research shows we are now get-
ting closer to constructing such SNNs. Here, I review each of the challenges pre-
sented in Chapter 1, discuss the contributions and limitations of our approach
to solving each challenge, and examine possible future research directions.

6.1 Challenge 1: Discontinuity of the spike gener-
ation function

The spike generation function as an essential component of neuronal dynam-
ics and is nonlinearly non-differentiable. This non-differentiability cannot be
bypassed during the gradient-based training of SNNs. A possible solution to
this challenge is surrogate gradients, which use a function of membrane volt-
age as an approximation of binary spikes’ gradient information. Compared with
other approaches, this approach allows more accurate gradient information to
be computed and transmitted in the BP of multilayer SNNs. Surrogate gradients
are currently widely used in gradient-based network optimization algorithms
and have achieved promising results in various tasks [67,77,134,139,178,179].

116 Discussion & Research directions

In Chapter 2, we introduced a new surrogate gradient, the Multi-Gaussian
gradient, inspired by a sigmoid-style saturating activation function, the dSilu.
As with dSilu, we also find that the negative part of the gradient helps to im-
prove the accuracy and, in SRNN, the sparsity. We shown this activity-regularizing
surrogate gradient with recurrent spiking networks of tunable and adaptive
spiking neuron obtains State-Of-The-Art performance for SNNs, and outper-
forms that of classical recurrent neural network.

Instead of these surrogate gradient-based solutions, we can also implement
some gradient-free or robust gradient-based update algorithms to eliminate the
impact of the gradient shape on the SNNs’ performance.

• Event-based algorithms such as the STDP algorithm [12] and its vari-
ants [74, 75] have shown promise for network training. However, these
approches face some difficulties in training: they require a very long sim-
ulation time for training, and the precision of the gradients provided by
their updating mechanism is insufficient to train deep SNNs. However,
such algorithms are attractive for on-chip learning. Moreover, we can ac-
complish more accurate, more biologically plausible, and more hardware-
friendly training by combining the advantages of the STDP and FPTT al-
gorithms into approaches such as global–local learning [180].

• We can also use simplified gradients on network optimization algorithms
in the BP framework. Training with simplified gradients such as the direc-
tional gradient [181] and random gradient [182, 183] can be described
for SNNs in future studies.

• We can perform derivative-free network optimization for SNN training
by applying algorithms such as the parametric search algorithm [184,
185], the particle swarm optimization algorithm [186], or the evolution-
ary learning algorithm [187, 188]. However, these algorithms consume
more computational resources than other algorithms in optimising large-
scale neural networks, and achieving the desired model accuracy is diffi-
cult.

The spike generation function gives neurons an efficient way to propagate
information between layers, but it also brings some errors in the gradient calcu-
lation. We can use the surrogate gradient method to solve this problem reason-
ably directly, but the approximation error continues accumulating if the BPTT
algorithm is applied. We can also use derivative-free algorithms and event-
based STDP algorithms to bypass gradient computation on spikes in SNN op-

6.2 Challenge 2: Cumbersome gradient flow 117

timization. Alternatively, we can optimise an existing gradient computation
circuit to reduce the effect of surrogate gradient errors on network training.

6.2 Challenge 2: Cumbersome gradient flow

Compared with RNNs, the complex neuron model in SNNs endows neurons with
more advanced memory capabilities but also leads to more complex gradient
computation paths in BP in the time dimension.

6.2.1 Offline learning

We describe the training of SNNs with offline learning updates in Chapters 2 and
3, which results in excellent network performance on various tasks. However,
the constraint of unfolding the chain rule over the time dimension is invariably
present in the BPTT algorithm. This exponentially increases the risk of gradi-
ent explosion in network training if the sequences become long or the models
become deep. Although this can be addressed by truncating, simplifying, or
sparsifying the gradient computation process to reduce its effect and accelerate
training, these methods do not fundamentally solve the problems encountered
when training SNNs in an offline learning framework. As we demonstrated in
Chapter 3, the Truncated BPTT, which always reduces the training time and
improves the sparsity of the model .

In the BPTT algorithm framework, the averaged weight changes over all
time-steps of samples in a batch are applied for weight updating. However,
this BP uses a large amount of computational resources for the optimization
of SNNs. In contrast, the sparse spike gradient approach [189] uses a light
updating method, which only renews the synaptic strength of the connections
with a spike. However, this approach can only complete learning when spikes
flow into a network, so the stability of its algorithm needs further investigation.

6.2.2 Online learning

The network optimization in our studies has usually been performed in the
BPTT algorithm framework. In this framework, a network is updated based on
the weighted average of all examples at all moments. This approach is biologi-
cally implausible but effectively optimizes a network with the support of a vast
amount of data. In addition, we have applied an online updating algorithm –
the forward propagation through time (FPTT) algorithm – to train SNNs. Unlike

118 Discussion & Research directions

the BPTT algorithm, the FPTT algorithm updates weights based on the neuronal
membrane potential values at each moment. My work suggests that FPTT is an
excellent training paradigm for large-scale SNNs comprised of complex spiking
neurons. FPTT intuitively provides a more robust and efficient gradient approx-
imation for spiking recurrent neural networks than BPTT, as FPTT simplifies the
complex gradient computation path in SNNs. This potentially reduces the risk
of gradient vanishing or explosion during the training, resulting in the ability to
train on longer sequences.

FPTT enables the neurons in a network to renew their connection weights
without delivering any signal (spike) to the next neuron. This is different from
the updating mechanism of biological neurons, which only adjusts synaptic
strength when a spike is emitted [12].

Online algorithms can greatly simplify the gradient calculation path and thus
serve as a more biologically plausible solution than the off-line methods for
effectively solving these problems. Existing online learning algorithms such as
the e-propagation algorithm [77], the STDP algorithm [75], and the DELLC
algorithm [155] are excellent for training networks on long sequences but are
challenging to apply to large network models. However, the FPTT algorithm
breaks the chain of the gradient computation in the time dimension, such that
the complex computational loop of neurons is no longer an obstacle to training.
Accordingly, with the help of the FPTT algorithm, we showed that we can train
more complex neurons and larger network models than was previously possible.

However, the FPTT algorithm could be improved in several ways, such as
those described below.

• In online learning (the FPTT algorithm), we could use a spike-triggered
weight update similar to [189] by defining

∂st

∂ut
= f̂ ′(ut) → f̂ ′(ut)st .

In this way, we can create a sparse BP path that only updates the weights
of active synapses, such that neuron spikes dynamically truncate the com-
putational graph. This can also reduce the risk of gradient vanishing and
explosion in network training.

• The FPTT algorithm requires an instantaneous loss for gradient calcula-
tion and parameter updates at each moment. In reality, however, the
instantaneous desired output is not accessible. Theoretically, a network
should be updated only when the gradient information is accessible. The

6.3 Challenge 3: Memory 119

gradient information is thus derived from comparing the network output
and the desired output in the BP framework. In seq2seq [190] or con-
trol tasks [52], immediate losses are available to the network, and so the
FPTT algorithm can be applied directly to network training. However, this
is not be suitable for tasks that provide labels only at the end of the se-
quence, as FPTT learning in supervised learning requires labels at each
moment. An effective solution to this problem is for a network to per-
form self-supervised or unsupervised learning when no target information
is available and then run supervised learning to assign the cluster or rep-
resentation when the labels are accessible.

• Next, a network is better trained with more precise labels than with gen-
eral labels in supervised learning tasks. In Chapter 4, the same target
labels are given for each moment in the input sequence. This process in-
evitably marks some noise fragments as data to be learned. Thus, we can
apply the intensity metric proposed in Chapter 5 to determine how much
the network will learn from each moment to obtain more accurate labels
for learning.

• In addition, the parameter updating process performed at each moment
requires a spatial gradient BP calculation, so the FPTT algorithm is local
in time but not in space. In this case, feedback alignment algorithms, such
as random feedback weights [182], DFA [191], and LocoProp [192], can
be used to help the FPTT algorithm become a truly local online network
learning algorithm. Similarly, the synthetic gradient [193] approach and
its variants [194, 195] can be used to break the chain of spatial gradi-
ent computation. Alternatively, a BP network can be defined to generate
gradient information for each layer.

6.3 Challenge 3: Memory

SNNs are a type of RNN with more complex loops, which means that SNNs
have inherently larger models than traditional RNNs. This is reflected by the
memory consumption of SNNs increasing linearly as the length of a sequence
increases and as a model becomes larger and deeper. In an offline training
framework, the memory costs of SNNs are linearly greater than those of RNNs.
However, by using online learning algorithms, the effect of sequence length on
SNN memory consumption can be eliminated. Thus, after breaking the mem-
ory limit with the FPTT algorithm, we can train SNNs as feedforward networks

120 Discussion & Research directions

on sequences of arbitrary length with a constant memory consumption, which
provides computational possibilities for future optimizations of large SNNs. The
increased memory efficiency of FPTT allows for training much larger SNNs as
was previously feasible, as we demonstrated in the SPYv4 network for object de-
tection (Chapter 4). In the experiment, we note that the FPTT implementation
is unoptimized in the used version of PyTorch, where for instance the memory
allocated to historical hidden states is not de-allocated for FPTT, resulting in
unnecessary large memory use, and low-level optimized FPTT implementations
should further reduce memory to near constant.

6.4 Challenge 4: Continual running

A trained model eventually runs continuously on a data stream, rather than for
a fixed period. Feedforward networks can be applied directly to a data stream
without considering performance degradation. However, the performance of
RNNs is heavily dependent on their hidden states, which results in performance
degradation when a network is run continuously for an extended period.

We have found that resetting a network can help to alleviate the perfor-
mance degradation of RNNs during continuous inference. However, it is crucial
to determine when to reset. To solve this problem, in Chapter 5, we use the
temporal intensity of the input data as a real-time attention signal to assist the
network in locating the data features. Inspired by Basal Ganglia structure in
the brain, a decision circuit is also applied to collect evidence, which is used
to decide when to make a final decision and when to restart the network. This
approach can significantly reduce the performance decay of SNNs during con-
tinuous inference.

Nevertheless, this solution could be improved in the following ways.

• In Chapter 5, we use a data feature-based attention approach to locate
data features, which are then used to make decisions. However, atten-
tion can be categorised into two directions based on function: bottom-
up attention, which is attention to external stimuli, especially those that
contrast with the background and are objective; and top-down attention,
which is internal attentional guidance based on a priori knowledge, plans
and goals. Here, we only apply bottom-up attention. Similarly, we can
design top-down attention to dynamically decide when to activate a sub-
network and when to make decisions based on the state of deep layers’
activities. In future, we can use this more complex attention loop to solve

6.5 Outlook 121

this challenge. Alternatively, we can allow a network to wake up layer-by-
layer, based on the input data features, to complete recognition.

• Resetting the network in a simulation is easy, but repeated resets during
a hardware deployment consume a large amount of energy. Thus, we can
instead suppress or clear the state of a network by entering a negative
input to the network to perform the reset function.

• The decision-making process is not only involved in the continuous infer-
ence process on serial inputs, but there is also the problem of deciding
when to learn in continuous learning. Thus, the decision process of a net-
work should contain multiple stages, such as deciding when to wake up
the network, deciding which part of the network to wake up, deciding
when to make a prediction, deciding when to learn new knowledge, and
deciding when to restart the network. The bottom-up and top-down atten-
tion mechanisms play different functions in these decision processes, and
this idea has been applied in recent sparse models. The dynamic routing
mechanism based on bottom-up and top-down attention will help large
models to accomplish multiple tasks by using the part of the sub-network
that is awakened for processing specific data.

This completes the review of the four significant challenges encountered in
the training of SNNs, as presented in Chapter 1.

6.5 Outlook

Our contributions are significant for subsequent research on both training and
deployment of large-scale SNN models.

We showed how multi-layered recurrent network structures, trained with
BPTT and its variants, are able to achieve new state-of-the-art performance for
SNNs on sequential and temporal tasks. When expressed in terms of compu-
tational operations, they demonstrate a decisive theoretical energy advantage
of one to three orders of magnitude over conventional RNNs. This advantage
furthermore increases for more complex tasks that required larger networks to
solve accurately. To demonstrate the performance of large-scale models, we in-
troduce FPTT into SNN training. Our work suggests that FPTT is an excellent
online training paradigm for large-scale SNNs comprised of complex spiking
neurons, with implications for both neuromorphic computing and investigations
of biologically plausible neural processing.

122 Discussion & Research directions

At the same time, our results open new possibilities in the design of always-
on keyword-spotting devices such as the one presented in [177]. The principles
presented here also carry over to similar applications of classical RNNs and thus
may be of general interest for continual running application.

On the basis of our work, I believe that SNNs will be able to obtain compet-
itive accuracy with ANNs on large-scale networks soon, and can continuously
operate on edge devices with high accuracy and much lower power consump-
tion than ANNs.

List of Publications

The following articles were published in the process of this research:

• Chapter 2 corresponds to the article, "Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks", by Bojian
Yin, Federico Corradi and Sander M. Bohté, published in Nature Machine
Intelligence 3, 905-913 2021. An early work has published in International
Conference on Neuromorphic Systems 2020 (ICONS2020), as "Effective and
efficient computation with multiple-timescale spiking recurrent neural net-
works", by Bojian Yin, Federico Corradi and Sander M. Bohté.

• Chapter 3 contains results published as "Real-time classification of LIDAR
data using discrete-time Recurrent Spiking Neural Networks", by Anca-Diana
Vicol, Bojian Yin and Bohte, S.M. in International Joint Conference on
Neural Networks, 2022 (IJCNN2022).

• Chapter 4 includes material form the paper "Accurate online training of
dynamical spiking neural networks through Forward Propagation Through
Time", by Bojian Yin, Federico Corradi, Sander M. Bohté. This paper was
accepted and will be published on Nature Machine Intelligence.

• Chapter 5 presents the results of "Attentive Decision-making and Dynamic
Resetting of Continual Running SRNNs for End-to-End Streaming Keyword
Spotting" by Bojian Yin, Qinghai Guo, Henk Corporaal, Federico Corradi
and Sander M. Bohté, published in International Conference on Neuromor-
phic Systems 2022 (ICONS2022).

Following papers are not included in this thesis:

• Bojian Yin, H Steven Scholte, Sander M. Bohté. "LocalNorm: Robust Image
Classification Through Dynamically Regularized Normalization". Published
in International Conference on Artificial Neural Networks 2021 (ICANN2021).

124 List of Publications

• Bojian Yin, Marleen Balvert, Rick AA van der Spek, Bas E Dutilh, Sander
Bohté, Jan Veldink, Alexander Schonhuth. "Using the structure of genome
data in the design of deep neural networks for predicting amyotrophic lat-
eral sclerosis from genotype". Published in Intelligent Systems for Molecular
Biology and European Conference on Computational Biology 2019 (Bioin-
formatics).

Summary

Efficient and Accurate Spiking Neural Networks
Deep learning techniques have greatly improved advances in object detec-

tion, speech recognition, robotics, and many other areas. However, the success
of deep learning is achieved by deep neural networks trained with extensive
training examples and massive computational resources. In contrast, the brain
allows us to perform complex tasks and learn abstract concepts with ultra-low
energy consumption and a limited number of samples. Inspired by detailed
modelling of biological neurons, spiking neural networks (SNNs) have been
studied as biologically plausible models for high-performance neural computa-
tion. Sparse and binary communication between spiking neurons has the poten-
tial to enable powerful and energy-efficient neural networks. Current learning
algorithms of SNNs are limited to small networks of simple spiking neurons
and modest-length temporal sequences. Firstly, the performance of SNNs, how-
ever, has remained lacking compared to artificial neural networks (ANNs). Sec-
ondly, offline methods impose high memory requirements, have difficulty train-
ing large-scale and complex neuron models, and are incompatible with online
learning.

This thesis contributes to the effective training of large-scale, energy-efficient,
and accurate spiking neural networks that are applicable to complex tasks. It
presents four significant challenges for the training of SNNs and proposes cor-
responding solutions in each chapter.

We first introduced how an activity-regularizing surrogate gradient incorpo-
rated with recurrent networks of tunable time constant and adaptive spiking
neurons, ASRNN, yields state-of-art for SNNs on challenging benchmarks. We
also demonstrate that SNNs trained by offline algorithms and their variants

126 Summary

are theoretically one to three orders of magnitude more computationally effi-
cient compared to advanced RNNs with competitive performance. Second, we
train our ASRNN on an open LIDAR labeled dataset and propose specific opti-
mizations, including various input encoding, sparse connectivity and truncated
BPTT. Next, we show how recently developed "Forward Propagation Through
Time" (FPTT) combined with novel Liquid Time-Constant spiking neuron pro-
vides a more accurate solution for online training large-scale SNNs with more
complex neuronal models on longer sequences. We illustrate online learning of
long sequences while outperforming current online methods and approaching
classical offline methods on temporal classification tasks. The efficiency and ro-
bustness of the new online algorithm enable us to train deeper networks and
more complex neurons. As a result, we demonstrate for the first time the possi-
bility of directly training large-scale spiking neural networks (SPYv4) for object
detection. We find that FPTT can also train the network of more biologically-
detailed models like Izhikevich and Hodgkin-Huxley models. Finally, we present
the combination of temporal attention and brain-inspired decision circuits that
enable precisely continual inference in the stream of signals. The principles we
proposed in this work also extend to similar RNN applications and may be of
general significance for applications in continual running.

The significance of this study is that it improves SNNs performance by in-
troducing a new training paradigm for multi-scale SNNs, and provides perfor-
mance guarantees for later deployment on neuromorphic hardware.

Acknowledgments

In the snap of a finger, after four years of a PhD, I finally got here by working all
the way. I have met many people want to thank along the way. We have fought
with the COVID and have stressed about the papers.

First, I would like to thank Sander M. Bohté for his guidance in research
throughout my PhD. Our adjacent offices facilitated the breakout of new inspi-
ration and ideas with high-frequency discussions. Every meeting started with a
summary of the recent work and ended with a schedule of subsequent works.
These discussions helped me to correct research direction promptly and prac-
tice new ideas quickly. A wealth of knowledge, an active mind, and keen insight
from Sander enabled me to clearly understand the research problem, clarify the
research direction, and broaden research ideas. Most importantly, he taught
me that for a PhD, I should have a piece of wide-ranging knowledge and, more
importantly, a focused perspective on research and a literary taste.

I would also like to thank Federico Corradi for his research ideas from a hard-
ware implementation standpoint. During the discussions with him, I learned
more about the demands of industry and the urgent problems that need to be
solved. His extensive experience with hardware implementation has dramati-
cally enriched my horizons.

I gratefully knowledge the DEL program, especially imec, who sponsored my
PhD and provided the internship opportunities. Thanks to Henk Corporaal and
Sander Stuijk for helping me to complete PhD project. Of course, thanks to all
my colleagues at CWI and members in Machine Learning group for tolerating
my lack of communication when working. I also thank CWI for providing me
with comfortable research and office environment.

My sincere thanks to Giacomo Indiveri, Elisabetta Chicca, Friedemann Zenke,
Guido De Croon, Terrence C. Stewart, Sebastian Otte, Emre Neftci, Manolis
Sifalakis, Jesse Hagenaars, Sherif Eissa, Qinghai Guo and Yansong Chua, I have

128 Acknowledgments

significantly benefited from the discussions with all above. In addition, there
was the Capo Caccia neuromorphic summer school and the like-minded people
I met there.

Thank you to my friends, Wen Tao and Xue Jing, for happily enjoying the
few social life I have. Last but not least, great thanks to my wife (Chen Xi), my
parents and relatives and friends for your unconditional and unlimited love and
support.

Bojian Yin
Amsterdam, Oct 2022

129

Appendix A: Multi-timescales Spiking Recurrent Neu-
ral Networks

task ECG SHD SSC GSC SMNIST PSMNIST SoLi TIMIT
seq length 1301 250 250 101 784 784 40 500

time constant

τm1 (20;.5) (20;5) (20;5) (20;5) (20;5) (20;5) (20;5) (20;5)
τad p 1 (7;.2) (150;10) (150;50) (150;50) (200;50) (200;50) (20;5) (200;5)
τm2 (20;.5) (20;5) (20;5) (20;5) (20;5) (20;5) (20;5) (20;5)
τad p 2 (100;1) (150;10) (150;50) (150;50) (200;50) (200;50) (20;5) (200;50)
τm3 - (20;5) (20;5) (20;5) (20;5) (20;5) (20;5) (3;1)
τad p 3 - - - - (200;50) (200;50) - -

learning rate 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 2e-2 1e-2
Loss NLL CE CE CE CE CE NLL CE
minibatch size 64 64 32 64 256 256 128 16
epochs 400 20 150 70 300 300 150 200
lr decay .5per50 .5per20 .5per10 .75per20 .75per50 .5per100
lr decay type Step Step Step Step Linear Linear Step Step

Appendix A Table A1: Details of parameters used for initialization and optimization
for each task. Time constants refer to successive layers in the ar-
chitecture; the layer output is last numbered layer – the numbers
between brackets denote the mean and std used for initializing
the time constants with Gaussian distribution N (µ;σ) where the µ

is the mean of the time constant and σ is std. LIF non-spiking out-
put layers use only the τm parameter. For the Loss, NLL denotes
negative log-likehood and CE cross-entropy. The learning rate de-
cay schedules denote the amount of decay (multiplicative factor)
and the epoch when the decay is applied (in case of Step decays);
for SMNIST and PSMNIST, a linear decay to zero is applied.

130 Acknowledgments

Task Method Accuracy Energynn/s Energy ratio Error ratio Efficiency

ECG-qtdb

Adaptive SRNN 85.9% 325.7 1x 1x 1x
LIF SRNN 75.5% 179.9 .55 x 1.67x .91x
RELU SRNN 86.4% 5784.6 17.8x .93x 16.5x
LSTM 78.9% 20422.8 62.7x 1.43x 89.6x
GRU 77.3% 15400 47.2x 1.54x 72.7x
Vanilla RNN 74.8% 9597.6 29.5x 1.71x 50.5x
Bidirectional LSTM290 80.76% 563580 1729.9x 1.31x 2266.2x

SMNIST
Adaptive SRNN 98.7% 8250.3 1x 1x 1x
RELU SRNN 98.99% 487623.8 59.1x .74x 43.4x

PSMNIST
Adaptive SRNN 94.32% 7775.1 1x 1x 1x
RELU SRNN 93.47% 487623.8 62.7x 1.1x 69.0x

SHD

Adaptive SRNN 87.81% 3515.7 1x 1x 1x
RELU SRNN 88.93% 442097.2 125.8x .91x 114.5x
Bidirectional LSTM 87.2% 3468215.52 986.5x 1.05x 1035.8x
CNN [92] 92.4% – –x –x –x

SSC
Adaptive SRNN 74.18% 10154.1 1x 1x 1x
RELU SRNN 74.36% 2373918. 234.0x .99x 231.7x
LSTM [92] 73.1% – –x –x –x
CNN [92] 77% – –x –x –x

SoLi
Adaptive SRNN 79.8% 13,804 1x 1x 1x
Vanilla RNN 63.6% 4101324.8 297.1x 1.80x 524.8x
GRU 79.20% 6580531.2 476.7x 1.03x 491.1x
LSTM 79.99% 8360972.8 605.7x 0.99x 599.6x
RELU SRNN 79.8% 3283950.9 237.9x 1.x 237.9x

TIMIT
Adaptive SRNN 66.13% 10626.8 1x 1x 1x
RELU SRNN –% 11861974 175.2x –x –x

GSC
Adaptive SRNN 92.12% 4120.3 1x 1x 1x
RELU SRNN –% 11861974 167.5x –x –x
CNN [87] 92.4% 80600 19.6x 0.96x 18.8x

Appendix A Table. A2: Performance and relative energy consumption for various
models. For comparison, the average energy consumption of
each input timestep and error rate of Adaptive SRNN was set to
unit value. The energy/error ratio is defined as the ratio of the
energy/error compared to the adaptive SRNN. We define the effi-
ciency as the product of energy and error ratio. In the ECG task,
the Bidirectional LSTM290 is a network with 2 bidirectional LSTM
with 120 and 40 hidden neurons respectively followed by three
dense layer with 100, 20 and 6 hidden neurons. For the ECG
tasks, the comparison networks (LSTM, GRU, vanilla RNN and
LIF SRNN) share the same architecture with 36 hidden neurons
each. In the SHD task, the bidirectional LSTM is a 2-layer bidi-
rectional network with 128 neurons each, followed by a dense
layer with 100 neurons. In the SHD and SSC tasks, the tem-
poral bin-width for the LSTM and CNN networks [92] is set to
10ms with a sampling frequency of 100Hz. For SoLi, all networks
(vanilla RNN, GRU, and LSTM) use the same network structure
as the SRNN, with a recurrent layer with 512 neurons followed
by a dense layer with 512 neurons. All CNNs in the table read the
whole sequence at once, and their computation cost is computed
as the average cost per timestep. Dashes denote where values
are not available either because of lacking network architecture
details or lack of convergence (ReLu SRNN for TIMIT and GSC).

131

Appendix B: FPTT theory

For conciseness, we briefly summarize the theory underlying FPTT as developed
by Kag et al. [131].

Back-propagation-through-time Back-propagation-through-time (BPTT) uses
backpropagation to calculate the gradient of the accumulated loss along the
spatial-temporal dimension with respect to the parameters of the recurrent net-
works. Let us define a recurrent network described by differential equation
(ŷ t ,ht) = N N (xt ,ht−1) where xt is the input , ŷ t is the prediction and ht is the
hidden states. The gradient of time t is then computed by considering the effect
of the state xt on all future losses l t , l t+1,l T :

∂L

∂w
=

T∑
t=1

∂l t

∂w
=

T∑
t=1

t∑
i=1

∂l t

∂hi

∂hi

∂w
=

T∑
t=1

(
T∑

i=t

∂l i

∂ht
)
∂ht

∂w
(B.1)

=
T∑

t=1
(

T∑
i=t

∂l i

∂ht
)
∂ht

∂w
=

T∑
t=1

{
T∑

i=t
(

T−1∏
j=i

∂l j+1

∂l j
)
∂l i

∂ht
}
∂ht

∂w
, (B.2)

and a weight is then updated as: wnew ← wold − ∂L
∂w . At the end of training, the

loss L will be minimized via optimal solution w∗, where ∂
∂w L(w∗) ∼= 0.

For online computation, we will have wt+1 ← wt −∑t
i=1

∂
∂w l i (ŷ i , y i , wt) where

l i (ŷ i , y i , wt) is the cost of time step i with parameter wt , ŷ i and y i are the
prediction and target label of the time step i . When the algorithm converges to
an optimal solution w∗ at time step φ, we will have an optimal solution where:

w∗−wt =−∇w (l t) = ∂

∂w
lφ(ŷφ, yφ, w∗)− ∂

∂w
l t (ŷ t , y t , wt) (B.3)

and, for one step optimization:

wt+1 −wt =∇w l t+1 −∇w l t . (B.4)

This demonstrates that for any timestep, the change of weight update is pro-
portional to the change of the gradient; this observation (Equation (B.4)) is the
foundation of Forward Propagation Through Time.

132 Acknowledgments

Forward Propagation Through Time FPTT aims to derive an online weight
update mechanism with guaranteed convergence to optimal solution w∗. To
have a smooth solution, FPTT learns from the historical information of weight
changes by introducing a running mean w̄t to summarize the historical infor-
mation of weight evolution:

wt+1 −wt =∇w (l t+1)−∇w (l t) (B.5)

⇒ w̄t −wt ∼∇w (l t+1)−∇w (l t) (B.6)

⇒∇w (l t+1)−∇w (l t) =α[(w̄t −wt)− (wt+1 −wt)] =α(w̄t −wt+1) (B.7)

From this, the convergence-guaranteed loss function for online update is
derived, based on Eq. (B.7).

∇w (l t+1)−∇w (l t) =α(w̄t −wt+1) ⇔ ∇w (l t+1)−∇w (l t)−α(w̄t −wt+1) = 0
(B.8)

we define the constraint into the function f (wt+1) = ∇w (l t+1)−∇w (l t)−α(w̄t −
wt+1). We now consider a convex function F (w) which approached its minimum
when f (wt+1) = 0; we then have

F (w) =
∫

w
f (w)d w – searching wt+1 over parameter space (B.9)

= l t (w)+ α

2
∥w − w̄t − 1

2α
∇w (l (wt))∥2 (B.10)

In this form, Eq B.8 is the first order condition for F (w). So, the weight opti-
mization is to minimize the new objective function

wt+1 = argmin
w

l t (w)+ α

2
∥w − w̄t − 1

2α
∇w (l (wt))∥2 (B.11)

133

Bibliography

[1] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998. (Cited on page 1.)

[2] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al.
Magnetic control of tokamak plasmas through deep reinforcement learning. Nature,
602(7897):414–419, 2022. (Cited on page 1.)

[3] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei.
Deepnet: Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.
(Cited on page 1.)

[4] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019. (Cited on page 1.)

[5] Lachit Dutta and Swapna Bharali. Tinyml meets iot: A comprehensive survey. Internet of
Things, 16:100461, 2021. (Cited on page 1.)

[6] Partha Pratim Ray. A review on tinyml: State-of-the-art and prospects. Journal of King Saud
University-Computer and Information Sciences, 2021. (Cited on page 1.)

[7] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg, José Marcelo Farfel, Renata EL
Ferretti, Renata EP Leite, Wilson Jacob Filho, Roberto Lent, and Suzana Herculano-Houzel.
Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically
scaled-up primate brain. Journal of Comparative Neurology, 513(5):532–541, 2009. (Cited
on page 1.)

[8] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the
same things? uncovering how neural network representations vary with width and depth.
In International Conference on Learning Representations, 2020. (Cited on page 2.)

[9] Lukas Pfahler and Katharina Morik. Explaining deep learning representations by tracing the
training process. arXiv preprint arXiv:2109.05880, 2021. (Cited on page 2.)

[10] Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski. Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge University Press, 2014.
(Cited on page 2.)

136 BIBLIOGRAPHY

[11] Thomas C Südhof. Towards an understanding of synapse formation. Neuron, 100(2):276–
293, 2018. (Cited on page 2.)

[12] Henry Markram, Joachim Lübke, Michael Frotscher, and Bert Sakmann. Regulation of synap-
tic efficacy by coincidence of postsynaptic aps and epsps. Science, 275(5297):213–215, 1997.
(Cited on pages 2, 116, and 118.)

[13] Nicolas Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory spiking
neurons. Journal of computational neuroscience, 8(3):183–208, 2000. (Cited on page 2.)

[14] Yuguo Yu, Peter Herman, Douglas L Rothman, Divyansh Agarwal, and Fahmeed Hyder. Eval-
uating the gray and white matter energy budgets of human brain function. Journal of Cere-
bral Blood Flow & Metabolism, 38(8):1339–1353, 2018. (Cited on pages 2 and 9.)

[15] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network
models. Neural networks, 10(9):1659–1671, 1997. (Cited on pages 2, 4, 9, and 29.)

[16] Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in temporally
encoded networks of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002. (Cited on
pages 2, 56, and 77.)

[17] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943. (Cited on pages 2
and 3.)

[18] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pages
10–14. IEEE, 2014. (Cited on pages 3, 38, 47, and 49.)

[19] Bojian Yin, Federico Corradi, and Sander M Bohte. Accurate online training of dynam-
ical spiking neural networks through forward propagation through time. arXiv preprint
arXiv:2112.11231, 2021. (Cited on pages 3, 22, 27, 59, 102, 109, and 113.)

[20] Bojian Yin, Federico Corradi, and Sander M Bohté. Effective and efficient computation with
multiple-timescale spiking recurrent neural networks. In International Conference on Neuro-
morphic Systems 2020, pages 1–8, 2020. (Cited on pages 3, 27, 30, 58, 69, 77, 80, and 86.)

[21] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Technical report, Stanford
Univ Ca Stanford Electronics Labs, 1960. (Cited on pages 3 and 4.)

[22] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mecha-
nisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961. (Cited on pages 3
and 4.)

[23] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989. (Cited on pages 4 and 5.)

[24] Marvin Minsky and Seymour Papert. Perceptrons. 1969. (Cited on page 3.)

[25] Allan Pinkus. Weierstrass and approximation theory. Journal of Approximation Theory,
107(1):1–66, 2000. (Cited on page 4.)

[26] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986. (Cited on pages 5 and 17.)

[27] SH Shabbeer Basha, Shiv Ram Dubey, Viswanath Pulabaigari, and Snehasis Mukherjee. Im-
pact of fully connected layers on performance of convolutional neural networks for image
classification. Neurocomputing, 378:112–119, 2020. (Cited on page 5.)

BIBLIOGRAPHY 137

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. (Cited on page 6.)

[29] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal
convolutional networks for action segmentation and detection. In proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 156–165, 2017. (Cited on
page 6.)

[30] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual pre-
diction with lstm. 1999. (Cited on pages 6 and 7.)

[31] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. (Cited on page 7.)

[32] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential
equations. Journal of Mathematical Imaging and Vision, 62(3):352–364, 2020. (Cited on
page 7.)

[33] Tyler W Hughes, Ian AD Williamson, Momchil Minkov, and Shanhui Fan. Wave physics as
an analog recurrent neural network. Science advances, 5(12):eaay6946, 2019. (Cited on
page 7.)

[34] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.
(Cited on pages 7 and 20.)

[35] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310–1318. PMLR,
2013. (Cited on page 7.)

[36] Haichao Yu, Haoxiang Li, Humphrey Shi, Thomas S Huang, and Gang Hua. Any-precision
deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 10763–10771, 2021. (Cited on page 8.)

[37] Alison L Barth and James FA Poulet. Experimental evidence for sparse firing in the neocortex.
Trends in neurosciences, 35(6):345–355, 2012. (Cited on page 9.)

[38] Bo Wang, Wei Ke, Jing Guang, Guang Chen, Luping Yin, Suixin Deng, Quansheng He, Yaping
Liu, Ting He, Rui Zheng, et al. Firing frequency maxima of fast-spiking neurons in human,
monkey, and mouse neocortex. Frontiers in cellular neuroscience, 10:239, 2016. (Cited on
page 9.)

[39] Keith B Hengen, Mary E Lambo, Stephen D Van Hooser, Donald B Katz, and Gina G Tur-
rigiano. Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron,
80(2):335–342, 2013. (Cited on page 9.)

[40] Matthew E Larkum. Are dendrites conceptually useful? Neuroscience, 489:4–14, 2022.
(Cited on page 9.)

[41] David Beniaguev, Idan Segev, and Michael London. Single cortical neurons as deep artificial
neural networks. Neuron, 109(17):2727–2739, 2021. (Cited on pages 10 and 95.)

[42] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University Press, 2014.
(Cited on pages 11 and 13.)

138 BIBLIOGRAPHY

[43] Martin Boerlin, Christian K Machens, and Sophie Denève. Predictive coding of dynamical
variables in balanced spiking networks. PLoS computational biology, 9(11):e1003258, 2013.
(Cited on page 12.)

[44] Hu He, Qilin Wang, Xu Yang, Yunlin Lei, Jian Cai, and Ning Deng. A memory neural system
built based on spiking neural network. Neurocomputing, 442:146–160, 2021. (Cited on
page 13.)

[45] Wulfram Gerstner, Andreas K Kreiter, Henry Markram, and Andreas VM Herz. Neural codes:
firing rates and beyond. Proceedings of the National Academy of Sciences, 94(24):12740–
12741, 1997. (Cited on pages 13 and 85.)

[46] Mark Bear, Barry Connors, and Michael A Paradiso. Neuroscience: Exploring the Brain, En-
hanced Edition: Exploring the Brain. Jones & Bartlett Learning, 2020. (Cited on page 17.)

[47] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth,
Sarah Mack, et al. Principles of neural science, volume 4. McGraw-hill New York, 2000. (Cited
on page 17.)

[48] Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the brain. Current
opinion in neurobiology, 55:82–89, 2019. (Cited on pages 17 and 19.)

[49] J Stuart et al. Artificial intelligence a modern approach third edition, 2010. (Cited on
page 18.)

[50] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–
444, 2015. (Cited on page 18.)

[51] Zoubin Ghahramani. Unsupervised learning. In Summer school on machine learning, pages
72–112. Springer, 2003. (Cited on page 18.)

[52] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018. (Cited on pages 18 and 119.)

[53] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013. (Cited on page 18.)

[54] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990. (Cited on pages 19, 21, 30, 35, and 76.)

[55] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in optimiz-
ing recurrent networks. In 2013 IEEE international conference on acoustics, speech and signal
processing, pages 8624–8628. IEEE, 2013. (Cited on page 20.)

[56] Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line train-
ing of recurrent network trajectories. Neural computation, 2(4):490–501, 1990. (Cited on
page 20.)

[57] Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time. arXiv
preprint arXiv:1705.08209, 2017. (Cited on pages 20 and 55.)

[58] Ronald J Williams and David Zipser. Experimental analysis of the real-time recurrent learning
algorithm. Connection science, 1(1):87–111, 1989. (Cited on page 20.)

[59] Asier Mujika, Florian Meier, and Angelika Steger. Approximating real-time recurrent learning
with random kronecker factors. Advances in Neural Information Processing Systems, 31, 2018.
(Cited on page 20.)

BIBLIOGRAPHY 139

[60] Jacob Menick, Erich Elsen, Utku Evci, Simon Osindero, Karen Simonyan, and Alex Graves.
Practical real time recurrent learning with a sparse approximation. In International Confer-
ence on Learning Representations, 2020. (Cited on pages 20 and 62.)

[61] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985. (Cited on page 21.)

[62] Sander M Bohte, Joost N Kok, and Johannes A La Poutré. Spikeprop: backpropagation for
networks of spiking neurons. In ESANN, volume 48, pages 17–37, 2000. (Cited on pages 22,
29, and 36.)

[63] Sander M Bohte. Error-backpropagation in networks of fractionally predictive spiking neu-
rons. In International Conference on Artificial Neural Networks, pages 60–68. Springer, 2011.
(Cited on pages 22, 36, 74, and 77.)

[64] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking
neural networks. Neural computation, 30(6):1514–1541, 2018. (Cited on pages 22 and 29.)

[65] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in
spiking neural networks. arXiv preprint arXiv:1901.09948, 2019. (Cited on pages 22, 29,
33, 36, 56, 59, 74, and 77.)

[66] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep residual learning in spiking neural networks. In Thirty-Fifth Conference on Neural
Information Processing Systems, 2021. (Cited on page 22.)

[67] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothee Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural net-
works. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
2661–2671, 2021. (Cited on pages 22, 50, 75, 77, 80, 85, 86, 88, 92, and 115.)

[68] Philipp Weidel and Sadique Sheik. WaveSense: Efficient temporal convolutions with spiking
neural networks for keyword spotting. November 2021. (Cited on pages 22 and 100.)

[69] Shuo-Yiin Chang, Bo Li, Gabor Simko, Tara N Sainath, Anshuman Tripathi, Aäron van den
Oord, and Oriol Vinyals. Temporal modeling using dilated convolution and gating for Voice-
Activity-Detection. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5549–5553. ieeexplore.ieee.org, April 2018. (Cited on pages 24,
99, 100, and 105.)

[70] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.
Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017. (Cited on
page 28.)

[71] Wulfram Gerstner, Richard Kempter, J Leo Van Hemmen, and Hermann Wagner. A neuronal
learning rule for sub-millisecond temporal coding. Nature, 383(6595):76–78, 1996. (Cited
on page 29.)

[72] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Har-
sha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuro-
morphic manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018. (Cited
on pages 29, 70, 71, and 72.)

[73] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time.
In Advances in Neural Information Processing Systems, volume 31, pages 1412–1421, 2018.
(Cited on pages 29, 33, and 36.)

140 BIBLIOGRAPHY

[74] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J Thorpe, and Timothée Masque-
lier. Stdp-based spiking deep convolutional neural networks for object recognition. Neural
Networks, 99:56–67, 2018. (Cited on pages 29 and 116.)

[75] Pierre Falez, Pierre Tirilly, Ioan Marius Bilasco, Philippe Devienne, and Pierre Boulet. Multi-
layered spiking neural network with target timestamp threshold adaptation and stdp. In
International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2019. (Cited on
pages 29, 116, and 118.)

[76] Timo C Wunderlich and Christian Pehle. Eventprop: Backpropagation for exact gradients in
spiking neural networks. arXiv preprint arXiv:2009.08378, 2020. (Cited on page 29.)

[77] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Leg-
enstein, and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of
spiking neurons. Nature Communications, 11(1):1–15, 2020. (Cited on pages 30, 32, 36, 39,
42, 51, 74, 77, 78, 82, 85, 86, 92, 115, and 118.)

[78] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci., 13:95, March
2019. (Cited on page 30.)

[79] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine in-
telligence with neuromorphic computing. Nature, 575(7784):607–617, 2019. (Cited on
pages 30, 38, and 47.)

[80] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural net-
work function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.
(Cited on pages 30 and 36.)

[81] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Expected energy-based restricted boltzmann
machine for classification. Neural networks, 64:29–38, 2015. (Cited on pages 30 and 36.)

[82] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. (Cited on pages 32 and 86.)

[83] Raphael Hunger. Floating point operations in matrix-vector calculus. Munich University of
Technology, Inst. for Circuit Theory and Signa, 2005. (Cited on pages 33 and 37.)

[84] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002. (Cited on pages 33, 51, and 55.)

[85] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural net-
works, 14(6):1569–1572, 2003. (Cited on pages 33, 34, and 56.)

[86] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass.
Long short-term memory and learning-to-learn in networks of spiking neurons. In Advances
in Neural Information Processing Systems, pages 787–797, 2018. (Cited on pages 34, 36,
and 42.)

[87] Alexander Wong, Mahmoud Famouri, Maya Pavlova, and Siddharth Surana. Tinyspeech:
Attention condensers for deep speech recognition neural networks on edge devices. arXiv
preprint arXiv:2008.04245, 2020. (Cited on pages 37, 50, 51, and 130.)

[88] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. (Cited on pages 37 and 83.)

[89] Percy E Ludgate. On a proposed analytical machine. In The Origins of Digital Computers,
pages 73–87. Springer, 1982. (Cited on page 38.)

BIBLIOGRAPHY 141

[90] Apeksha Shewalkar, Deepika Nyavanandi, and Simone A Ludwig. Performance evaluation of
deep neural networks applied to speech recognition: Rnn, lstm and gru. Journal of Artificial
Intelligence and Soft Computing Research, 9(4):235–245, 2019. (Cited on page 38.)

[91] Pablo Laguna, Roger G Mark, A Goldberg, and George B Moody. A database for evaluation
of algorithms for measurement of qt and other waveform intervals in the ecg. In Computers
in cardiology 1997, pages 673–676. IEEE, 1997. (Cited on pages 38 and 40.)

[92] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The
heidelberg spiking datasets for the systematic evaluation of spiking neural networks. arXiv
preprint arXiv:1910.07407, 2019. (Cited on pages 39, 41, 42, and 130.)

[93] Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev, and Otmar Hilliges. Interacting with
soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum. In
Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages
851–860, 2016. (Cited on pages 39, 41, 42, and 47.)

[94] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018. (Cited on pages 39, 41, 108, and 111.)

[95] John S Garofolo. Timit acoustic phonetic continuous speech corpus. Linguistic Data Consor-
tium, 1993, 1993. (Cited on page 39.)

[96] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128x128 120 db 15µs latency
asynchronous temporal contrast vision sensor. IEEE journal of solid-state circuits, 43(2):566–
576, 2008. (Cited on page 41.)

[97] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and
Oriol Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the 14th
python in science conference, volume 8, pages 18–25, 2015. (Cited on page 41.)

[98] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural
network (indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), pages 5457–5466, 2018. (Cited on
page 42.)

[99] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural net-
works. In International Conference on Machine Learning, pages 1120–1128, 2016. (Cited on
page 42.)

[100] Nicolas Perez-Nieves, Vincent CH Leung, Pier Luigi Dragotti, and Dan FM Goodman. Neural
heterogeneity promotes robust learning. bioRxiv, pages 2020–12, 2021. (Cited on page 42.)

[101] Douglas Coimbra de Andrade, Sabato Leo, Martin Loesener Da Silva Viana, and Christoph
Bernkopf. A neural attention model for speech command recognition. arXiv preprint
arXiv:1808.08929, 2018. (Cited on page 42.)

[102] Thomas Pellegrini, Romain Zimmer, and Timothée Masquelier. Low-Activity supervised
convolutional spiking neural networks applied to speech commands recognition. In 2021
IEEE Spoken Language Technology Workshop (SLT), pages 97–103, January 2021. (Cited on
pages 42 and 43.)

[103] Friedemann Zenke and Tim P. Vogels. The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural networks. Neural Computation,
0(0):1–27, 2021. (Cited on page 42.)

142 BIBLIOGRAPHY

[104] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural Networks, 18(5-6):602–610, 2005.
(Cited on page 42.)

[105] Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards
energy-efficient deep spiking neural networks by limiting spiking activity via attention-
guided compression. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 3953–3962, 2021. (Cited on pages 47 and 51.)

[106] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low
power, fully event-based gesture recognition system. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7243–7252, 2017. (Cited on pages 50, 75,
and 84.)

[107] Thomas Pellegrini, Romain Zimmer, and Timothée Masquelier. Low-activity supervised con-
volutional spiking neural networks applied to speech commands recognition. In 2021 IEEE
Spoken Language Technology Workshop (SLT), pages 97–103. IEEE, 2021. (Cited on page 50.)

[108] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. 2019. (Cited on pages 50, 59, and 74.)

[109] Friedemann Zenke, Sander M Bohté, Claudia Clopath, Iulia M.Comşa, Julian Göltz, Wolf-
gang Maass, Timothée Masquelier, Richard Naud, Emre O Neftci, Mihai A Petrovici, Franz
Scherr, and Dan F M Goodman. Visualizing a joint future of neuroscience and neuromorphic
engineering. Neuron, 109(4):571–575, February 2021. (Cited on page 51.)

[110] F. Zenke and E. O. Neftci. Brain-inspired learning on neuromorphic substrates. Proceedings
of the IEEE, pages 1–16, 2021. (Cited on page 51.)

[111] Joram Keijser and Henning Sprekeler. Interneuron diversity is required for compartment-
specific feedback inhibition. bioRxiv, 2020. (Cited on page 51.)

[112] Bojian Yin Anca-Diana Vicol and S.M Bohte. Real-time classification of lidar data using
discrete-time recurrent spiking neural networks. IJCNN, 2022. (Cited on page 53.)

[113] Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual connections, stochastic soft-
max, and hybridization. Frontiers in Neuroscience, 14, 2020. (Cited on page 54.)

[114] Wulfram Gerstner. Biological Learning: Synaptic Plasticity, Hebb Rule and Spike TimingDepen-
dent Plasticity, pages 111–132. Springer US, Boston, MA, 2010. (Cited on page 56.)

[115] André Grüning and Sander M Bohte. Spiking neural networks: Principles and challenges. In
ESANN. Bruges, 2014. (Cited on page 56.)

[116] Iulia M Comsa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea Gesmundo,
and Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic func-
tion. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8529–8533. IEEE, 2020. (Cited on page 56.)

[117] Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks.
IEEE transactions on neural networks and learning systems, 29(7):3227–3235, 2017. (Cited
on page 56.)

BIBLIOGRAPHY 143

[118] Shibo Zhou and Wei Wang. Object detection based on lidar temporal pulses using spiking
neural networks. arXiv preprint arXiv:1810.12436, 2018. (Cited on pages 56 and 57.)

[119] Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural networks. Neural Computation,
33(4):899–925, 2021. (Cited on page 56.)

[120] Michael Himmelsbach, Andre Mueller, Thorsten Lüttel, and Hans-Joachim Wünsche. Lidar-
based 3d object perception. In Proceedings of 1st international workshop on cognition for
technical systems, volume 1, 2008. (Cited on page 56.)

[121] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convolutional neural
nets with recurrent CRF for real-time road-object segmentation from 3d lidar point cloud. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages 1887–1893.
IEEE, 2018. (Cited on page 56.)

[122] Danil V Prokhorov. Object recognition in 3d lidar data with recurrent neural network. In
2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work-
shops, pages 9–15. IEEE, 2009. (Cited on page 57.)

[123] Wei Wang, Shibo Zhou, Jingxi Li, Xiaohua Li, Junsong Yuan, and Zhanpeng Jin. Tempo-
ral pulses driven spiking neural network for time and power efficient object recognition in
autonomous driving. In 2020 25th International Conference on Pattern Recognition (ICPR),
pages 6359–6366, 2021. (Cited on page 57.)

[124] Shibo Zhou, Ying Chen, Xiaohua Li, and Arindam Sanyal. Deep scnn-based real-time object
detection for self-driving vehicles using lidar temporal data. IEEE Access, 8:76903–76912,
2020. (Cited on pages 57 and 76.)

[125] Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings, Christoph Posch, Nitish Thakor,
and Ryad Benosman. Hfirst: A temporal approach to object recognition. IEEE transactions
on pattern analysis and machine intelligence, 37(10):2028–2040, 2015. (Cited on page 57.)

[126] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:
The KITTI dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.
(Cited on page 59.)

[127] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the KITTI vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3354–3361. IEEE, 2012. (Cited on page 59.)

[128] Sander M Bohte, Han La Poutré, and Joost N Kok. Unsupervised clustering with spiking
neurons by sparse temporal coding and multilayer rbf networks. IEEE Transactions on neural
networks, 13(2):426–435, 2002. (Cited on pages 61 and 62.)

[129] Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring sparsity in
recurrent neural networks. arXiv preprint arXiv:1704.05119, 2017. (Cited on page 62.)

[130] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward
Lockhart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient
neural audio synthesis. In International Conference on Machine Learning, pages 2410–2419.
PMLR, 2018. (Cited on page 62.)

[131] Anil Kag and Venkatesh Saligrama. Training recurrent neural networks via forward prop-
agation through time. In International Conference on Machine Learning, pages 5189–5200.
PMLR, 2021. (Cited on pages 73, 74, 75, 78, 79, 83, 86, 88, 90, and 131.)

144 BIBLIOGRAPHY

[132] Sander M. Bohté Bojian Yin, Federico Corradi. Accurate online training of dynamical spiking
neural networks through forward propagation through time. 2022. (Cited on page 74.)

[133] Bojian Yin, Federico Corradi, and Sander M. Bohté. Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nat Mach Intell, 3:905–913,
2021. (Cited on pages 74, 77, 78, 81, 82, 86, 88, and 92.)

[134] Jan Stuijt, Manolis Sifalakis, Amirreza Yousefzadeh, and Federico Corradi. µbrain: An event-
driven and fully synthesizable architecture for spiking neural networks. Frontiers in neuro-
science, 15:538, 2021. (Cited on pages 74, 75, and 115.)

[135] Nicolas Perez-Nieves, Vincent C H Leung, Pier Luigi Dragotti, and Dan F M Goodman. Neural
heterogeneity promotes robust learning. Nat. Commun., 12(1):5791, October 2021. (Cited
on page 74.)

[136] Joram Keijser and Henning Sprekeler. Interneuron diversity is required for compartment-
specific feedback inhibition. bioRxiv, 2020. (Cited on page 74.)

[137] A Mehonic and A J Kenyon. Brain-inspired computing needs a master plan. Nature,
604(7905):255–260, April 2022. (Cited on page 74.)

[138] Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280, 1989. (Cited on pages 74
and 76.)

[139] Thomas Bohnstingl, Stanisław Woźniak, Wolfgang Maass, Angeliki Pantazi, and Evange-
los Eleftheriou. Online spatio-temporal learning in deep neural networks. arXiv preprint
arXiv:2007.12723, 2020. (Cited on pages 74, 76, 78, 86, 92, and 115.)

[140] Yuming He, Federico Corradi, Chengyao Shi, Ming Ding, Martijn Timmermans, Jan Stuijt,
Pieter Harpe, Ilja Ocket, and Yao-Hong Liu. A 28.2 µw neuromorphic sensing system featur-
ing snn-based near-sensor computation and event-driven body-channel communication for
insertable cardiac monitoring. In 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC),
pages 1–3, 2021. (Cited on page 75.)

[141] Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid
time-constant networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 7657–7666, 2021. (Cited on pages 75 and 78.)

[142] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. (Cited on pages 76, 85, and 87.)

[143] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: spiking neural
network for energy-efficient object detection. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 34, pages 11270–11277, 2020. (Cited on pages 76, 87, and 95.)

[144] Biswadeep Chakraborty, Xueyuan She, and Saibal Mukhopadhyay. A fully spiking hybrid
neural network for energy-efficient object detection. IEEE Transactions on Image Processing,
30:9014–9029, 2021. (Cited on page 76.)

[145] Joaquin Royo-Miquel, Silvia Tolu, Frederik ET Schöller, and Roberto Galeazzi. Retinanet
object detector based on analog-to-spiking neural network conversion. In 8th International
Conference on Soft Computing & Machine Intelligence, 2021. (Cited on page 76.)

[146] Zicong Jiang, Liquan Zhao, Shuaiyang Li, and Yanfei Jia. Real-time object detection method
based on improved yolov4-tiny. arXiv preprint arXiv:2011.04244, 2020. (Cited on pages 76,
87, and 92.)

BIBLIOGRAPHY 145

[147] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990. (Cited
on page 76.)

[148] Michael C Mozer. Neural net architectures for temporal sequence processing. In Santa Fe
Institute Studies in the Sciences of Complexity-Proceedings Volume-, volume 15, pages 243–
243, 1993. (Cited on page 76.)

[149] James M Murray. Local online learning in recurrent networks with random feedback. ELife,
8:e43299, 2019. (Cited on page 76.)

[150] James C Knight and Thomas Nowotny. Efficient GPU training of LSNNs using eprop. In
Neuro-Inspired Computational Elements Conference, NICE 2022, pages 8–10, 2022. (Cited on
page 76.)

[151] Franz Scherr and Wolfgang Maass. Analysis of the computational strategy of a detailed
laminar cortical microcircuit model for solving the image-change-detection task. bioRxiv,
2021. (Cited on page 78.)

[152] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-
stream dataset for object classification. Frontiers in neuroscience, 11:309, 2017. (Cited on
page 85.)

[153] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020. (Cited on pages 87
and 92.)

[154] Stanisław Woźniak, Angeliki Pantazi, Thomas Bohnstingl, and Evangelos Eleftheriou. Deep
learning incorporating biologically inspired neural dynamics and in-memory computing. Na-
ture Machine Intelligence, 2(6):325–336, 2020. (Cited on page 92.)

[155] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep
continuous local learning (decolle). Frontiers in Neuroscience, 14:424, 2020. (Cited on
pages 92 and 118.)

[156] João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical
microcircuits approximate the backpropagation algorithm. Advances in Neural Information
Processing Systems: NeurIPS, 31:8721–8732, 2018. (Cited on page 95.)

[157] Matthew E Larkum, Walter Senn, and Hans-R Lüscher. Top-down dendritic input increases
the gain of layer 5 pyramidal neurons. Cereb. Cortex, 14(10):1059–1070, October 2004.
(Cited on page 95.)

[158] Uwe Frey and Richard GM Morris. Synaptic tagging and long-term potentiation. Nature,
385(6616):533–536, 1997. (Cited on page 95.)

[159] Diego Moncada, Fabricio Ballarini, María Cecilia Martinez, Julietta U Frey, and Haydée Vi-
ola. Identification of transmitter systems and learning tag molecules involved in behav-
ioral tagging during memory formation. Proceedings of the National Academy of Sciences,
108(31):12931–12936, 2011. (Cited on page 95.)

[160] Jaldert O Rombouts, Sander M Bohte, and Pieter R Roelfsema. How attention can create
synaptic tags for the learning of working memories in sequential tasks. PLoS computational
biology, 11(3):e1004060, 2015. (Cited on page 96.)

[161] Isabella Pozzi, Sander Bohte, and Pieter Roelfsema. Attention-gated brain propagation: How
the brain can implement reward-based error backpropagation. Advances in Neural Informa-
tion Processing Systems: NeurIPS, 33, 2020. (Cited on page 96.)

146 BIBLIOGRAPHY

[162] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation. Frontiers in computational neuroscience, 11:24,
2017. (Cited on page 96.)

[163] Henk Corporaal Federico Corradi Bojian Yin, Qinghai Guo and Sander M. Bohté. Attentive
decision-making and dynamic resetting of continual running srnns for end-to-end streaming
keyword spotting. ICONS, 2022. (Cited on page 97.)

[164] Juntae Kim, Jeehye Lee, and Yoonhan Lee. Generalizing RNN-Transducer to Out-Domain
audio via sparse Self-Attention layers. August 2021. (Cited on pages 99, 100, and 105.)

[165] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello edge: Keyword
spotting on microcontrollers. November 2017. (Cited on page 100.)

[166] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural net-
works. In Proceedings of the 23rd international conference on Machine learning, ICML ’06,
pages 369–376, New York, NY, USA, June 2006. Association for Computing Machinery.
(Cited on page 100.)

[167] Chunyang Wu, Yongqiang Wang, Yangyang Shi, Ching-Feng Yeh, and Frank Zhang. Stream-
ing transformer-based acoustic models using self-attention with augmented memory. May
2020. (Cited on page 100.)

[168] Emre Yılmaz, Özgür Bora Gevrek, Jibin Wu, Yuxiang Chen, Xuanbo Meng, and Haizhou Li.
Deep convolutional spiking neural networks for keyword spotting. In Interspeech 2020, ISCA,
October 2020. ISCA. (Cited on page 100.)

[169] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu. WaveNet: A genera-
tive model for raw audio. SSW, 125:2, 2016. (Cited on page 100.)

[170] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. (Cited on page 101.)

[171] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass.
Long short-term memory and learning-to-learn in networks of spiking neurons. In S Bengio,
H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, and R Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 787–797. Curran Associates, Inc., 2018.
(Cited on page 102.)

[172] Kevin Gurney, Tony J Prescott, and Peter Redgrave. A computational model of action selec-
tion in the basal ganglia. i. a new functional anatomy. Biological cybernetics, 84(6):401–410,
2001. (Cited on page 104.)

[173] Davide Zambrano, Pieter R Roelfsema, and Sander Bohte. Learning continuous-time working
memory tasks with on-policy neural reinforcement learning. Neurocomputing, 461:635–656,
2021. (Cited on page 104.)

[174] Philipp Weidel and Sadique Sheik. Wavesense: Efficient temporal convolutions with spiking
neural networks for keyword spotting. arXiv preprint arXiv:2111.01456, 2021. (Cited on
page 109.)

[175] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet Union, 1966. (Cited
on page 111.)

BIBLIOGRAPHY 147

[176] Tara Sainath, Ron J Weiss, Kevin Wilson, Andrew W Senior, and Oriol Vinyals. Learning the
speech front-end with raw waveform cldnns. 2015. (Cited on page 113.)

[177] Kwantae Kim, Chang Gao, Rui Graça, Ilya Kiselev, Hoi-Jun Yoo, Tobi Delbruck, and Shih-Chii
Liu. A 23µw solar-powered keyword-spotting asic with ring-oscillator-based time-domain
feature extraction. In 2022 IEEE International Solid-State Circuits Conference (ISSCC), vol-
ume 65, pages 1–3. IEEE, 2022. (Cited on pages 113 and 122.)

[178] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in
spiking neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13, 2019.
(Cited on page 115.)

[179] Yueting Shi, Hai Li, Hehui Zhang, Zhenzhi Wu, and Shiwei Ren. Accurate and efficient
lif-nets for 3d detection and recognition. IEEE Access, 8:98562–98571, 2020. (Cited on
page 115.)

[180] Yujie Wu, Rong Zhao, Jun Zhu, Feng Chen, Mingkun Xu, Guoqi Li, Sen Song, Lei Deng,
Guanrui Wang, Hao Zheng, et al. Brain-inspired global-local learning incorporated with
neuromorphic computing. Nature Communications, 13(1):1–14, 2022. (Cited on page 116.)

[181] David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning
by directional gradient descent. In International Conference on Learning Representations,
2021. (Cited on page 116.)

[182] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random
synaptic feedback weights support error backpropagation for deep learning. Nature commu-
nications, 7(1):1–10, 2016. (Cited on pages 116 and 119.)

[183] Stephen Whitelam, Viktor Selin, Sang-Won Park, and Isaac Tamblyn. Correspondence be-
tween neuroevolution and gradient descent. Nature communications, 12(1):1–10, 2021.
(Cited on page 116.)

[184] Amr M AbdelAty, Mohammed E Fouda, and Ahmed Eltawil. Parameter estimation of two
spiking neuron models with meta-heuristic optimization algorithms. Frontiers in Neuroinfor-
matics, 16, 2022. (Cited on page 116.)

[185] Kristofor D Carlson, Jayram Moorkanikara Nageswaran, Nikil Dutt, and Jeffrey L Krichmar.
An efficient automated parameter tuning framework for spiking neural networks. Frontiers
in neuroscience, 8:10, 2014. (Cited on page 116.)

[186] Junxiu Liu, Xingyue Huang, Dong Jiang, and Yuling Luo. An energy-aware spiking neu-
ral network hardware mapping based on particle swarm optimization and genetic algo-
rithm. In 2020 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), pages 11–13. IEEE, 2020. (Cited on page 116.)

[187] NG Pavlidis, OK Tasoulis, Vassilis P Plagianakos, G Nikiforidis, and MN Vrahatis. Spiking
neural network training using evolutionary algorithms. In Proceedings. 2005 IEEE Interna-
tional Joint Conference on Neural Networks, 2005., volume 4, pages 2190–2194. IEEE, 2005.
(Cited on page 116.)

[188] Jesus L Lobo, Javier Del Ser, Albert Bifet, and Nikola Kasabov. Spiking neural networks and
online learning: An overview and perspectives. Neural Networks, 121:88–100, 2020. (Cited
on page 116.)

[189] Nicolas Perez-Nieves and Dan Goodman. Sparse spiking gradient descent. Advances in Neural
Information Processing Systems, 34:11795–11808, 2021. (Cited on pages 117 and 118.)

148 BIBLIOGRAPHY

[190] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. Advances in neural information processing systems, 27, 2014. (Cited on page 119.)

[191] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Ad-
vances in neural information processing systems, 29, 2016. (Cited on page 119.)

[192] Ehsan Amid, Rohan Anil, and Manfred Warmuth. Locoprop: Enhancing backprop via local
loss optimization. In International Conference on Artificial Intelligence and Statistics, pages
9626–9642. PMLR, 2022. (Cited on page 119.)

[193] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves,
David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients.
In International conference on machine learning, pages 1627–1635. PMLR, 2017. (Cited on
page 119.)

[194] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible resid-
ual network: Backpropagation without storing activations. Advances in neural information
processing systems, 30, 2017. (Cited on page 119.)

[195] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only prop-
agate once: Accelerating adversarial training via maximal principle. Advances in Neural
Information Processing Systems, 32, 2019. (Cited on page 119.)

Curriculum Vitae

Bojian Yin
07-03-1993: Born in Shanxi,China

Experience

Sep 2022 – present: Researcher at CWI, Amsterdam
Sep 2018 -Sep 2022: PhD student at CWI, Amsterdam
Sep 2017 -Sep 2018: Research Assistant at CWI, Amsterdam
Mar 2017 -Sep 2017: Master Thesis Internship at CWI, Amsterdam

Education
Sep 2018 -Sep 2022: Ph.D.,Electrical Engineering

Technische Universiteit Eindhoven
Promoter: Prof. dr. S.M. Bohté and Prof.dr. H. Corporaal
CoPromoter: dr. F. Corradi
Thesis: Efficient and Accurate Spiking Neural Networks

Sep 2015–Sep 2017: M.S., Artificial Intelligence
Vrije Universiteit Amsterdam
joint AI program with University of Amsterdam(UvA)
Thesis: An image representation based convolutional network for DNA
classification

Sep 2014 -Sep 2015: Master Computational mathematics
North China Electric Power University

Sep 2010 -Sep 2014: B.S., Information and Computer Science
Tangshan Normal University
Thesis: Using neural networks for DNA sequence classification

	1 Introduction
	1.1 Background
	1.1.1 Feedforward ANNs
	1.1.2 Recurrent Neural Networks (RNNs)
	1.1.3 Spiking Neural Networks (SNNs)
	1.1.4 Neural Dynamics
	1.1.5 Training SNNs as RNNs

	1.2 Challenges when training SNNs
	1.2.1 Challenge 1: Discontinuity of the spike generation function
	1.2.2 Challenge 2: Cumbersome gradient flow
	1.2.3 Challenge 3: Memory
	1.2.4 Challenge 4: Continual running

	1.3 Contributions

	2 Multi-timescales Spiking Recurrent Neural Networks
	2.1 Introduction
	2.2 Methods
	2.2.1 Spiking Recurrent Neural Networks (SRNN)

	2.3 Experiments
	2.3.1 Datasets
	2.3.2 Results

	2.4 Discussion

	3 Training SRNN Through Truncated BPTT
	3.1 Introduction
	3.1.1 Background

	3.2 Related work
	3.3 Methods
	3.3.1 Model
	3.3.2 Dataset
	3.3.3 Depth encoding
	3.3.4 Sparsity
	3.3.5 Truncated Backpropagation-Through-Time

	3.4 Experiments
	3.4.1 Overall Performance
	3.4.2 Early classification
	3.4.3 Sparsity
	3.4.4 Truncated Backpropagation-Trough-Time
	3.4.5 Energy Requirements

	3.5 Discussion

	4 Training SRNN Through Forward Propagation Through Time
	4.1 Introduction
	4.2 Methods
	4.2.1 Forward Propagation Through Time.
	4.2.2 Liquid Time-Constant Spiking Neurons

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Results
	4.3.3 Large-scale Object-detection: Spiking YOLO

	4.4 Discussion

	5 Network Continual Inference on Streaming Data
	5.1 Introduction
	5.2 Related Work
	5.3 Methods
	5.3.1 Attentive Spiking Recurrent Neural Networks
	5.3.2 Streaming Decision Making

	5.4 Experiments
	5.4.1 Datasets
	5.4.2 Results

	5.5 Discussion

	6 Discussion & Research directions
	6.1 Challenge 1: Discontinuity of the spike generation function
	6.2 Challenge 2: Cumbersome gradient flow
	6.2.1 Offline learning
	6.2.2 Online learning

	6.3 Challenge 3: Memory
	6.4 Challenge 4: Continual running
	6.5 Outlook

	List of Publications
	Summary
	Acknowledgments
	Bibliography
	Curriculum Vitae

