3,852 research outputs found

    Detection of overlapped acoustic events using fusion of audio and video modalities

    Get PDF
    Acoustic event detection (AED) may help to describe acoustic scenes, and also contribute to improve the robustness of speech technologies. Even if the number of considered events is not large, that detection becomes a difficult task in scenarios where the AEs are produced rather spontaneously and often overlap in time with speech. In this work, fusion of audio and video information at either feature or decision level is performed, and the results are compared for different levels of signal overlaps. The best improvement with respect to an audio-only baseline system was obtained using the featurelevel fusion technique. Furthermore, a significant recognition rate improvement is observed where the AEs are overlapped with loud speech, mainly due to the fact that the video modality remains unaffected by the interfering sound.Peer ReviewedPostprint (published version

    Source ambiguity resolution of overlapped sounds in a multi-microphone room environment

    Get PDF
    When several acoustic sources are simultaneously active in a meeting room scenario, and both the position of the sources and the identity of the time-overlapped sound classes have been estimated, the problem of assigning each source position to one of the sound classes still remains. This problem is found in the real-time system implemented in our smart-room, where it is assumed that up to two acoustic events may overlap in time and the source positions are relatively well separated in space. The position assignment system proposed in this work is based on fusion of model-based log-likelihood ratios obtained after carrying out several different partial source separations in parallel. To perform the separation, frequency-invariant null-steering beamformers, which can work with a small number of microphones, are used. The experimental results using all the six microphone arrays deployed in the room show a high assignment rate in our particular scenario.Peer ReviewedPostprint (published version

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    Multimodal Visual Concept Learning with Weakly Supervised Techniques

    Full text link
    Despite the availability of a huge amount of video data accompanied by descriptive texts, it is not always easy to exploit the information contained in natural language in order to automatically recognize video concepts. Towards this goal, in this paper we use textual cues as means of supervision, introducing two weakly supervised techniques that extend the Multiple Instance Learning (MIL) framework: the Fuzzy Sets Multiple Instance Learning (FSMIL) and the Probabilistic Labels Multiple Instance Learning (PLMIL). The former encodes the spatio-temporal imprecision of the linguistic descriptions with Fuzzy Sets, while the latter models different interpretations of each description's semantics with Probabilistic Labels, both formulated through a convex optimization algorithm. In addition, we provide a novel technique to extract weak labels in the presence of complex semantics, that consists of semantic similarity computations. We evaluate our methods on two distinct problems, namely face and action recognition, in the challenging and realistic setting of movies accompanied by their screenplays, contained in the COGNIMUSE database. We show that, on both tasks, our method considerably outperforms a state-of-the-art weakly supervised approach, as well as other baselines.Comment: CVPR 201

    Acoustic Speaker Localization with Strong Reverberation and Adaptive Feature Filtering with a Bayes RFS Framework

    Get PDF
    The thesis investigates the challenges of speaker localization in presence of strong reverberation, multi-speaker tracking, and multi-feature multi-speaker state filtering, using sound recordings from microphones. Novel reverberation-robust speaker localization algorithms are derived from the signal and room acoustics models. A multi-speaker tracking filter and a multi-feature multi-speaker state filter are developed based upon the generalized labeled multi-Bernoulli random finite set framework. Experiments and comparative studies have verified and demonstrated the benefits of the proposed methods
    corecore