
Detection of Overlapped Acoustic Events using Fusion of 
Audio and Video Modalities

Taras Butko and Climent Nadeu

TALP Research Center,  Department of Signal Theory and Communications, 
Universitat Politècnica de Catalunya, Barcelona, Spain

taras.butko@upc.edu, climent.nadeu@upc.edu

Abstract
Acoustic event detection (AED) may help to describe acoustic 
scenes,  and  also  contribute  to  improve  the  robustness  of 
speech technologies. Even if the number of considered events 
is  not  large,  that  detection  becomes  a  difficult  task  in 
scenarios  where  the AEs are  produced rather spontaneously 
and often overlap in time with speech. In this work, fusion of 
audio and video information at either feature or decision level 
is performed, and the results are compared for different levels 
of signal overlaps. The best improvement with respect to an 
audio-only  baseline  system was  obtained  using  the  feature-
level fusion technique. Furthermore, a significant recognition 
rate improvement is observed where the AEs are overlapped 
with  loud  speech,  mainly  due  to  the  fact  that  the  video 
modality remains unaffected by the interfering sound.
Index Terms: Acoustic Event detection, Multimodal Fusion, 
Fuzzy Integral, Acoustic Localization

1. Introduction
Acoustic  event  detection  (AED)  aims  at  determining  the 
identity of sounds and their temporal position in the signals 
that  are  captured  by  one  or  several  microphones.  It  can 
provide a support for a high-level analysis of the underlying 
acoustic  scene.  This  analysis  includes  the  description  of 
human activity  which  is  reflected  in  a  rich variety  of AEs, 
either produced by the human body or by objects handled by 
them.  Moreover,  AED  can  contribute  to  improve  the 
performance  and  robustness  of  speech technologies  such as 
speech and speaker recognition, speech enhancement. 

AED is usually addressed from an audio perspective and 
many reported works are intended for indexing and retrieval 
of  multimedia  documents  [1],  or  to  improve  robustness  of 
speech recognition [2]. AED has been adopted as a relevant 
technology  in  several  international  projects,  like  CHIL  [3], 
and  evaluation  campaigns  [4].  The  last  international 
evaluations  in  seminar  conditions  have  shown  that  AED is 
still  a  challenging  problem.  According  to  those  results,  the 
detection of AEs from only audio information shows a large 
amount of errors, which are mostly due to temporal overlaps 
of sounds. 

The overlap problem may be faced by developing more 
efficient  algorithms either  at:  the  signal  level,  using  source 
separation  techniques  like  independent  component  analysis 
[5]; the feature level, by means of specific features [6]; or the 
model level [7]. An alternative approach consists of using an 
additional  modality  that  is  less  sensitive  to  the  overlap 
phenomena present in the audio signal.

Most of human produced AEs have a visual correlate that 
can be exploited to enhance detection rate. This idea was first  
presented  in  [8],  where  the  detection  of  footsteps  was 
improved  by  exploiting  the  velocity  information  obtained 
from  a  video-based  person-tracking  system.  Further 
improvement  has  been  achieved  by  the  authors  in  [9]  [10] 
where the concept of multimodal AED is extended to detect 

and recognize a set of 11 AEs. In that work, not only video 
information but also acoustic source localization information 
was considered. Either a decision-level fuzzy integral fusion 
[9]  or  a  feature-level  fusion  [10]  was  used  to  increase  the 
accuracy of detection of isolated AEs. But for most of the AEs 
a statistically significant improvement was not observed due 
to  the fact  that  in  clean conditions the baseline  recognition 
results are relatively high, so the additional modalities can not 
contribute significantly.

In this work we compare feature-level and decision-level 
fusion techniques for AED in more realistic conditions where 
the AEs are overlapped with speech.  Feature-level  fusion is 
performed by means concatenation of features from different 
modalities  into  one  super-vector.  Decision-level  fusion  is 
carried  out  with  the  Weighted  Arithmetical  Mean  (WAM) 
approach and the Fuzzy Integral (FI) statistical approach [11].

2. Database and metric
There are several publicly available multimodal databases 

designed to recognize events, activities, and their relationships 
in interaction scenarios [3]. However, these data are not well 
suited to audiovisual AED since the employed cameras do not 
provide a close view of the subjects under study. In order to 
assess  the  performance  of  the  proposed  multimodal  fusion 
approaches,  the  subset  of  isolated  AEs  from  a  recently 
recorded multimodal  database [9] [10] was used.  The video 
signals  were  recorded  with  5  calibrated  cameras  at  pixel 
resolution 768x576 and 25 fps. Audio signals were collected 
from 6 T-shaped 4-microphone clusters, and sampled at 44.1 
kHz  (in  total,  24  microphones  are  used).  All  sensors  were 
synchronized.  In  the  recorded  scenes,  5  different  subjects 
performed  several  times  the  AEs  employed  in  this  work,  
adding up to around 100 instances for every AE, and 2 hours.  
This  multimodal  database  is  publicly  available  from  the 
authors.  We consider 12 classes of AEs which naturally occur 
in meeting-room environments, like in [7], [8], [9] and [10]: 
“Door knock”,  “Door open/slam”, “Steps”,  “Chair  moving”, 
“Spoon/cup jingle”,  “Paper work”,  “Key jingle”,  “Keyboard 
typing”, “Phone ring”, “Applause”, “Cough”, and “Speech”.

The meeting scenario adopted for this work assumes that 
there are two simultaneous acoustic sources in the room: one 
is always speech and the other is a specific AE. Taking into  
account  this  assumption,  our  UPC's  smart-room  has  been 
considered ideally subdivided in the two areas: left and right 
(Figure 1 (a)).  In  the left  part  the speaker  produces speech, 
and in the right  part the listener produces different types of 
AEs. This assumption allows us to analyze the left and right  
parts of the room independently for the extraction of acoustic 
source localization features.

The speech of the speaker was recorded separately and it  
was artificially overlapped with the database of isolated AEs. 
To do that, for each AE instance,  a segment  with the same 
length was extracted from a random position inside the speech 
signal.  The  overlapping  was  performed  with  5  different 
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Signal-to-Noise Ratios (SNRs): 20 dB, 10dB, 0dB, -10dB. -20 
dB, where speech is considered as “noise”.

Although the database with overlapped AEs is generated 
in an artificial way, it has some advantages:

a)  The  behavior  of  the  system  can  be  analyzed  for 
different levels of overlap.

b)  The  existing  databases  of  isolated  AEs  with  high 
number of instances can be used for evaluations. 

The metric  referred to as AED-ACC [7], which is the F-
score  (harmonic  mean  between  precision  and  recall),  is 
employed  to  assess  the  final  accuracy  of  the  presented 
algorithms. .

(a)

(b)

Figure  1: (a)  Top  view  of  the  room.  (b)  The  three  
categories along the vertical axis.

3. Feature extraction
A first  stage of the proposed multimodal AED system is to 
determine the most informative features related to the AEs of 
interest  for  every  input  modality.  Although  audio  and 
localization  are  originated  from the  same  physical  acoustic 
source, they are regarded as two different modalities.

3.1. Spectro-temporal audio features

A set of audio spectro-temporal  features,  like  those used in 
automatic  speech recognition,  is extracted to describe every 
audio frame. It consists of 16 frequency-filtered (FF) log filter-
bank  energies  with  their  first  time  derivatives  [10],  which 
represent the spectral envelope of the audio waveform within 
a  frame,  as  well  as  its  temporal  evolution.  In  total,  a  32-
dimensional feature vector is used. The FF feature extraction 
scheme consists in calculating a log filter-bank energy vector 
for each signal frame (in our experiments the frame length is 
30 ms with  20 ms shift,  Hamming window is applied)  and 
then  applying  a  FIR  filter  h(k) on  this  vector  along  the 
frequency  axis.  We  use  the  h(k)={1,  0,  -1}  filter  in  our 
approach. The end-points are taken into account. Notice that 
FF requires less computation than the classical MFCC.

3.2. Room model and localization features

To  enhance  the  recognition  results  of  the  baseline  system 
additional  features  are  proposed.  In  our  case,  as  the 
characteristics of the room are known beforehand (Figure 1 
(a)),  the position  (x,  y,  z) of the acoustic source may carry 

useful  information.  In  fact,  events  as  door  slam  and  door 
knock  can  only  appear  near  the  door,  so  a  feature  which 
describes the distance from the door is employed in this paper.  
On the other hand, usually each AE has an associated height, 
so the z position of the acoustic source may help to distinguish 
among AEs. The following categories are defined as indicated 
in Figure 1 (b): below table, on table, and above table.

The  acoustic  localization  system  used  in  this  work  is 
based on the SRP-PHAT [12] localization method,  which is 
known to perform robustly in most  scenarios.  In  short,  this 
algorithm consists of exploring the 3D space, searching for the 
maximum of the global contribution of the PHAT-frequency-
weighted cross-correlations from all the microphone pairs.

3.3. Video features

Tracking  of  multiple  people  present  in  the  analysis  area 
basically  produces  two  figures  associated  with  each  target: 
position  and  velocity.  The  human  velocity  is  readily 
associated  to  the  footsteps  AE.  Multiple  cameras  are 
employed to perform tracking of several people interacting in 
the scene,  by applying  the real-time  performance  algorithm 
presented in [13]. 

The motion visual analysis is also used to detect two other 
acoustic events: paper wrapping and door slam. A motion of a 
white object near a human in the scene can be associated to 
paper  wrapping (under  the assumption that  a paper sheet is 
distinguishable from the background color). The movement of 
the door can be well detected by the camera oriented towards 
the  door.  In  order  to  visually  detect  a  door  slam AE,  we 
exploited the a-priori knowledge about the physical location 
of the door. Analyzing the zenithal camera view, activity near 
the  door  can  be  addressed  by  means  of  a 
foreground/background  pixel  classification  [14].  A  high 
enough  amount  of  foreground  pixels  in  the  door  area  will 
indicate that a person has entered or exited,  hence allowing 
the visual detection of a door slam AE.

Detection of certain objects in the scene can be beneficial 
to detect AEs such as phone ringing, cup clinking or keyboard 
typing.  Unfortunately,  phones and cups are  too small  to be 
efficiently detected in the scene but, the case of a laptop can 
be  addressed.  In  our  case,  the  detection  of  laptops  is 
performed from a zenithal camera located at the ceiling of the 
scenario.  The  algorithm initially  detects  the  laptop’s  screen 
and keyboard separately and, in a second stage, assesses their 
relative position and size [15]. Once the position of the laptop 
is detected, the amount of “skin” pixels over this position will  
allow to decide about a keyboard typing AE.

4. Multimodal Acoustic Event 
Detection

Typically, low energy AEs such as paper wrapping, keyboard 
typing or footsteps are hard to detect using audio features, so 
both  the  visual  correlate  and  the  acoustic  localization 
measures  of  these  AEs  may  help  to  increase  the  detection 
performance. 

In  this  paper,  three  data  sources  are  combined  for 
multimodal AED. First, two information sources are derived 
from acoustic data processing: single channel audio provides 
audio  spectro-temporal  (AST)  features,  while  microphone 
array processing estimates the 3D location of the audio source. 
Second,  information  from  multiple  cameras  covering  the 
scenario  allows  extracting  cues  related  to  some  AEs 
(described  in  Section  3.3).  The  features  obtained  from  all 
modalities  are  combined  together  at  feature  and  decision 
levels (Figure 2).

We employ a one-against-all  detection strategy,  so only 
two  models  are  used  for  each  AE,  which  will  herewith  be 
called  “Class”  and  “non-Class”.  The  first  model  is  trained 
using  the  signals  coming  from  the  given  class  of  interest, 
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while the second model is trained using the rest of signals. In 
total, 12 HMM-based binary detectors working in parallel are 
needed to perform detection of all AEs [10].

 

Figure 2: System flowchart.

4.1. Fusion of different modalities

The  information  fusion  can  be  done  on  data,  feature,  and 
decision  levels.  Data  fusion  is  rarely  found  in multi-modal 
systems  because raw data  is  usually  not  compatible  among 
modalities.  For  instance,  audio  is  represented  by  one-
dimensional vector of samples, whereas video is organized in 
two-dimensional  frames.  Concatenating feature vectors from 
different  modalities  into  one  super  vector  is  an  easy  and 
simple way for combining audio and visual information. This 
approach  has  been  reported,  for  instance,  in  [16]  for 
multimodal speech recognition. An alternative to feature-level 
fusion is to model each different feature set separately, design 
a specialized classifier  for  this feature  set,  and combine the 
classifier  output  scores.  Each  such  classifier  acts  as  an 
independent “expert”,  giving its opinion about the unknown 
AE.  The  fusion  rule  then  combines  the  individual  experts’ 
match scores. This approach is referred here as decision-level 
fusion.  In  the  presented  work,  fusion  is  carried  out  on  the 
decision level using weighted arithmetical mean (WAM) and 
fuzzy  integral  (FI)  [11]  fusion  approaches.  Unlike  non-
trainable  fusion  operators  (mean,  product),  the  statistical 
approaches  WAM  and  FI  avoid  the  assumption  of  equal 
importance  of  information  sources.  Moreover  the  FI  fusion 
operator also takes into account the interdependences among 
modalities.

4.1.1. Feature-level fusion approach

In  this work we  use a HMM-GMM approach with  feature-
level  fusion,  which  is  implemented  by  concatenating  the 
feature sets Xs from S different modalities in one super-vector:
 

S21 XXXZ ∪∪∪= ... (1)

Then,  the  likelihood  of  that  observation  super-vector  at 
state j and time t is calculated as:

.);()( ∑=
m

mZ Nptb mmt Σ;μZ (2)

where  N(.;μ;Σ) is  a  multi-variate  Gaussian  pdf  with  mean 
vector  μ and  covariance  matrix  Σ,  and  pm are  the  mixture 
weights.  Assuming  uncorrelated  feature  streams,  diagonal 
covariance matrices are considered.

Feature-level fusion becomes a difficult task when some 
features  are  missing.  Although  the  AST  features  can  be 
extracted at every time instance, the feature that corresponds 
to the localization of acoustic source has an undefined value 
in the absence of any acoustic activity. In our experiments we 
substitute  the  missing  features  (x,  y,  z  coordinates)  with  a 
predefined  “synthetic”  value  (we  use  -1  value  in  our 
experiments).  In  this  case  we  explicitly  assign  the  3D 
“position” of the silence event to have the value (-1, -1, -1). 

4.1.2. Decision-level fusion approach

The decision-level fusion process is schematically depicted in 
Figure 3. First,  a HMM segmentation based on the spectro-
temporal  features  is  performed  to  find  all  non-silence 
segments  in  the  input  audio.  Given  the  “Class”  and  “non-
Class”  HMM  models  the  log-likelihood  ratio  (LLR)  is 
obtained for each non-silence segment  Si and each modality 
separately.  A high  positive  LLR  score  would  mean  a  high 
confidence  that  the  non-Silence  segment  belongs  to  the 
“Class”,  while  a  low  negative  score  would  mean  that  the 
segment more likely belongs to “non-Class”. A value close to 
zero indicates low confidence of decision.  Furthermore, the 
obtained scores are normalized to be in the range [0…1] and 
their sum equal to 1. Then the normalized values are fused 
together using either Weighted Arithmetical Mean (WAM) or 
Fuzzy Integral (FI) fusion operators.  To estimate the weights 
in WAM operator we use constrained regression approach to 
minimize the variance of error on development data [11]. The 
individual  weights  for  the  fuzzy  integral  fusion  are  also 
trained  on  development  data  using  the  gradient  descent 
training algorithm. 

Figure 3: Flowchart of decision-level fusion.

5. Experiments and results  
The detection results corresponding to two mono-modal AED 
systems based on AST and video features,  respectively,  are 
presented in Figure 4. The results for the video-based system 
are presented as an average accuracy score for those AEs for 
which the video counterpart is taken into consideration. 

Figure 4: Mono-modal AED results.
Note the recognition results do not change  for  different 

SNR conditions since the video  signals  are  not  affected  by 
overlapped  speech.  We do not  present  results  for  the  AED 
system based  on localization  features  since  the  information 
about the position of the acoustic source enables to detect just 
the category but not the AE within it. As we see from Figure 
4,  the  recognition  results  of  the  baseline  system  decrease 
significantly for low SNRs.

The  average  relative  improvement  obtained  by  the 
multimodal system with respect to the baseline system (that 
uses the AST features only) for different fusion techniques is 
displayed in Figure 5. The feature-level fusion performs better 
for  all  AEs  than  both  WAM  and  FI  decision-level  fusion 
approaches,  and  the  both  decision-level  fusion  techniques 
showed similar results in our experiments.
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Figure 5: Average relative improvement obtained by the  
multimodal system.

The next Figure 6 summarizes (averaged over all Aes) the 
relative  improvement  obtained  with  the  feature-level  and 
decision-level  (using  fuzzy  integral)  fusion  techniques  for 
different  levels of SNRs.  According to these results,  video 
signals as well as signals from arrays of microphones showed 
to be a useful additional source of information to cope with 
the problem of AED in overlapping conditions.

Figure 6: The relative improvement obtained from multimodal  
features for different SNRs.

6. Conclusions
In  this  paper,  a  comparison  between  multimodal  systems 
based on a feature-level and decision-level fusion approaches 
have been presented. The acoustic data is processed to obtain 
a set  of spectro-temporal  features  and the three localization 
coordinates  of  the sound source.  Additionally,  a  number of 
features  are  extracted  from  the  video  signals  by  means  of 
object  detection,  motion  analysis,  and  multi-camera  person 
tracking to represent the visual counterpart of several AEs.

The  obtained  results  showed  that  although  in  clean 
conditions  the  video  and  localization  information  does  not 
contribute significantly, more improvement can be achieved in 
the  conditions  where  the audio signals  are  overlapped  with 
speech.

Future  work  will  be  devoted  to  extend  the  multimodal 
AED system to other classes as well as the elaboration of new 
multimodal features.
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