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1. Introduction 

For autonomous navigation in workspace, a mobile robot has to be able to know its position 
in this space in a precise way that means that the robot must be able to self-localize to move 
and perform successfully the different entrusted tasks. At present, one of the most used 
systems in open spaces is the GPS navigation system; however, in indoor spaces (factories, 
buildings, hospitals, warehouses…) GPS signals are not operative because their intensity is 
too weak. The absence of GPS navigation systems in these environments has stimulated the 
development of new local positioning systems with their particular problems. Such systems 
have required in many cases the installation of beacons that operate like satellites (similar to 
GPS), the use of landmarks or even the use of other auxiliary systems to determine the 
robot’s position.  
The problem of mobile robot localization is a part of a more global problem because in 
autonomous navigation when a robot is exploring an unknown environment, it usually 
needs to obtain some important information: a map of the environment and the robot’s 
location in the map. Since mapping and localization are related to each other, these two 
problems are usually considered as a single problem called simultaneous localization and 
mapping (SLAM). The problem of Simultaneous Localization and Map Building is a 
significant open problem in mobile robotics which is difficult because of the following 
paradox: to localize itself the robot needs the map of the environment, and, for building a 
map the robot location must be known precisely. 
Mobile robots use different kinds of sensors to determine their position: for instance it is very 
common the use of odometric or inertial sensors, however it is remarkable to consider that in 
wheel slippage, sensor drifts a noise causing error accumulation, thus leading to erroneous 
estimates. Another kind of external sensors used in robotics in order to solve localization are 
for instance CCD cameras, infrared sensor, ultra sonic sensor, mechanical wave and laser. 
Other sensors recently applied are the instruments sensible to the magnetic field known as the 
electronic compass (Navarro & Benet, 2009). Mobile robotics are interested on those able to 
measure the Earths magnetic field and express it through an electrical signal. One type of 
electronic compass is based on magneto-resistive transducers, whose electrical resistance 
varies with the changes on the applied magnetic field. This type of sensors presents 
sensitivities below 0.1 milligauss, with response times below 1 sec, allowing its reliable use in 
vehicles moving at high speeds (Caruso, 2000). In SLAM some applications with electronic 
compass have been developed working simultaneously with other sensors such as artificial 
vision (Kim et al., 2006) and ultrasonic sensors (Kim et al., 2007). 
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In mobile robotics, due to the use of different sensors at the same time to provide 
localization information the problem of data fusion rises and many algorithms have been 
implemented. Multisensor fusion algorithms can be broadly classified as follows: estimation 
methods, classification methods, inference methods, and artificial intelligence methods (Luo 
et al., 2002); in the latter are remarkable neural networks, fuzzy and genetic algorithms 
(Begum et al., 2006); (Brunskill & Roy, 2005). Related with the provided sensors information 
processing in SLAM context, many works can be found, for instance in (Di Marco et al., 
2000), where estimation of the position of the robot and the selected landmarks are derived 
in terms of uncertainty regions, under the hypothesis that the errors affecting all sensor 
measurements are unknown but bounded, or in (Begum et al., 2006) where an algorithm 
processes sensor data incrementally and therefore, has the capability to work online. 
Therefore a comprehensive collection of researches have been reported on SLAM, most of 
which stem from the pioneer work of (Smith et al. 1990). This early work provides a Kalman 
Filter (KF) based statistical framework for solving SLAM. The KF based SLAM algorithms 
require feature extraction and identification from sensor data, for estimating the pose and 
the parameters. In the situation that the system noise and measurement obey a Gaussian 
amplitude distribution, KF uses the state recursive equation that is with the noise estimates 
the optimal attitude of mobile robots. But there would be generated errors of localization, if 
the noise does not obey the distribution. KF is also able to the merge low graded multisensor 
data models. Particle filter is the next probabilistic technique that has earned popularity in 
SLAM literature. The hybrid SLAM algorithm proposed in (Thrun, 2001) uses particle filter 
for posterior estimation over a robot’s poses and is capable to map large cyclic 
environments. Another method of fusion broadly used is Extended Kalman Filter (EKF); the 
EKF can be used where the model is nonlinear, but it can be suitably linearized around a 
stable operating point. 
Several systems have been researched to overcome the localization limitation. For example, 
the Cricket Indoor Location (Priyantha, 2000) which relies on active beacons placed in the 
environment. These beacons transmit simultaneously two signals (a RF and an ultrasound 
wave). Passive listeners mounted, for example, on mobile robots can, by knowing the 
difference in propagation speed of the RF and ultrasound signals, estimate their own 
position in the environment. GSM and WLAN technologies can also be used for localization. 
Using triangulation methods and measuring several signal parameters such as the signal’s 
angle and time of arrival, it becomes possible to estimate the position of a mobile 
transmitter/receiver in the environment (Sayed et al., 2005). In (Christo et al., 2009), a 
specific architecture is suggested for the use of multiples iGPS Web Services for mobile 
robots localization. 
Most of the mobile robot’s localization systems are based on robot vision, and robot vision is 
also a hot spot in the research of robotics. Camera which is the most popular visual sensor is 
widely used for the localization of mobile robots just now. However some difficulties occur 
because of the limitation of camera’s visual field and the dependence on light condition. If 
the target is not in the visual field of camera or the lighting condition is poor, the visual 
localization system of the mobile robot cannot work effectively. Nowadays, the role of 
acoustic perception in autonomous robots, intelligent buildings and industrial environments 
is increasingly important and in the literature there are different works (Yang et al., 2007); 
(Mumolo et al., 2003); (Csyzewski, 2003). 
Comparing to the study on visual perception, the study on auditory is still in its infancy 
stage. The human auditory system is a complex and organic information processing system, 
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it can feel the intensity of sound and space orientation information. Compared with vision, 
audition has several unique properties. Audition is omni-directional. The sound waves have 
strong diffraction ability; audition also is less affected by obstacles. Therefore, the audio 
ability possessed by robot can make up the restrictions of other sensors such as limited view 
or the non-translucent obstacles. Nevertheless, audio signal processing presents some 
particular problems such as the effect of reverberations and noise signals, complex 
boundary conditions and near-field effect, among others, and therefore the use of audio 
sensors together with other sensors is common to determine the position and also for 
autonomous navigation of a mobile robot, leading to a problem of data fusion. There are 
many applications that would be aided by the determination of the physical position and 
orientation of users. As an example, without the information on the spatial location of users 
in a given environment, it would not be possible for a service robot to react naturally to the 
needs of the user. To localize a user, sound source localization techniques are widely used. 
Such techniques can also help a robot to self-localize in its working area. Therefore, the 
sound source localization (one or more sources) has been studied by many researchers (Ying 
& Runze, 2007); (Sasaki et al., 2006); (Kim et al., 2009). Sound localization can be defined as 
the process of determining the spatial location of a sound source based on multiple 
observations of the received sound signals. Current sound localization techniques are 
generally based upon the idea of computing the time difference of arrival (TDOA) 
information with microphone arrays (Brandstein & Silverman, 1997); (Knapp & Carter, 
1976), or interaural time difference (ITD) (Nakashima & Mukai, 2005). The ITD is the 
difference in the arrival time of a sound source between two ears, a representative 
application can be found in (Kim & Choi, 2009) with a binaural sound localization system 
using sparse coding based ITD (SITD) and self-organizing map (SOM). The sparse coding is 
used for decomposing given sounds into three components: time, frequency and magnitude, 
and the azimuth angle are estimated through the SOM. Other works in this field use 
structured sound sources (Yi & Chu-na, 2010) or the processing of different audio features 
(Rodemann et al., 2009), among other techniques.  
The works that authors present in this Chapter are developed with audio signals generated 

with electric machines that will be used to mobile robots localization in industrial 

environments. A common problem encountered in industrial environments is that the 

electric machine sounds are often corrupted by non-stationary and non-Gaussian 

interferences such as speech signals, environmental noise, background noise, etc. 

Consequently, pure machine sounds may be difficult to identify using conventional 

frequency domain analysis techniques as Fourier transform (Mori et al., 1996), and statistical 

techniques such as Independent Component Analysis (ICA) (Roberts & Everson, 2001). 

The wavelet transform has attracted increasing attention in recent years for its ability in 

signal features extraction (Bolea et al., 2003); (Mallat & Zhang, 1993), and noise elimination 

(Donoho, 1999). While in many mechanical dynamic signals, such as the acoustical signals of 

an engine, Donoho’s method seems rather ineffective, the reason for their inefficiency is that 

the feature of the mechanical signals is not considered. Therefore, when the idea of 

Donoho’s method and the sound feature are combined, and a de-noising method based on 

Morlet wavelet is added, this methodology becomes very effective when applied to an 

engine sound detection (Lin, 2001). In (Grau et al., 2007), the authors propose a new 

approach in order to identify different industrial machine sounds, which can be affected by 

non-stationary noise sources. 
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It is also important to consider that non-speech audio signals have the property of non-
stationary signals in the same way that many real signals encountered in speech processing, 
image processing, ECG analysis, communications, control and seismology. To represent the 
behaviour of a stationary process is common the use of models (AR, ARX, ARMA, ARMAX, 
OE, etc.) obtained from the experimental identification (Ljung, 1987). The coefficient 
estimation can be done with different criteria: LSE, MLE, among others. But in the case of 
non-stationary signals the classical identification theory and its results are not suitable.  
Many authors have proposed different approaches to modelling this kind of non-stationary 
signals, that can be classified: i) assuming that a non stationary process is locally stationary 
in a finite time interval so that various recursive estimation techniques (RLS, PLR, RIV, etc.) 
can be applied (Ljung, 1987); ii) a state space modelling and a Kalman filtering; iii) 
expanding each time-varying parameter coefficients onto a set of basis sequences 
(Charbonnier et al., 1987); and iv) nonparametric approaches for non-stationary spectrum 
estimation such a local evolving spectrum, STFT and WVD are also developed to 
characterize non-stationary signals (Kayhan et al., 1994). 
To overcome the drawbacks of the identification algorithms, wavelets could be also 

considered for time varying model identification. The distinct feature of a wavelet is its 

multiresolution characteristic that is very suitable for non-stationary signal processing 

(Tsatsanis & Giannakis, 1993). 

The work to be presented in this Chapter will investigate different approaches based on the 

study of audio signals with the purpose of obtaining the robot location (in x-y plane) using 

as sound sources industrial machines. For their own nature, these typical industrial 

machines produce a stationary signal in a certain time interval. These resultant stationary 

waves depend on the resonant frequencies in the plant (depending on the plant geometry 

and dimensions) and also on the different absorption coefficients of the wall materials and 

other objects present in the environment. 

A first approach that authors will investigate is based on the recognition of patterns in the 

acquired audio signal by the robot in different locations (Bolea et al., 2008). These patterns 

will be found through a process of feature extraction of the signal in the identification 

process. To establish the signal models the wavelet transform will be used, specifically the 

Daubechies wavelet, because it captures very well the characteristics and information of the 

non-speech audio signals. This set of wavelets has been extensively used because its 

coefficients capture the maximum amount of the signal energy. 

A MAX model (Moving Averaging Exogenous) represents the sampled signals in different 

points of the space domain because the signals are correlated. We use the closest signal to 

the audio source as signal input for the model. Only the model coefficients need to be stored 

to compare and to discriminate the different audio signals. This would not happen if the 

signals were represented by an AR model because the coefficients depend on the signal 

itself and, with a different signal in every point in the space domain, these coefficients 

would not be significant enough to discriminate the audio signals. When the model 

identification is obtained by wavelets transform, the coefficients that do not give 

information enough for the model are ignored.  

The eigenvalues of the covariance matrix are analyzed and we reject those coefficients that 
do not have discriminatory power. For the estimation of each signal the approximation 
signal and its significant details are used following the next process: i) model structure 
selection; ii) model parameters calibration with an estimation model (the LSE method can be 
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used for its simplicity and, furthermore a good identified model coefficients convergence is 
assured); iii) validation of the model. 
Another approach that will also be investigated is based on the determination of the transfer 
function of a room, denoted RTF (Room Transfer Function), this model is an LPV (Linear 
Parameters Varying) because the parameters of the model vary along the robot’s navigation 
(Manzanares et al., 2009).  
In an industrial plant, there are different study models in order to establish the transmission 
characteristics of a sound between a stationary audio source and a microphone in closed 
environments: i) the beam theory applied to the propagation of the direct audio waves and 
reflected audio waves in the room (Kinsler et al., 1995); ii) the development of a lumped 
parameters model similar to the model used to explain the propagation of the 
electromagnetic waves in the transmission lines (Kinsler et al., 1995) and the study of the 
solutions given by the wave equation (Kuttruff, 1979). Other authors propose an RTF 
function that carries out to industrial plant applied sound model (Haneda et al., 1992); 
(Haneda et al., 1999); (Gustaffson et al., 2000). In these works the complexity to achieve the 
RTFs is evident as well as the need of a high number of parameters to model the complete 
acoustic response for a specific frequency range, moreover to consider a real environment 
presents an added difficulty. 
In this research we study how to obtain a real plant RTF. Due that this RTF will be used by a 
mobile robot to navigate in an industrial plant, we have simplified the methodology and our 
goal is to determinate the x-y coordinates of the robot. In such a case, the obtained RTF will 
not present a complete acoustic response, but will be powerful enough to determine the 
robot’s position.  

2. Method based on the recognition of patterns of the audio signal 

This method is based on the recognition of patterns in the acquired audio signal by the robot 
in different locations, to establish the signals models the Daubechies wavelets will be used. 
A MAX model (Moving Averaging Exogenous) represents the sampled signals in different 
points of the space domain, and for the estimation of each signal the approximation signal 
and its significant details are used following the process steps mentioned previously: i) 
model structure selection; ii) model parameters calibration with an estimation model; iii) 
validation of the model. 
Let us consider the following TV-MAX model and be Si = y(n), 

 
0 0

( ) ( ; ) ( ) ( ; ) ( )
q r

k k
y n b n k u n k c n k e n k

= =
= − + −∑ ∑  (1) 

where y(n) is the system output, u(n) is the observable input, which is assumed as the closest 
signal to the audio source, and e(n) is a noise signal. The second term is necessary whenever 
the measurement noise is colored and needs further modeling. The coefficients for the 
different models will be used as the feature vector, which can be defined as XS , where 

 
1) 1)

1 2 1 2( , ,... ..., , ,... )
q r

SX b b c c
+ +

=  (2) 

where q+1 and r+1 are the amount of b and c coefficients respectively. From every input 
signal a new feature vector is obtained representing a new point in the (q+r+2)-dimensional 
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feature space, fs. For feature selection, it is not necessary to apply any statistical test to verify 
that each component of the vector has enough discriminatory power because this step has 
been already done in the wavelet transform preprocessing.   
This feature space will be used to classify the different audio signals entering the system. 
Some labeled samples with their precise position in the space domain are needed. In this 
chapter a specific experiment is shown. When an unlabeled sample enters the feature space, 
the minimum distance to a labeled sample is computed and this measure of distance will be 
used to estimate the distance to the same sample in the space domain. For this reason a 
transformation function fT is needed which converts the distance in the feature space in the 
distance in the space domain, note that the distance is a scalar value, independently of the 
dimension of the space where it has been computed. 
The Euclidean distance is used, and the distance between to samples Si and Sj in the feature 
space is defined as 

 ( ) ( ) ( )2 2

0 0
,

i j i j

q r

fs i j kS kS kS kS
k k

d S S b b c c
= =

= − + −∑ ∑  (3) 

where bkSi and ckSi are the b and c coefficients, respectively, of the wavelet transform for the 
Si signal. It is not necessary to normalize the coefficients before the distance calculation 
because they are already normalized intrinsically by the wavelet transformation. 
Because there exist the same relative distances between signals with different models, and 
with the knowledge that the greater the distortion the farther the signal is from the audio 
source, we choose those correspondences (dxy, dfs) between the samples that are closest to the 
audio source equidistant in the dxy axis. These points will serve to estimate a curve of n-
order, that is, the transformation function fT. An initial approximation for this function is a 
polynomial of 4th order and there are several solutions for a unique distance in the feature 
space, that is, it yields different distances in the x-y space domain.  
 

 

Fig. 1. Localization system in space domain from non-speech audio signals. 

We solve this drawback adding a new variable: previous position of the robot. If we have an 
approximate position of the robot, its speed and the computation time between feature 
extraction samples, we will have a coarse approximation of the new robot position, coarse 
enough to discriminate among the solutions of the 4th-order polynomial. In the experiments 
section a waveform for the fT function can be seen, and it follows the model from the sound 
derivative partial equation proposed in (Kinsler et al., 1995) and (Kuttruff, 1979). 
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In Figure 1 the localization system can be shown, including the wavelet transformation 
block, the modeling blocks, the feature space and the spatial recognition block which has as 
input the environment of the robot and the function fT. 

2.1 Sound source angle detection 

As stated in the Introduction section, in order to locate sound sources several works have 
been developed using a microphone array. Because we work with a unique source of sound, 
and in order to simplify the number of sensors, we propose a system that detects the 
direction in which the maximum sound intensity is received and, in this way, emulating the 
response of a microphone array located in the perimeter of a circular platform. To achieve 
this effect we propose a turning platform with two opposed microphones. The robot 
computes the angle respect the platform origin (0º) and the magnetic north of its compass. 
Figure 2 depicts the blocks diagram of the electronic circuit to acquire the sound signals. The 
signal is decoupled and amplified in a first stage in order to obtain a suitable range of work 
for the following stages. Then, the maximum of the mean values of the rectified sampled 
audio signal determines the position of the turning platform. 
 

 

Fig. 2. Angle detection block diagram. 

There are two modes of operation: looking for local values or global values. To find the 
maximum value the platform must turn 180º (because there are two microphones), this 
mode warranties that the maximum value is determined but the operation time is longer 
than using the local value detection, in which the determination is done when the  
system detects the first maximum. In most of the experiments this latter operation mode is 
enough. 

2.2 Spatial recognition 

This distance computation between the unlabelled audio sample and labeled ones is repeated 

for the two closest samples to the unlabelled one. Applying then the transformation function fT 

two distances in the x-y domain are obtained. These distances indicate where the unlabelled 

sample is located. Now, with a simple process of geometry, the position of the unlabelled 

sample can be estimated but with a certain ambiguity, see Figure 3. In (Bolea et al., 2003) we 

used the intersection of three circles, which theoretically gives a unique solution, but in 

practice these three circles never intersect in a point but in an area that induces to an 

approximation, and thus, to an error (uncertainty) in the localization point. 

The intersection of two circles (as shown in Figure 3) leads to a two-point solution. In the 

correct discrimination of these points the angle between the robot and the sound source is 

computed. 
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Since the robot computes the angle between itself and the sound source, the problem is to 
identify the correct point of the circles intersection. Figure 4 shows the situation. I1 and I2 are 
the intersection points. For each point the angle respect the sound source is computed (α1 
and α2), because the exact source position is known (xs, ys). 
 

x

y

S
k

Intersection area

Centroid

Si

Sj
Sp

r
i

rj

rp

 

x

y

Sj
Sp

rj

rp

Sk

Possible 

solutions

 

Fig. 3. Geometric process of two (right) or three (left) circles intersection to find the position 
of unlabeled sample Sk. 
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Fig. 4. Angles computation between ambiguous robot localization and sound source. 

Angles α1 and α2 correspond to:  

 α α
⎛ ⎞− −
⎜ ⎟= = ⎜ ⎟− −⎝ ⎠

1 2

1 2

1 2,      
I s I s

I s I s

y y y y
arctg arctg

x x x x
 (4) 

These angles must be corrected respect the north in order to have the same offset than the 
angle computed aboard the robot: 

 αFN1 = α1 - αF-N;   αFN2 = α2 - αF-N (5) 

being αF-N the angle between the room reference and the magnetic north (previously 
calibrated). 
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Now, to compute the correct intersection point is only necessary to find the angle which is 
closer to the angle computed on the robot with the sensor. 

3. Method based on the LPV model with audio features 

In this second approach we study how to obtain a real plant RTF. Due that this RTF will be 
used by a mobile robot to navigate in an industrial plant, we have simplified the 
methodology and our goal is to determinate the x-y coordinates of the robot. In such a case, 
the obtained RTF will not present a complete acoustic response, but will be powerful 
enough to determine the robot’s position. The work investigates the feasibility of using 
sound features in the space domain for robot localization (in x-y plane) as well as robot’s 
orientation detection.  

3.1 Sound model in a closed room 

The acoustical response of a closed room (with rectangular shape), where the dependence 
with the pressure in a point respect to the defined (x,y,z) position is represented by the 
following wave equation: 

 
2 2 2

2
2 2 2

0x y z

p p p
L L L k p

x y z

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (6) 

Lx, Ly and Lz denote the dimensions of the length, width and height of the room with ideally 
rigid walls where the waves are reflected without loss, Eq. (6) is rewritten as: 

 )()()(),,( 321 zpypxpzyxp =  (7) 

when the evolution of the pressure according to the time is not taken into account. 
Then Eq. (7) is replaced in Eq. (6), and three differential equations can be derived and it is 
the same for the boundary condition. For example, p1 must satisfy the equation: 

 
01

2

2

1
2

=+ pk
dx

pd
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(8)

 

With boundary conditions in x = 0 and x = Lx: 

01 =
dx

dp

 

kx, ky and kz constants are related by the following expression: 

 
2222 kkkk zyx =++
 

(9)
 

Equation (8) has as general solution:  

 )sin()cos()( 111 xkBxkAxp xx +=  (10) 

Through Eq. (8) and limiting this solution to the boundary conditions, constants in Eq. (10) 
take the following values: 
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;   and 
yx z

x y z
x y z

nn n
k k k

L L L

ππ π
= = =  

being nx, ny and nz positive integers. Replacing these values in Eq. (10) the wave equation 
eigenvalues are obtained: 
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The eigenfunctions or normal modes associated with these eigenvalues are expressed by: 
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being C1 an arbitrary constant and introducing the variation of pressure in function of the 
time by the factor ejwt. This expression represents a three dimensional stationary wave space 
in the room. Eigenfrequencies corresponding to Eq. (11) eigenvalues can be expressed by: 
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where c is the sound speed. Therefore, the acoustic response of any close room presents 
resonance frequencies (eigenfrequencies) where the response of a sound source emitted in 
the room at these frequencies is the highest. The eigenfrequencies depend on the geometry 
of the room and also depend on the materials reflection coefficients, among other factors. 
Microphones obtain the environmental sound and they are located at a constant height (z1) 
respect the floor, and thus the factor: 

 1cos z

z

n z

L

π⎛ ⎞
⎜ ⎟
⎝ ⎠

 (14) 

is constant and therefore, if temporal dependency pressure respect the time is not 
considered, Eq. (12) is: 

 
2( , ) .cos .cos

x y z
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n n n
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n yn x
p x y C

L L

ππ ⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (15) 

In our experiments, Lx = 10.54m, Ly = 5.05m and Lz = 4m, considering a sound speed 
propagation of 345m/s. When Eq. (15) is applied in the experiments rooms, for mode (1, 1, 

www.intechopen.com



Robust Audio Localization for Mobile Robots in Industrial Environments   

 

127 

2), this equation indicates the acoustic pressure in the rooms depending on the x-y robot’s 
position, and this is: 

 2( , ) .cos .cos
10,54 5,05x y zn n n

yx
p x y C

ππ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (16) 

With these ideal conditions and for an ideal value for constant C2 = 2, the theoretic acoustic 
response in the rooms for this absolute value of pressure, and for this propagation mode, 
can be seen in Figure 5. 
 

 

Fig. 5. Room response for propagation mode (1,1,2). 

The shape of Figure 5 would be obtained for a sound source that is excited only this 
propagation mode, really the acoustic response will be more complex as we increase the 
propagation modes excited by the sound source. 

3.2 Transfer function in a closed room 

In (Gustaffson et al., 2000) a model based in the sum of second order transfer functions is 
proposed; these functions have been built between a sound source located in a position ds 
emitting an audio signal with a specific acoustic pressure Ps and a microphone located in dm 
which receives a signal of pressure Pm; each function represents the system response in front 
to a propagation mode. 
The first contribution of this work is to introduce an initial variation to this model considering 
that the sound source has a fixed location, and then this model can be expressed as: 

 
[ ]

2 2
1

( , )

( ) 2

M
mm m

ns n n n

K d sP d s

P s s sξ ω ω=
= ∑

+ +
 (17) 

Because our objective is not to obtain a complete model of the acoustic response of the 
industrial plant, it will not be necessary to consider all the propagation modes in the room 
and we will try to simplify the problem for this specific application without the need to 
work with models of higher order. 
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To implement this experiment the first step is to select the frequency of interest by a 
previous analysis of the audio signal frequency spectrum emitted by the considered sound 
source (an industrial machine). Those frequency components with a significant acoustic 
power will be considered with the only requirement that they are close to one of the 
resonant frequencies of the environment. The way to select those frequencies will be 
through a band-pass digital filter centered in the frequency of interest. Right now, the term 
M in the sum of our model will have the value N, being this new value the propagation 
modes resulting from the filtering process. 
The spectra of the sound sources used in our experiments show an important component 
close to the frequency of 100Hz for the climatic chamber, and a component of 50Hz for the 
PCB insulator, see Figure 10 (right) and Figure 11 (right). 
For a concrete propagation mode, the variation that a stationary audio signal receives at 
different robot’s position can be modeled, this signal can be smoothed by the variation of the 
absorption coefficient of the different materials that make up the objects in the room; those 

parameters are named K[dm] and ξ[ dm], and Eq. (17) results: 
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mm m

m
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H s d

P s s d sξ ω ω=
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 (18) 

where the gain (K), smooth coefficient (ξn) and the natural frequency (ωn) of the transfer 
function room system depend on the room characteristics: dm, nx, ny, Lx, and Ly, yielding an 
LPV indoor model. 
Using Eq. (17) the module of the closed room in a specific transmission mode ωn1 is: 

 1 1
1 1

( , )
2

n m
n n

K
H j dω

ξ ω
=  (19) 

The room response in the propagation mode ωn1 (z1 is a constant), assuming that the audio 
source only emits a frequency ωn1 for a specific coordinate (x,y) of the room, is: 

 

,
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n yP n x
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P L L
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 (20) 

with 
1

2 2
n nx nyf f f= + , 

1 12n nfω π= . 

Equaling Eq. (19) and (20), it results: 
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 (21) 

If the filter is non-ideal then more than one transmission mode could be considered and 
therefore the following expression is obtained: 
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 (22) 
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The best results in the identification process in order to determine the robot’s position have 
been obtained, for each considered propagation mode, keeping K[dm] coefficient constant 
and observing the different variations in the acquired audio signal in the smoothing 

coefficient ξ[dm]. 
If the zeros of the system are forced to be constant in the identification process for different 
robot’s locations, and we admit that the emitted signal power by the sound sources is also 
constant and the audio signal power acquired with the microphones varies along the robot’s 
position, then the pole positions in the s plane, for the considered propagation mode, will 
vary in the different robot’s positions and their values will be: 

 [ ] [ ] [ ]( )21 1n m n m n n n ms d d dξ ω ω ξ= − + −  (23) 

 [ ] [ ] [ ]( )22 1n m n m n n n ms d d dξ ω ω ξ= − − −  (24) 

It is worth noting that this model of reduced order gives good results in order to determine 
the robot’s position and, although it does not provide a complete physical description of the 
evolution of the different parameters in the acoustic response for the different robot’s 
positions, we can admit that according to the physical model given by the wave equation in 
Eq. (16), the modules of the proposed transfer functions will vary following a sinusoidal 
pattern and the pole position in the s plane will show those variation in the same fashion. 

4. Experiments and discussions 

4.1 Method based on the recognition of patterns of the audio signal 

In the first proposed method based on the recognition of patterns of the audio signal, in 
order to prepare a setting as real as possible, we have used a workshop with a CNC milling 
machine as non-speech audio source. The room has a dimension of 7 meters by 10 meters 
and we obtain 9 labeled samples (from S1 to S9), acquired at regular positions, covering the 
entire representative workshop surface. With the dimensions of the room, these 9 samples 
are enough because there is not a significant variance when oversampling. 
In Figure 6 the arrangement of the labelled samples can be observed. The robot enters the 
room, describes a predefined trajectory and gets off. In its trajectory the robot picks four 
unlabeled samples (audio signals) that will be used as data test for our algorithms (S10, S11, 
S12 and S13). The sample frequency is 8 kHz following the same criteria as (Bielińska, 2002) in 
order to choose the sampling frequency because its similarity to speech signals.  
First, in order to obtain the 9 models coefficients corresponding to the 9 labeled non-
stationary audio signals, these signals are decomposed by the wavelet transform in 4 levels, 
with one approximation signal and 4 detail signals, Figure 7. For the whole samples, the 
relevance of every signal is analyzed. We observe the more significant decomposition to 
formulate the prediction model, that is, those details containing the more energy of the 
signal. With the approximation (A4i) and the detail signal of 4th level (D4i) is enough to 
represent the original signal, because the mean and deviation for the D3i, D2i and D1i detail 
signals are two orders of magnitude below A4i and D4i. Figure 7 (bottom left) shows the 
difference between the original signal and the estimated signal with A4i and D4i. Practically 
there is no error when overlapped. In this experiment we have chosen the Daubechies 45 
wavelets transform because it yields good results in identification (Tsatsanis & Giannakis, 
1993), after testing different Daubechies wavelets. 
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After an initial step for selecting the model structure, it is determined that the order of the 
model has to be 20 (10 for the A4i and 10 for D4i coefficients), and an MAX model has been 
selected, for the reasons explained above. When those 9 models are calibrated, they are 
validated with the error criteria of FPE (Function Prediction Error) and MSE (Mean Square 
Error), yielding values about 10e(-6) and 5% respectively using 5000 data for identification 
and 1000 for validation. Besides, for the whole estimated models the residuals 
autocorrelation and cross-correlation between the inputs and residuals are uncorrelated, 
indicating the goodness of the models. 
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Fig. 6. Robot environment: labeled audio signals and actual robot trajectory with unlabelled 
signals (S10, S11, S12, S13). 

These coefficients form the feature space, where the relative distances among all the samples 
are calculated and related in the way explained in section 2 in order to obtain the transform 
function fT. With these relations, the curve appearing in Figure 8 is obtained, under the 
minimum square error criteria, approximated by a 4th-order polynomial with the following 
expression: 

( ) 4 3 29.65 10 1.61 (5) 8.49 (2) 144.9 107.84T fs xy xy xy xyf d e d e d e d d= = + − + +  

which is related with the solution of the sound equation in (Kinsler et al., 1995); (Kuttruff, 
1979) with a physical meaning. 
With the transform function fT we proceed to find the two minimum distances in the feature 
space to each unlabelled sample respect the labeled ones, that is, for audio signals S10, S11, S12 
and S13, respect to S1, ..., S9. 
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We obtain four solutions for each signal because each distance in the feature space crosses 
four times the fT curve. In order to discard the false solutions we use the previous position 
information of the robot, that is the (xi,yi)prev point. We also know the robot speed (v = 
15cm/sec) and the computation time between each new position given by the system, which 
is close to 3 sec. If we consider the movement of the robot at constant speed, the new 
position will be (xi,yi)prev ± (450,450)mm. 
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Fig. 7. (Up) Multilevel wavelet decomposition of a non-speech signal (S2) by an 
approximation signal and four signal details; (down) comparison between (left) original 
signal (A4+D4) and the estimated signal and (right) its error for S11. 
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Fig. 8. Transform function fT. 

With this information we choose the solution that best fits with the crossing circles solution 
and the possible robot movement. In order to solve the ambiguity of the two intersection 
points, the angle that the robot has computed (γ) is compared with the angles (αFN1, αFN2) 
analytically computed between the two intersection points and the sound source (corrected 
respect the magnetic north). The solution is the angle αFNi closer to γ. The uncertainty of this 
location is bounded by d*sin(ε), being ε the difference between the actual angle of the robot 
respect the sound source and the max{αFNi, γ}, and d is the actual distance of the robot to the 
sound source. In our experiments, we have verified that ε is limited to 1.9º for d=1m and 1º 
for d=2.5m (between 3.3 and 4.3 cm of absolute error in localization). 

4.2 Method based on the LPV model 

In the second proposed method based on the LPV model, the methodology applied to 
determine the robot’s position is the following: 
1. The robot acquires an audio signal in its current position and performs an identification 

process taking as input signal the filtered sound source signal and as output signal the 
acquired and filtered signal. The parameters corresponding to the obtained poles in this 
identification process will be the features components for further steps.  

2. The Euclidean distances in the feature space are calculated between the current position 
and the different labeled samples.  

3. The two first samples are chosen and the distance between them and the robot’s 
position are then calculated. Through a transformation function fT, in the same way that 
the previous approach, the distance in the feature domain is converted to a distance in 
the space domain. These two distances in the space domain give two possible positions 
by the crossing circles of distances. 

4. To discriminate between both possible solutions, the angle between each one and the 
platform containing the microphone array (which contains a compass) are calculated, 
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and the closest one to the platform angle will be chosen as discriminatory variable to 
select the current robot’s position.  

5. Steps 3 and 4 are repeated with the remaining labeled samples, and the solution is 
chosen among the closest angle to the robot’s platform. 

The acoustic response of the environment is very directional, and this fact leads to consider 
some uncertainty in the determination of the transformation function which relates the 
distance in the feature space and the domain space. 
The robot, in order to determine its location, will perform the identification process between 
the emitted sound signal by the sound sources and the acquired signal by the microphone. 
As it can be seen in Figure 9, the robot follows the trajectory indicated by the arrows. In the 
map sound sources are indicated (climate chamber and PCB insulator). Two experiments are 
carried out using both sound sources separately. There are two kind of audio samples: R1, 
R2, R3, R4, R5, R6 and R7 which are used in the recognition step whereas M1, M2, M3, M4 and 
M5 are labeled samples used in the learning step. 
The acquired signal in the climatic chamber will be used in the identification process. This 
signal is time-continuous and, initially, non-stationary; but because the signal is generated 
by revolving electrical machines it has some degree of stationariety when a high number of 
samples is used, in this case, 50,000 samples (1.13 seconds). 
 

 

Fig. 9. Robot environment: labeled audio signals and actual robot trajectory with unlabeled 
signals (R1, R2, R3, R4, R5, R6 and R7). 

The fundamental frequency is located at 100Hz, see Figure 10, and there are also some 
significant harmonics above and below it. In order to simplify the identification process only 
the fundamental frequency at 100Hz will be taken into account. 
In this approach the sampling frequency is 44,100Hz. Other lower frequencies could be used 
instead, avoiding working with a high number of samples, but this frequency has been 
chosen because in a near future a voice recognition system will be implemented aboard the 
robot and it will be shared with this audio localization system. 
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The emitted signal for the PCB insulator machine and its spectrum can be seen in Figure 11. 
To facilitate the plant identification process centering its response in the 100Hz component, 
the input and output signals will be filtered and, consequently, the input-output 
relationship in linear systems is an ARX model. 
To do that, a band-pass filter is applied to the acquired sound signals by the robot, 
specifically a 6th-order digital Cauer filter. Figure 12 shows the results of the filter for the 
input signal in, for instance, robot position R4 in the climatic chamber (experiment 1). 
After an initial step for selecting the model structure, an ARX has been selected, for the 
reasons explained above of stationery (Charbonnier et al., 1987), with na = 10, nb = 4 and a 
delay of 2 for the case of the climatic chamber (experiment 1), and na = 10, nb = 2 and a delay 
of 4 in the case of PCB insulator (experiment 2). When those 5 models are calibrated, they 
are validated with the error criteria of FPE (Function Prediction Error) and MSE (Mean 
Square Error), yielding values about 10e(-10) and 3% respectively using 5000 data for 
identification and 3000 for validation. Besides, for the whole estimated models the residuals 
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Fig. 10. Source signal (climate chamber) and its frequency spectrum. 
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Fig. 11. Source signal (PCB insulator) and its frequency spectrum. 
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Fig. 12. R4 sound signal (left) and its filtered signal (right). 
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Fig. 13. Original M5 signal and its estimation. 

autocorrelation and cross-correlation between the inputs and residuals are uncorrelated, 
indicating the goodness of the models. 
For instance, for labeled M5 sample the signal and its estimation can be seen in Figure 13 in 
the first experiment, validating the model. 
When observing the diagram of poles and zeros for the different transfer function models in 
the identification process for the labeled signals, there exists no difference between the zero 
positions, and, in the other hand, there is a significant variation in pole positions, due 
mainly to obstacles presence, reverberations among other effects, see Figure 14. Therefore, 
we will focus in poles to determinate the points in the feature space.  
In experiment 1, in order to determine the transformation function, for every point in the 
feature space, the distances between them and the source signal are calculated, and these 
distances are plotted together with their corresponding distances in the space domain. 
With these values, after an interpolation process, the transform function fT is computed. In 
order to estimate the robot localization, we use other information such as the robot speed (in 
this case 15cm/sec), the computation time between each new position (3 sec). This fact is a 
source of uncertainty that adds in average ± 45 cm in the robot’s position. 
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Fig. 14. Poles and zeros positions in experiment 1 (left) and 2 (right). 

 

 

Fig. 15. Nominal transformation function and the limits of the interval for the uncertainty in 
experiment 1. 

In experiment 1, when the climatic chamber is used as sound source the obtained 
transformation function is: 

2 80
4,4 4,4.sin

170 170

x
y

π π⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

Now, if an uncertainty interval is supposed (± 50 cm) the transformation function that 
covers this variability in the robot’s position can be expressed (for both experiments) as: 

2
.sin

170 50 170 50

x
y A A

π φ⎛ ⎞= + −⎜ ⎟± ±⎝ ⎠
 

In Figure 15, the nominal transformation function and the limits for the uncertainty interval 
transformation functions can be seen.  
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There exists another uncertainty of about ±7.5 degrees in the angle determination due to the 
rotary platform in the robot that contains the microphones. Finally, to determine the current 
robot’s position the solution that provides the closest angle to the robot’s platform will be 
chosen. The results of our experiments yield an average error in the X axis of -1.242% and in 
the Y axis of 0.454% in experiment 1 and 0.335% in the X axis and -0.18% in the Y axis, 
providing estimated x-y positions good enough and robust. 

5. Conclusion 

With the approaches presented in this Chapter we have achieved some interesting results 
that encourage the authors to keep on walking in this research field. The room feature 
extraction is carried out by identification of the sound signals. Besides to reinforce the 
localization, avoiding ambiguity and reducing uncertainty and incorporating robustness, a 
sensorial system is used aboard the robot to compute the angle between itself and the sound 
source. The obtained feature space is related with the space domain through a general 
approach with acoustical meaning. The validation of this novel approach is tested in 
different environments obtaining good results. The results keep on being very good when 
the uncertainty is incorporated in the transformation function. 
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