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Abstract

This thesis presents the investigation of several challenging parameter and

state estimation problems in the signal processing paradigm, viz. the speaker

localization in presence of reverberation, multi-speaker tracking, and multi-

feature multi-speaker state filtering, using microphone recordings.

Acoustic speaker localization has been a long-standing signal process-

ing challenge, especially in reverberant environments and when speakers

are moving. Thus the first part of the thesis focuses on reliably estimating

speaker locations in short time intervals, and three algorithms are developed

for the reverberation-robust localization, respectively in the time and the fre-

quency domains. The first two algorithms are built upon the voiced speech

signal and room impulse response (RIR) models. A novel onset detection

and encoding scheme is derived to prefilter the direct-path cues, which are

then used to formulate the cross-correlation coefficients for reliable localiza-

tion. The third algorithm is built on the classic generalized cross-correlation

- phase transform (GCC-PHAT) method and a room transfer function (RTF)

model. It exploits the redundant information from multiple microphone pairs

to suppress the effect of sound reflections. Performance evaluation in various

reverberant conditions demonstrates the benefits of the proposed localiza-

tion algorithms compared with the state-of-the-art methods.

Multi-speaker tracking has also captured increasing attentions from the

research communities in the past two decades. Estimating speaker states

with correct identities has been one of the main challenges, especially when

the number of speakers is unknown and time-varying. Thus the second part

of the thesis explores the adaptive speaker feature filtering, where the lo-

cation estimates from the first part are treated as observations of random

speaker kinematic states. The state-of-the-art generalized labeled multi-

Bernoulli (GLMB) Bayes random finite set (RFS) filter is used as the basis of

the proposed speaker feature state filtering framework. The measurement-

driven birth (MDB) model for the GLMB filter is implemented for adaptive

filtering. Two typical scenarios of practical importance are investigated. The

first one estimates the kinematics feature state only and produces labeled
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trajectories of respective speakers. Performance of the proposed framework

is demonstrated in comparison to the well-known cardinalized probability

hypothesis density (CPHD) filter. The second scenario further investigates

the feasibility of generalizing the state filtering of a single feature into that

of multiple features. The location, pitch and sound of each speaker are ac-

commodated as a state vector, incorporating the independently transitioning

and non-transitioning features. Experimental results show that the proposed

multi-feature multi-speaker state filtering framework can jointly track and

separate locations, pitches and sound signals of multiple speakers.

Concluding remarks, interesting future works, appendices and the bibli-

ography are provided in the third part of the thesis.

Keywords: Speaker localization, reverberation, moving speakers, RIR,

RTF, speech onset, redundant information, adaptive multi-speaker tracking,

adaptive multi-feature multi-speaker filtering.
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Chapter 1

Introduction

1.1 Motivations

Since the turn of the 21st century, multi-speaker online tracking using micro-

phone arrays has been an emerging research and engineering problem [1–6].

Such trend echoes with the increasing demand and applications of the auto-

matic camera steering for online lecturing, remote conferencing and virtual

reality [7,8], as well as speech separation and recognition front-ends [9,10].

In this problem, acoustic data recorded by microphones are mixtures of con-

current speech signals and their time-delayed reflections beside noise, where

the number of active speakers is unknown a priori and time-varying, and

each speaker can be moving and competing with others at any time instant.

Solving this problem involves addressing three major challenges in a

broad sense, namely a) the multi-object state estimation (time-varying speaker

states), b) the localization of moving sources of nonstationary wideband sig-

nals (human speech), and c) the multipath effect (acoustic reverberation).

The desired outcomes are the separated trajectories of respective speakers.

Here a trajectory can be regarded as time-indexed locations of an active

speaker, and they are labeled so that each of the trajectories is uniquely asso-

ciated with one of the speakers. Despite the amazing ease of human listeners

in dealing with this problem, a perfect signal processing solution has not yet

been found in the literature. The main focus of this thesis is thus an original

systematic framework for localizing and tracking multiple moving speakers

using microphones, with the attention to the challenge of reverberation.

The study of state estimation algorithms can date back to the early de-

velopment of Kalman filter about half century ago [11]. Based on the linear

and Gaussian dynamical and measurement statistical models, the Kalman fil-

ter keeps track of the system state over time via a prediction-update Bayesian

recursion, supplied with measurement data. Besides the ubiquitous Kalman

filter and its extensions for nonlinear systems, e.g. the extended Kalman

1
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filter (EKF) [11] and the unscented Kalman filter (UKF) [12], the nearest

neighbour (NN) [13], the multiple hypothesis tracking (MHT) [14] filter

and the joint probabilistic data association (JPDA) [13] and their respec-

tive variants and extensions can also been found in the literature. Usually

the NN scheme is susceptible to false alarms and miss-detections, the MHT

requires an exhaustive search of measurement-to-object associations, while

the JPDA assumes a known number of objects. In contrast, the Bayes RFS fil-

ters are the first close-form solutions to multi-object tracking [15–23], built

upon the the finite set statistics (FISST) theory [24]. The Probability Hy-

pothesis Density (PHD) [15, 16] and the cardinalized PHD (CPHD) [17, 19]

have been well-accepted members in the family of multi-object Bayes RFS

filters, and the CPHD has shown favourable performance over the PHD fil-

ter [19]. However, CPHD only propagates the first-moment (intensity) over

the state space and cardinality distributions. The most current development

of the Bayes RFS kind is the Generalized Labeled Multi-Bernoulli (GLMB)

filter, which can track multi-object labeled states. Thus the GLMB Bayes RFS

framework [21–23] is used for multi-speaker tracking, in order to systemat-

ically produce labeled state estimates of multiple speakers. To complement

the system for practical applications, the measurement-driven object birth

model for GLMB [25] is implemented for adaptive filtering, and due consid-

erations for multi-sensor measurements are also necessary.

Sound source localization is a long-standing yet very challenging signal

processing research topic. Location estimation algorithms constitute a criti-

cal part of the multi-speaker tracking framework, as they provide the mea-

surement data for the state estimation. Numerous location estimators can

be found in the literature, beginning from the 1960s [26]. Representative

and influencing works include the subspace based methods, e.g. the mul-

tiple signal classification (MUSIC) algorithm and the estimation of signal

parameters via rotational invariance techniques (ESPRIT), [27–30], steered

response power (SRP) beamformers [31–34], and time delay estimation

(TDE) or time difference of arrival (TDOA) based methods [35–39]. Most

of these localization methods, are based on some simplifying assumptions,

e.g. narrowband signals, static acoustic sources or anechoic environments,
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and thus may suffer when these assumptions are violated in practice. Wide-

band extensions are available, e.g. the eigenbeam (EB)-ESPRIT [40] and

the time-frequency circular harmonic beamformer (TF-CHB) [34]. How-

ever, they are restricted to uniform circular arrays (UCAs), and may still

suffer from performance degradation in presence of reverberation and mov-

ing sources, due to the underlying assumptions. The multichannel cross-

correlation coefficient (MCCC) method [41, 42] suggests using the redun-

dant information from multiple microphones. The reverberation-robust SRP

- phase transform (PHAT) [43, 44] extends the classic generalized cross cor-

relation - phase transform (GCC-PHAT) method, but has a modest spatial res-

olution. A Neuro-Fuzzy [39] approach mimicking the human auditory func-

tions is found applicable to moving speakers with reverberation, although

it was not a result of rigorous derivations from signal models. Therefore,

this thesis develops three robust localization algorithms, viz. the onset - gen-

eralized steered response power (Onset-GSRP), onset - multichannel cross-

correlation (Onset-MCC) and MCC-PHAT [45], which are reliable for the

localization of multiple moving speakers in presence of reverberation. In

particular, the Onset-MCC and MCC-PHAT have good spatial resolutions. The

localization results can have gaps or miss-detections of speaker locations due

to the nonstationarity of speech signals and interference of concurrent speak-

ers, and clutter or spurious estimates due to reverberation. Moreover, local-

ization alone does not provide measurement-to-speaker association. There-

fore, filtering of the location candidates via the multi-object state estimator

is often needed.

1.2 Key Contributions

This thesis addresses the problem of speaker localization and tracking, with

a focus on the challenges of the acoustic reverberation and moving speech

sources, and presents a systematic implementation of the adaptive GLMB

Bayes RFS approach in the multi-speaker state filtering. The main contribu-

tions are summarized as follows.

For the localization of moving speakers with reverberation:
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• Two main approaches are proposed. The first approach (including two

algorithms) builds upon the RIR model and develops a novel subband

onset detection and encoding method for extracting direct-path cues.

Although inspired by the computational auditory scene analysis (CASA)

techniques [46] and psychoacoustic inferences, the proposed onset de-

tection and encoding method is derived based on the speech signal and

acoustic RIR models. Cross-correlation coefficients of the direct-path

cues are then formulated and from relative sample delays into the spa-

tial locations, for computationally efficient implementation. The result-

ing algorithms are referred to as the Onset-GSRP and the Onset-MCC,

where the latter has improved spatial resolution.

• The second approach studies the acoustic RTF model and exploits the

redundant information from multiple microphone pairs to suppress the

effect of reverberation. Thus based on the classic GCC-PHAT method,

the MCC-PHAT method is proposed with improved resolution and ro-

bustness against reverberation. Performance of all the proposed lo-

calization methods are compared with other state-of-the-art location

estimators, using simulated sound signals and real-world recordings in

various reverberant conditions. Improved spatial resolution and the ro-

bustness against reverberation and moving speakers are demonstrated.

For the multi-speaker tracking (feature filtering):

• An adaptive multi-speaker tracking filter is developed, based on the

proposed localization methods and the GLMB Bayes RFS multi-object

tracking framework. A measurement-driven birth model is used for

adaptive online filtering. Performance of the proposed tracking system

is evaluated and compared with the framework using the well-accepted

CPHD filter. The presented adaptive GLMB filter provides a closed-form

solution to the multi-speaker tracking, and jointly associates speaker

kinematic states with respective identities (labels).

• A novel multi-feature multi-speaker tracking-and-separation filter is

proposed, to verify the feasibility of generalizing the single feature state
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filtering to that of multiple features, and to resolve the ambiguity in

tracking a single feature state. The measurement-driven birth model is

also used for the adaptive filtering. The proposed multi-feature multi-

speaker state filter is shown applicable for jointly tracking and separat-

ing locations, pitches and sound signals of respective speakers.

1.3 Outline of the Thesis

Chapter 2 gives the background of the thesis, basic models for the speech

signal, RIR, RTF and microphone array representations, formulates the lo-

calization and tracking problems, and reviews existing methods. Studies and

analysis of the existing methods clarifies the need for reverberation-robust

location estimators and an adaptive multi-object tracking framework.

The rest of the thesis is mainly composed of three parts.1

Part I concerns the location estimation. It focuses on the reverberation-

robust localization especially for moving speakers. Specifically,

• Based on the speech signal and acoustic RIR models, Chapter 3 de-

rives the novel onset detection and encoding algorithms, for the non-

stationary voiced speech signals in presence of the multipath effect.

The Onset-GSRP and Onset-MCC use the encoded speech onsets as

direct-path cues, and formulate cross-correlation coefficients for reli-

able localization.

• The MCC-PHAT method builds upon the acoustic RTF model and the

classic GCC-PHAT method, and exploits the redundant information from

multiple microphone pairs, which is shown useful for reverberation ro-

bustness. In the numerical studies, the performance of the proposed

speaker localization methods is demonstrated and compared with the

state-of-the-art methods in various reverberant environments.

Part II investigates the multi-speaker feature filtering. Specifically,
1Due to the relative scope of the work, the thesis builds upon, and hence assumes that

readers have reasonable understandings in, signals and systems, digital signal processing,
probability and stochastic processes, parameter estimation and state filtering theories.
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• Chapter 4 presents a systematic implementation of the GLMB Bayes

RFS filter in adaptively tracking multi-speaker kinematic states, using

the location estimates from the Onset-MCC and MCC-PHAT as pro-

posed in Chapter 3. The GLMB filter is used and its performance is

compared with that of the CPHD filter. Labeled kinematic states of

multiple speakers are filtered, supplied with location estimates.

• In Chapter 5, a novel extension of the adaptive GLMB filter for tracking

and separating multiple speaker features is also proposed. A proof-

of-concept implementation is presented, which can jointly track and

separate locations, pitches and sound signals of multiple speakers.

Part III concludes the thesis in Chapter 6, prospects some possible future

works, and supplements in Appendices detailed derivations for the presented

works.



7 1.4 Peer-reviewed Papers

1.4 Peer-reviewed Papers

The published papers arising from the current research are listed as follows:

• Reverberation-Robust Localization of Speakers Using Distinct Speech

Onsets and Multichannel Cross-Correlations, by Shoufeng Lin; IEEE/ACM

Transactions on Audio, Speech and Language Processing (TASLP). 2018

Nov 1;26(11):2098-111. [45]

Some materials of this paper appear in Chapter 3. Permission for in-

cluding this paper in the thesis can be found in Appendix L .

• Jointly Tracking and Separating Speech Sources Using Multiple Fea-

tures and the generalized labeled multi-Bernoulli Framework, by Shoufeng

Lin. 2018 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP 2018). [6]

The materials of this paper appear in Chapter 5. Permission for includ-

ing this paper in the thesis can be found in Appendix L .



Chapter 2

Background and Literature Review

This chapter gives the background of the studied problem, provides the un-

derlying signal and system models for problem formulation and solution

derivation, and sketches an overview of existing state-of-the-art speaker lo-

calization and multi-object tracking algorithms. In particular, Section 2.2 and

Section 2.3 provide the signal and system models in the time and frequency

domains. Microphone array signals are modeled in Section 2.4. Section 2.5

and Section 2.6 offer an overview of the localization and tracking litera-

ture respectively. Finally, Section 2.7 formulates the speaker localization and

tracking tasks as estimation problems.

2.1 Speaker Localization and Tracking

There is a significant body of literature on the problem of acoustic speaker

localization and tracking. Obtaining accurate location estimates enables fur-

ther signal processing, e.g. speaker tracking, speech separation and enhance-

ment. It also has wide practical applications, such as the automatic camera

steering in smart environments, finding sound source directions in hearing

aids and smart home devices, as well as virtual reality synthesis.

Fig. 2.1 depicts the typical scenario of acoustic speaker localization and

tracking. In an enclosed environment (e.g. reverberant room), several speak-

ers move and talk, the microphone array recordings are used to extract the

locations and sounds of respective speakers. Three apparent challenges arise

in this problem, i.e. 1) due to the sound reflections at surfaces of obstacles,

the location cues of speakers are ambiguous; 2) due to the movement of

speakers, there are only limited sound recordings available corresponding to

a certain speaker at a certain location; and 3) due to the time-varying speaker

states, there are difficulties in filtering and associating location and speech

estimates with respective speakers, and hence forming correctly connected

location trajectories and sound streams over time.

8
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Speaker1

Table
Speaker3

Speaker2

Microphone
Array #2

Microphone
Array #1

Figure 2.1: Pictorial representation for the studied problem of localization
and tracking multiple moving speakers using microphone arrays in a rever-
berant enclosure. For the clarity of the figure, only some of possible sound
paths from Speaker 2 to Microphone Array #2 are drawn. The solid line
shows direct-path, while the dotted lines represent sound reflection paths.
Track of speakers are denoted with ♦, ◦ and ?, respectively.

This thesis addresses the challenges in a systematic approach. As shown

in Fig. 2.2, speech signals are modeled as the input to the system composed

of the room, microphones and the speaker locations. The system produces

microphone recordings for signal processing.

There are in general two steps in solving the problem, depending on the

treatment of the speaker locations1. The first step estimates speaker locations

in snapshots (cf. Section 2.5). The second step focuses on the dynamical

feature of the system as speaker locations vary over time (cf. Section 2.6).

Following the signal and system representation in Fig. 2.2, models for

speech signals, room acoustics, microphone recordings, and theories for the

localization and tracking are studied and discussed in the listed order.

1This is actually a rather archetypal approach in the estimation paradigm.
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Room Acoustics
+

Microphones
+

Speaker Locations

Speech Signals Recordings from Microphones

System Signals (output)Signals (input)

Figure 2.2: Signal and system representation of the studied scenario.

2.2 Speech Signals

Human speech is a dynamic and informative type of signal widely used in

daily communications. Corresponding to the audible frequency range of

about 20Hz to 20kHz for human hearing, speech signals are commonly re-

garded as both wideband and bandlimited. Moreover, beside parametric

models, speech signals are often treated as realizations of stochastic pro-

cesses, and wide sense stationary (WSS) and ergodic assumptions are usually

made (with cautions) to assist the analysis and engineering processing.

2.2.1 Stochastic Assumptions

Strictly speaking, the process of speech production is nonstationary, i.e.,

not strong sense stationary (SSS) [47–49]. The often applied WSS and

jointly-WSS assumptions2 imply that the mean and correlation functions are

translation-invariant [47]. Moreover, since it is the realizations (speech sig-

nals) rather than the ensemble, that are available in practice, the speech pro-

duction process is assumed correlation ergodic (and hence mean-ergodic).

Thus the ensemble averages are estimated by the temporal averages (mean

and correlations) [47,48], i.e.

µs , E[s(t)] = lim
T→∞

1
T

∫ T
2

− T
2

s(t)dt, (2.1)

2Since speech processing is an applied discipline, the trade-off between theoretical rigor-
ousness and practical applications is often unavoidable. See e.g. [48] for the philosophical
discussions on this matter.



11 2.2 Speech Signals

Rs(τ) , E[s(t1) · s(t2)] = lim
T→∞

1
T

∫ T
2

− T
2

s(t + τ) · s(t)dt, (2.2)

Rsisj(τ) , E[si(t1) · sj(t2)] = lim
T→∞

1
T

∫ T
2

− T
2

si(t + τ) · sj(t)dt, (2.3)

where E[·] denotes mathematical expectation, and s(t), si(t1), sj(t2) ∈ R de-

note the random variables of processes (e.g. speech production) at time

t, t1, t2 ∈ R respectively. µs, Rs(τ) and Rsisj(τ) denote the mean, autocorrela-

tion and cross-correlation respectively, i 6= j are indices, and time difference

τ , t1− t2. Moreover, for zero-mean processes, the correlations equal to the

corresponding covariances. For microphone array processing, the covariance

matrix is frequently used, e.g. in subspace methods.

The power spectral density (PSD) and cross-power spectral density (CSD)

are respectively defined as [47,49]

Gs(Ω) , lim
T→∞

∫ T
2

− T
2

Rs(τ)e−Ωτdτ, (2.4)

Gsisj(Ω) , lim
T→∞

∫ T
2

− T
2

Rsisj(τ)e
−Ωτdτ, (2.5)

where  ,
√
−1, and Ω is the angular frequency in unit of radian per second.

Indeed, (2.4) and (2.5) take the form of the Fourier transform (assuming

convergence), and are often called the Wiener-Khinchin relations.

Speech typically remains stationary for ranges of only tens of millisec-

onds [48]. Consequently, the long term properties (e.g. the correlations and

spectral densities) are estimated using short-term observations, and the in-

tegral intervals in (2.1) through (2.5) are replaced with short time periods.

Moreover, for concurrent speakers, the time-frequency (TF) sparsity [50] is

often applied, assuming that signals from different speakers do not signifi-

cantly overlap spectrotemporally. Since it is usually the microphone signals

that are available in practice, further discussions on short-time processing of

signals will appear in Section 2.4.
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2.2.2 Parametric Models

The speech signal model can also be parametrized based on certain knowl-

edge of the speech production mechanism. Simply speaking, human speech

is produced by physically structured airflow from the respiratory system.

Based on the source excitation - vocal tract models for the mechanism of

speech production [48,51], resulting speech sounds are mainly composed of

the voiced and unvoiced sounds, i.e.

s(t) =

g(t) ∗ v(t), if voiced

n(t) ∗ v′(t), if unvoiced,
(2.6)

where the operator ∗ denotes the convolution, g(t) the glottal waveform

[52], n(t) the random excitation noise, and v(t) and v′(t) the vocal tract

impulse responses, which can be modeled as time-varying autoregressive

(AR) or autoregressive-moving-average (ARMA) systems [53]. The unvoiced

sounds are typically stochastic waveforms, while the voiced sounds are har-

monically structured and generally dominant in the signal power.

Moreover, inferences of psychoacoustic studies are also often applied in

modeling the human auditory system [46, 54]. Typical examples include

the critical bands [55, 56] that characterize the fact that the ability of the

human cochlea in distinguishing between individual frequency tones varies

as a function of frequency, as well as the auditory filters (e.g. the gammatone

and gammachirp filters etc.) that mimic the frequency response [57,58].

2.3 Room Acoustics

In the typical scenario, speech sounds produced by the speaker(s) cause air

pressure changes, which are propagated through air and then transduced

into electrical signals by the microphone(s) for subsequent processing (e.g.

signal conditioning, analog-to-digital conversion, and digital signal process-

ing algorithms, etc.).

In an enclosed room with dimensions relatively large compared to the
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sound wavelength, the sound waves reflected at wall surfaces can induce

diffuse sound fields. The acoustic response of the enclosed room between

a sound source and a receiver, is usually expressed as the superposition of

direct-path signals and all its reflections, which can be modeled as a linear

time-invariant (LTI) causal system with memory, for the source and receiver

with fixed locations3. The room transfer function (RTF) and room impulse

response (RIR) models are discussed as follows.

2.3.1 Room Transfer Function

Assuming homogeneous, isotropic and lossless medium, following the wave

theory (cf. Appendix A ), the sound wave propagation at the steady state can

be described with a homogeneous partial differential equation (PDE)

1
v2

∂2p(
⇀
℘ i, t)

∂t2 = ∇2p(
⇀
℘ i, t), (2.7)

where v is the velocity of sound propagation, p(
⇀
℘ i, t) the sound pressure at

location
⇀
℘ i, and operator ∇2 the Laplacian.

In presence of a single frequency point source, the sound field induced

can then be found by modifying (2.7) into the inhomogeneous PDE

1
v2

∂2p(
⇀
℘ i, t)

∂t2 −∇2p(
⇀
℘ i, t) = s(

⇀
℘q, t), (2.8)

where s(
⇀
℘q, t) denotes the point sound source at location

⇀
℘q.

The PDE (2.8) can be converted to the Helmholtz equation and solved via

the Green’s function, which for free space gives the transfer function [59,60]

H(fs)
qi (Ω) ,

P(
⇀
℘ i, Ω)

S(
⇀
℘q, Ω)

=
e−kλrqi

4πrqi
, (2.9)

where kλ , Ω/v = 2π/λ, and λ is the wavelength of the sound signal.

P(
⇀
℘ i, Ω) and S(

⇀
℘q, Ω) are Fourier transforms of p(

⇀
℘ i, t) and s(

⇀
℘q, t) respec-

3Ignoring the effects such as air pressure change due to temperature variations over time.
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tively,
⇀
℘q , [xq, yq, zq],

⇀
℘ i , [xi, yi, zi], and rqi , ‖⇀℘ i −

⇀
℘q‖ the distance

between the source and location
⇀
℘ i. In the far field where rqi is sufficiently

large, the spherical wavefront described in (2.9) is often treated as planar.

In an empty enclosed rectangular room with rigid surfaces (room dimen-

sions Lx, Ly and Lz and volume V), a sound source can generate resonances

(i.e. room modes). The RTF can then be represented by [59,61]

H(rm)
qi (Ω) = ∑

j

Pj(
⇀
℘ i)Pj(

⇀
℘q)

V · (k2
λ − ‖

⇀
k j‖2)

(2.10)

where
⇀
k j = π[ nx

Lx
, ny

Ly
, nz

Lz
] is the eigenvalue corresponding to the j-th eigenfre-

quency, where integers nx, ny and nz are the number of nodal planes perpen-

dicular to respectively the x-axis, y-axis and z-axis of the room [59,61], and

Pj(
⇀
℘ i) is the orthogonal eigenfunction dependent on the room boundaries,

Pj(
⇀
℘) =

1
8

8

∑
`=1

e−
⇀
k j·

⇀
℘` , (2.11)

where
⇀
℘ , [x, y, z], {⇀℘`}8

`=1 , {[±x,±y,±z]}, and
⇀
k j ·

⇀
℘` is a dot product.

The image source method (ISM) [59, 62] is often used to numerically

simulate room acoustics in the geometrical manner. It uses the RTF model

(2.9) and represents the sound reflection of a point source at a reflecting

wall as the direct-path from an image source at a location mirrored by that

wall. Then each image source is again imaged by other walls, and the sound

pressure at a certain location is the superposition of the contributions from

all sources. The rigid-boundary RTF can then be expressed as [59]

H(ism)
qi (Ω) =

∞

∑
r=−∞

8

∑
p=1

e−(Ω/v)‖Rq−Rr‖

4π‖Rq − Rr‖
, (2.12)

where {Rq}8
p=1 , {[xq ± xi, yq ± yi, zq ± zi]} is given by permutations over

±, and {Rr} , {2[n1Lx, n2Ly, n3Lz], ∀ n1, n2, n3 ∈ Z}.
Schroeder also carried out some pioneering studies on the statistical prop-
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erties of the diffuse field [63–65]. The Schroeder frequency specifies the

lowest sound frequency to have high modal overlap, i.e.

fschroeder ≈ 2000

√
T60

V
, (2.13)

where T60 denotes the reverberation time4. The mixing time specifies the

time required for at least 10 reflections overlap within a characteristic time

resolution of 24ms, i.e. tmix ≈
√

V. Diffuse field prevails the room after

tmix following an impulse, for signals of frequencies above fschroeder. Thus for

example, a room of V = 100m3 and T60 = 1s corresponds to the Schroeder

frequency of fschroeder ≈ 200Hz, and the mixing time of tmix ≈ 10ms. Other

general statistical characteristics e.g. echo density, modal density, and peak

density etc. can be found in [63–65].

2.3.2 Room Impulse Response

The time domain RIR can be converted from the frequency domain RTF via

the inverse Fourier transform (IFT) (or vice versa), i.e.

hqi(t) =
1

2π

∫ ∞

−∞
Hqi(Ω)eΩtdΩ. (2.14)

For example, in free space, from (2.9) the impulse response becomes

h(fs)
qi (t) =

δ(t− rqi
v )

4πrqi
, (2.15)

where δ(·) is the Dirac delta function.

Using the ISM, from (2.12) the rigid-boundary RIR becomes [59]

h(ism)
qi (t) =

∞

∑
r=−∞

8

∑
p=1

δ(t− ‖Rq−Rr‖
v )

4π‖Rq − Rr‖
. (2.16)

4Reverberation of an enclosed environment is usually characterized with T60, which is
the time required for sound to decay by 60dB.
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It is obvious that the RIR is a superposition of impulse responses from the

direct-path and reflections, depending on the source and sensor locations. It

hence represents an LTI system for fixed source and sensor locations.

For simulating non-rigid room boundaries, reflection constants due to

surfaces can be further included in the models (2.12) and (2.16) [59, 62].

By neglecting the air attenuation and assuming that the reflection coefficient

(denoted as βr ∈ C) of all surfaces are the same, the Eyring’s formula [61,66]

describes the relationship between the reverberation time and βr, i.e.

βr = e
− 6 ln 10

v( 1
Lx

+ 1
Ly

+ 1
Lz

)T60 . (2.17)

In practice, the exact value of the reverberation time T60 of the environment

is often unknown a priori, but it can be measured [67] or estimated from

sound recordings [68]. Intuitively, the RIR can be categorized into three

parts, viz. the direct-path, early reflections and the late (diffuse) reverbera-

tion [69,70]. Fig. 2.3 shows an example of the RIR.
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Figure 2.3: An example of the room impulse response, plotted in linear scale
(top panel) and logarithmic scale (bottom panel).
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2.4 Microphone Array Signals

As shown in Fig. 2.1 and Fig. 2.2, microphones are placed in the room and

constitute part of the system producing sound recordings, which are availed

for subsequent processing. Recordings from the microphone array(s) bear

the desired information, e.g. sound signals (waveforms) from sources, and

their locations. Thus this thesis assumes that the dimensions of the micro-

phone array are not too large, microphones are lossless omnidirectional, and

are located on the same plane of speakers. Moreover, the far-field assumption

is made that the distance between sources and microphones are sufficiently

large. Thus from a particular source to the microphones, the gain constant

as in (2.9) and (2.15) can be normalized, and the direction is regarded the

same.

2.4.1 Array Signal Denotations

The signals impinging the microphone array are denoted in time domain as

x(t) , [x1(t), · · · , xi(t), · · · , xIM(t)]
T, (2.18)

where integer IM denotes the total number of microphones, and xi(t) de-

notes the time domain signal at the microphone with index i, i = 1, · · · , IM.

The frequency domain denotation for the microphone array signal is thus

the Fourier transform of (2.18)

X(Ω) , [X1(Ω), · · · , Xi(Ω), · · · , XIM(Ω)]T, (2.19)

where Xi(Ω) denotes the frequency domain signal at microphone i.
Anechoic and reverberant models are developed respectively as follows.
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2.4.2 Anechoic Case

TIME DOMAIN

Consider first the anechoic case where some speakers located in the far-field

of the microphones, and the maximum aperture of the microphone array is

small compared to its bulk distance to the source. The spherical wavefronts

(2.8) can thus be regarded as planar in the far-field. Assuming that the

transmission medium is at rest, homogeneous and lossless (i.e. no reflection,

diffusion, refraction or absorption), thus the superposition of plane waves

impinging microphones and the additive noise can be expressed as

xi(t) =
Q

∑
q=1

sq(t− tdqi) + ni(t), (2.20)

where ni(t) ∈ R is the additive noise, Q is the total number of concurrent

speakers, and tdqi is the direct-path time delay for the sound to travel from

speaker q to microphone i, which is a function of the direction of arrival

(DOA) θq, i.e.

tdqi(θq) =

⇀
mi ·

⇀
℘q(θq)

v‖⇀℘q(θq)‖
,

⇀
℘q(θq) , ‖

⇀
℘q‖eθq , (2.21)

where the denominator is a dot product,
⇀
mi and

⇀
℘q denotes the locations of

the microphone i and the speaker q with respect to the origin of the coordi-

nate system (e.g. the center of gravity of the microphone array).

The signals received by the array are represented by stacking up those by

each microphone

x(t) = [
Q

∑
q=1

sq(t− tdq1), · · · ,
Q

∑
q=1

sq(t− tdqIM
)]T + n(t), (2.22)

where

n(t) , [n1(t), · · · , nIM(t)]
T. (2.23)
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FREQUENCY DOMAIN

The simple multi-source model in (2.20) via the Fourier transform becomes

Xi(Ω) =
Q

∑
q=1

e
−Ωtdqi · Sq(Ω) + Ni(Ω), (2.24)

where Sq(Ω) and Ni(Ω) ∈ C are respectively the Fourier transforms of sq(t)
and ni(t).

In this case, signals received by the array in (2.22) becomes,

X(Ω) =D(θ, Ω)S(Ω) + N(Ω), (2.25a)

where,

S(Ω) =[S1(Ω), · · · , Sq(Ω), · · · , SQ(Ω)]T, (2.25b)

N(Ω) =[N1(Ω), · · · , Ni(Ω), · · · , NIM(Ω)]T, (2.25c)

and

D(θ, Ω) , [d(θ1, Ω), · · · , d(θq, Ω), · · · , d(θQ, Ω)], (2.26)

d(θq, Ω) ,
[
e
−Ωtdq1

(θq), . . . , e
−Ωtdqi

(θq), . . . , e
−ΩtdqIM

(θq)
]T

, (2.27)

the vector parameter is defined as

θ , [θ1, · · · , θq, · · · , θQ], (2.28)

which is unknown and to be estimated from observed signals X(Ω).

2.4.3 Reverberant Case

TIME DOMAIN

In more challenging conditions, e.g. room reverberation and moving sources,

the simple model in (2.20) may not suffice. Thus using the RIR (2.14), a
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more complete model is

xi(t) =
Q

∑
q=1

hqi(t) ∗ sq(t) + ni(t), (2.29)

and the array signal is denoted as

x(t) = h(t) ∗ s(t) + n(t), (2.30)

where

h(t) ,


h11(t) · · · hQ1(t)

... . . . ...

h1IM(t) · · · hQIM(t)

 , (2.31)

s(t) , [s1(t), · · · , sQ(t)]T, (2.32)

the term h(t) ∗ s(t) of (2.30) follows matrix multiplication, except that the

element-wise operator ∗ denotes convolution. It depends on the locations

of the speaker and microphone array (e.g. θq) for a given environment, and

is hence time-varying for a moving speaker.5 When acoustic reflections and

absorptions are negligible, (2.30) simplifies to (2.22).

FREQUENCY DOMAIN

Corresponding to (2.29), the frequency domain signal can be expressed as

Xi(Ω) =
Q

∑
q=1

Hqi(θq, Ω) · Sq(Ω) + Ni(Ω). (2.33)

Thus corresponding to (2.30), the array signal in frequency domain is

X(Ω) = H(θ, Ω)S(Ω) + N(Ω), (2.34)

5The same notation x(t) is used in (2.18) and (2.30) for notational simplicity, because
for a specific algorithm, either model (2.18) or (2.30) is used (not both). This is also the
case in (2.25) and (2.34). Unless otherwise specified, (2.30) and (2.34) are used in what
follows.
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where

H(θ, Ω) ,


H11(θ1, Ω) · · · HQ1(θQ, Ω)

... . . . ...

H1IM(θ1, Ω) · · · HQIM(θQ, Ω)

 , (2.35)

Entry Hqi(θq, Ω) in H(θ, Ω) is the frequency domain transfer function from

source q to sensor i (also the Fourier transform of hqi(t)), which is dependent

on the locations of the source and sensor array. When acoustic reflections and

absorptions are negligible, (2.35) simplifies to (2.25).

2.4.4 Discrete and Short-time Processing

DISCRETE TIME SAMPLES

Note that in practice, the continuous time domain signal xi(t) is sampled

(discretized) at a certain frequency fs before processing, and the sampled

signals at time t = n/ fs = n · Ts (n ∈ Z) is denoted as xi[n], i.e.

xi[n] , xi(n · Ts), (2.36)

where Ts = 1/ fs is the sampling period.

DISCRETE SHORT-TIME FOURIER TRANSFORM

Moreover, in practical implementations, discrete time speech signals (e.g.

(2.36)) are often processed in short time intervals using analysis - synthesis

techniques. The discrete Fourier transform (DFT), or more prevalently, the

short-time Fourier transform (STFT) (see e.g. [71–73]) is used instead of the

Fourier transform.

Here for a snapshot (denoted frame k) of sampled time domain signal,

the STFT coefficient for normalized frequency ω = Ω
fs

is

Xi(k, ω) =
kM

∑
n=kM−N+1

xi[n]w[kM− n]e−ωn, (2.37)

where k is the time frame index for the N samples, integer M is shifting step
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size, and real-valued w[·] is the (sliding) analysis window function. Due to

the finite time length, ω is sampled with ωm = 2π
N m, m = 0, 1, · · · , N − 1.

The DFT can be regarded as a special case of the STFT when the rectan-

gular window is used. Window functions were originally used to suppress

spectral “leakage” caused by the rectangular window. Typical window func-

tions include the Hann, Hamming, Blackman windows and many more, e.g.

w[n] =

a− (1− a) cos
( 2πn

N−1

)
, n ∈ [0, N − 1]

0, otherwise
, (2.38)

where the Hann window has a = 0.5, and the Hamming window has a ≈
0.54. Typical window length is about 30ms for many speech signal process-

ing algorithms, assuming stationarity in short time intervals. A summary of

window functions can be found in [74]. In what follows and unless otherwise

noted, STFT notations (2.37) are used for in frequency domain processing,

and the time frame index may be suppressed for notational simplicity.

2.5 Localization Overview

As shown in the general signal models (2.30) and (2.34), the speaker lo-

cations (e.g. θ) are embedded in, and hence can be found from observed

signals x(t) (or the sampled signals x[n]) and X(Ω) (or the STFT X(k, ω)),

respectively.

This section provides an overview of some existing state-of-the-art speaker

localization methods that are representative and have been implemented in

this thesis. Because of the significant body of literature of the localization

methods, it is impractical to go through exhaustively all existing works. How-

ever, it is necessary to review the motivations and assumptions of existing

state-of-the-art techniques, and implement them for comparative studies. In

what follows, the localization methods are classified into three groups, viz.

steered response power beamformers, subspace methods and TDOA-based

methods. Note that each category has a vast range of members and variants.
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2.5.1 Wideband Beamformers

The most intuitive localization method is to scan the location space using

beamformers. Wideband beamformers are required for speaker localization.

WIDEBAND BEAMFORMERS

A good variety of wideband beamformers can be found in the literature

(see e.g. [31, 75, 76] and the references therein). A simplified fixed wide-

band WLS beamformer that uses a finite impulse response (FIR) “filter-and-

sum” structure (based on [31, Chapter 4.2]) is implemented in the thesis

for speech separation. Definitions and the formulation are summarized as

follows.

ď(θ, ω) is the wideband beamformer steering vector defined as

ď(θ, ω) ,
[
1, . . . , e−ω·jTs , . . . , e−ω·(J−1)Ts

]T
⊗ d(θ, ω) , (2.39)

where ⊗ is the Kronecker tensor product, θ the DOA, and the array steering

vector d(θ, ω) is defined in (2.27).

P(θ, ω) is the beamformer response defined as

P(θ, ω) , wH · ď(θ, ω) (2.40)

where w ∈ RJ·IM×1 is the weight vector to be solved (depending on the

desired DOA of speakers as well as the passband and stopband frequencies),

and J the number of taps of the FIR filter.

Pd(θ, ω) is the desired beamformer response, e.g. for simplicity,

Pd(θ, ω) ,

e−ωτ0 , for θ ∈ Θml ∧ω ∈ Ωpb/ fs

0, for θ ∈ Θsl ∨ω ∈ Ωsb/ fs
(2.41)

where Ωpb and Ωsb are the passband and the stopband frequency ranges

respectively. Ωpb = 2π[20, 4000]Hz, Ωsb = 2π(4000, 8000]Hz. τ0 = fs ·
10s (chosen for the far-field assumption). Θml is the angle range of the
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beamformer mainlobe, and Θsl the angle range of the beamformer sidelobe.

For the WLS wideband beamformer, the desired weight vector w is de-

rived by formulating a weighted least square problem [31]

min
w
JLS(w) , min

w

∫
ΩR

∫
Θ

ν(θ, ω)|P(θ, ω)− Pd(θ, ω)|2dθdω (2.42)

where ΩR = 2π[20, 8000]Hz/ fs is the frequency range of interest, and Θ ∈
[0, 360◦) the range of DOAs. ν(θ, ω) is the weighting function defined as

ν(θ, ω) ,

α, for θ ∈ Θml ∧ω ∈ Ωpb

1− α, for θ ∈ Θsl ∨ω ∈ Ωsb

(2.43)

where α ∈ (0, 1) is a weighting parameter.

Based on the knowledge that JLS(w) ∈ R, (2.42) simplifies to (see [31])

JLS(w) = wHGlsw− 2wHgls + gls, (2.44)

where [·]H denotes the Hermitian (conjugate transpose) operation,

Gls = α
∫

Ωpb

∫
Θml

ĎR(θ, ω)dθdω + (1− α)
∫

Ωpb

∫
Θsl

ĎR(θ, ω)dθdω (2.45)

gls = α
∫

Ωpb

∫
Θml

(
ďR(θ, ω) cos(τ0ω)− ďI(θ, ω) sin(τ0ω)

)
dθdω (2.46)

Ď(θ, ω) = ď(θ, ω)ď(θ, ω)H, (2.47)

ĎR = <{Ď} , ĎI = ={Ď}. ďR = <{ď} , ďI = ={ď}. <{·} and ={·}
denote the real and image part respectively.

Since ∂JLS(w)
∂w = 2Glsw − 2gls, the optimal weight vector solution of

(2.42) is

wopt = G−1
ls gls. (2.48)

Thus the beamformer output is

y[n] = wH
optxBF[n], (2.49)



25 2.5 Localization Overview

where

xBF[n] =
[
x1[n], . . . , xi[n], . . . , xIM [n]

]T
, (2.50)

xi[n] =
[

xi[n], . . . , xi[n + j], . . . , xi[n + J − 1]
]

. (2.51)
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Figure 2.4: An example of the WLS beamformer response.

The spatial and spectral response (i.e. P̂d(θ, ω) = wH
optď(θ, ω)) of the

designed WLS wideband beamformer is shown in Fig. 2.4. The cut-off fre-

quency is 4000Hz, the mainlobe points at 180◦, and the sidelobe covers the

range outside of 180◦ ± 15◦. A UCA with 8 sensors and a diameter of 0.1m is

used.

Similar to the WLS beamformer, a variety of fixed beamformers can be

designed by formulating different topologies, e.g. delay-and-sum, and vari-

ous cost functions and constraints [77–80]. Besides, adaptive beamformers

such as linearly constrained minimum variance (LCMV) [81] and general-

ized sidelobe canceller (GSC) [82], etc. can also be found in the literature

( [31,83] provide good summaries of wideband beamformer design). On the

one hand, the wideband beamformer steers the beam over possible DOAs and
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can be used to find the maximal response power for the purpose of source

localization. On the other hand, the beamformers can also be used to extract

source signals from given DOAs. Therefore the wideband beamformer is an

estimator for both DOA and waveform parameters.

EIGEN-BEAMFORMER

Eigenbeam techniques have been recently developed for some special sensor

array apertures, e.g. the spherical arrays [84, 85] and the uniform circular

arrays (UCA) [32–34]. The main motivation is to use the spherical or circular

symmetry of the sensor array and process the far-field signal in terms of the

phase mode excitations. The time-frequency circular harmonics beamformer

(TF-CHB) based on [34] is implemented and summarized as follows.

Assuming a plane wave impinging an unbaffled continuous circular aper-

ture with a radius of ra from DOA θin (cf. (2.21)), the sound pressure at θ

can be expressed as

P(kλra, θ) = P0 · ekλra cos(θ−θin), (2.52)

which can be expanded into the phase modes (or circular harmonics), i.e.

[34,86,87]

P(kλra, θ) =
∞

∑
p=−∞

Cp(kλra, θin)epθ truncate≈
P

∑
p=−P

Cp(kλra, θin)epθ, (2.53)

where kλ is the angular wavenumber as defined in (2.9), P0 the impinging

wave, the coefficients Cp(kλra, θin) , P0 p Jp(kλra)e−pθin , the highest order

of circular harmonics chosen as P = dkλrae, where d·e denotes the ceiling

function, and Jp(kλra) the Bessel function of the first kind of order p. Note

that (2.53) can also be interpreted as a spatial Fourier transform [88,89].

For a circular array with IM discrete microphones, the spatial Fourier

coefficients Cp(kλra, θin) are approximated with

C̃p(ω, θin) =
1

IM

IM

∑
i=1

Xi(ω)e−pθ̇i , p ∈ [−P,P], (2.54)
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where θ̇i denotes the angular location of microphone i, and IM ≥ 2P + 1
applying the sampling theorem.

Thus the modal coefficients of the microphone array are obtained

CCH(ω) = CEBX(ω), (2.55)

where

CEB = [cEB(−P), · · · , cEB(p), · · · , cEB(P)]
T (2.56a)

cEB(p) =
1

IM
[e−pθ̇1 , · · · , e−pθ̇i , · · · , e−pθ̇IM ]T. (2.56b)

A Tikhonov-regularized filter is used to regularize the responses of the

individual eigenbeams,

BCHB = [B−P(kλra), · · · , BP(kλra)]
T, (2.57)

where the coefficients are given as

Bp(kλra) =
w∗p(kλra)

‖wp(kλra)‖2 + β
, (2.58)

wp(kλra) = p Jp(kλra) and β = 6.5× 10−4 is the regularization coefficient.

The response of the TF-CHB at DOA θ ∈ [0, 2π) for frequency ω is

yCHB(θ, ω) =
1

2P+ 1
dCHB(θ) (BCHB

⊙
CCH(ω)), (2.59)

where
⊙

denotes the Hadamard product. The modal steering vector is

dCHB(θ) = [e−(−P)θ, · · · , e−(p)θ, · · · , e−(P)θ]. (2.60)

The overall steered response power (SRP) for a wideband signal is

εCHB(θ) = ∑
ω

|yCHB(θ, ω)|. (2.61)
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The DOA estimates are then denoted as

Θ̂ = {θ̂}, (2.62)

where θ̂ corresponds to peaks of the SRP εCHB(θ).

2.5.2 Subspace Methods

Subspace-based localization methods usually rely on the spatial covariance

matrix of the array signals. For the zero-mean impinging signals, the covari-

ances are equivalent to the correlations as defined in Section 2.2.1.

From (2.2) and (2.3), the correlation matrix is written as [90]

Rx(τ) = E[x(t + τ)xT(t)], (2.63)

which converts to the narrowband spectral density matrices via the Fourier

transform. Using (2.25) and assuming uncorrelated speech signals and noises,

from (2.63) the spectral density matrix [90,91] is thus (cf. (2.4) and (2.5))

RX(ω) = D(ω)PS(ω)DH(ω) + σ2
N(ω)PN(ω), (2.64)

where the STFT denotation is used, PS(ω) and PN(ω) denote the spectral

density matrix of source signals and noises respectively. PN(ω) is often as-

sumed known to the algorithm. For the simplicity of discussion hereafter,

the noise power is further assumed the same level for all microphones [92].

Thus PN(ω) is replaced with IIM , which is an IM × IM identity matrix.

Under the ergodic and WSS assumptions for speech signals (cf. Sec-

tion 2.2.1), the (spatial) covariance matrix is finally calculated as an estimate

of (2.64) via frequency domain narrowband snapshots [90,91], e.g.

R(ω) =
1
N

N

∑
k=1

X(k, ω)XH(k, ω). (2.65)

Then, the covariance matrix can be factorized into signal and noise sub-

spaces. Its eigenvalues and eigenvectors are obtained via eigendecomposi-
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tion, i.e.

R(ω) V(ω) = V(ω) Λ(ω), (2.66)

where Λ(ω) is a diagonal matrix containing the eigenvalues of R(ω) in de-

scending order, columns of matrix V(ω) are the corresponding eigenvectors

of R(ω).

Further assume that the number of active sources Q < IM and the noises

are not too strong. The estimated number of signal sources, Q̂, or equiva-

lently the rank of the signal subspace, can be obtained using either a priori
knowledge or the number of eigenvalues that are greater than a selected

threshold. The rank of the noise subspace is N̂ = IM − Q̂. Thus the ma-

trix of eigenvectors contains the eigenvectors of signal subspace and noise

subspace, i.e. [74,93]

V(ω) , [ES(ω)|EN(ω)], (2.67)

where ES(ω) is an IM × Q̂ matrix, while EN(ω) is an IM × N̂ matrix. Col-

umn vectors of the ES(ω) and EN(ω) correspond to the descending order of

eigenvalues, span the signal subspace and noise subspace respectively, and

are orthonormal.

MUSIC

The MUSIC (Multiple Signal Classification) method was first developed in

[27] for the parameter estimation of narrowband signals.

From (2.64), (2.66) and (2.67),

R(ω)EN(ω) =D(ω)PS(ω)DH(ω)EN(ω) + σ2
N(ω)EN(ω) (2.68a)

=σ2
N(ω)EN(ω), (2.68b)

it can be seen that D(ω)PS(ω)DH(ω)EN(ω) = ON, where ON is an IM× N̂
zero matrix. Thus DH(ω)EN(ω) = ON.
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Moreover, since V(ω)VH(ω) = IIM , and

V(ω)VH(ω) =[ES(ω)|EN(ω)][ES(ω)|EN(ω)]H

=ES(ω)EH
S (ω) + EN(ω)EH

N(ω),
(2.69)

it is apparent that ES(ω)EH
S (ω) + EN(ω)EH

N(ω) = IIM .

Therefore, the localization function of the MUSIC method is defined as

εMUSIC(θ, ω) =
dH(θ, ω) d(θ, ω)

dH(θ, ω) EN(ω)EH
N(ω) d(θ, ω)

(2.70a)

or equivalently,

εMUSIC(θ, ω) =
dH(θ, ω) d(θ, ω)

dH(θ, ω) (IIM − ES(ω)EH
S (ω)) d(θ, ω)

, (2.70b)

where d(θ, ω) is the steering vector, cf. (2.27).

Scanning d(θ, ω) over the array manifold, then Q̂ highest peaks of the

localization function are selected, and the corresponding DOAs are the es-

timated source locations. Performance study of the MUSIC can be found

in [92,94].

For wideband applications [95], the localization function can be expressed

as

εMUSIC
wideband(θ) = ∑

ω

εMUSIC(θ, ω). (2.71)

DOA estimates Θ̂ (defined in (2.62)) can then be found from the peaks.

ESPRIT AND EB-ESPRIT

The ESPRIT (Estimation of Signal Parameter via Rotational Invariance Tech-

niques) method was first developed in [28] as a narrowband signal param-

eter estimation technique and has made significant impact especially in the

localization of signal sources. It reduces the computational complexity com-

pared with the MUSIC by exploiting the shift invariance of the sensor array.
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From (2.26), denote the shift-invariant subarrays as

DX(ω) =JXD(ω) (2.72a)

DY(ω) =JYD(ω). (2.72b)

where JX and JY are Ns × IM (Q̂ < Ns < IM) matrices that select shift-

invariant subarrays, e.g. for linear displacement,

JX =[INs | OS] (2.73a)

JY =[OS | INs ], (2.73b)

and here OS is a Ns × (IM − Ns) zero matrix.

The shift invariance property of the array manifold implies that ∃ Φ,

DY(ω) = DX(ω)Φ, (2.74)

where Φ is a Ns × Ns diagonal matrix that characterizes the subarray shift.

From (2.26), the columns of the array manifold spans the signal subspace,

thus ∃ TS, a nonsingular Q̂× Q̂ matrix, so that

ES(ω) = D(ω)TS. (2.75)

From (2.67), subarray signal subspaces can be obtained, i.e.

EX(ω) =JXES(ω) (2.76a)

EY(ω) =JYES(ω), (2.76b)

Therefore, EY(ω) = EX(ω)T−1
S ΦTS , EX(ω)Ψ. Eigenvalues of Ψ cor-

respond to elements of Φ. To solve this overdetermined set of equation,

the least squares approach gives ΨLS = [EX(ω)HEX(ω)]−1EX(ω)HEY(ω),

which may be biased.

The more appropriate total-least squares criterion leads to ΨTLS = −E12 ·
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E−1
22 , where E12 and E22 are Ns × Ns submatrices of matrix E

E ,

[
E11 E12

E21 E22

]
, (2.77)

which is obtained via singular value decomposition with eigenvalues in de-

scending order,

CE ,

[
EH

X

EH
Y

] [
EX|EY

]
= EΛEEH. (2.78)

The eigenvalues of ΨTLS correspond to the subarray shift, which lead to the

source DOAs Θ̂ (defined in (2.62)). Since the array steering matrix (2.27)

is frequency-dependent, a focusing matrix is usually needed to obtain the

wideband covariance matrix from those of each frequency band [87,90,96].

For uniform circular microphone arrays (e.g. UCAs), the EB-ESPRIT

[40, 97] uses the eigenbeam decomposition to achieve wideband rotational

invariance. Instead of using the covariance matrix of raw signals as in (2.64)

directly, the covariance matrix of circular harmonics is

REB(ω) = CCH(ω)CH
CH(ω), (2.79)

where CCH(ω) is given in (2.55). In the spherical harmonics domain, the

steering array manifold vectors, i.e. (2.56), are frequency-independent. Thus

the wideband covariance matrix can be simply obtained by averaging those

of all frequency bins [40,97–99]. Further steps of the EB-ESPRIT processing

follows the standard ESPRIT. Since the standard MUSIC and ESPRIT meth-

ods are derived from the anechoic model, the location estimates may deviate

from the true DOAs in reverberant conditions.

2.5.3 TDOA-based Methods

Using the far-field assumption and choosing the center of gravity of the mi-

crophone array as the origin of the coordinate system, from (2.21) the TDOA
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from a source q to any two microphones indexed i and j is

τij(θq) =
(
⇀
mi −

⇀
mj) ·

⇀
℘q(θq)

v ‖⇀℘q(θq)‖
, (2.80)

where the numerator is a dot product. Thus using the microphone array

geometry (e.g.
⇀
mi and

⇀
mj), the DOA θq can be found from the TDOA esti-

mate. Note that using only two microphones or a linear array leads to the

ambiguity that a TDOA may correspond to two DOAs.

GCC AND GCC-PHAT

The classical generalized cross-correlation (GCC) method uses the cross-

power spectral density (CSD) function as defined in (2.5). It uses the ane-

choic signal model in (2.22). Compared with the standard cross-correlation

function, it improves the performance of the time delay estimation by pre-

filtering signals prior to the cross correlation [35,100].

Following the definitions in (2.3) and (2.5), the CSD [101] between ob-

served signals is E[Xi(Ω) · X?
j (Ω)]. Thus using the STFT denotations (cf.

(2.37)) and the WSS assumption,

Gxixj(ω) = E[Xi(ω) · X?
j (ω)], (2.81)

where [·]? is the complex conjugate operation, and the expectation is usually

approximated as the average over time frames within a short time interval,

e.g. Ĝxixj(ω) = 1
N ∑N

k=1 Xi(k, ω) · X?
j (k, ω).

The CSD between filtered outputs is then

ε
gcc
ij (ω) = Ψij(ω)Gxixj(ω), (2.82)

where Ψij(ω) is the overall frequency response of the prefilters used. The

goal is to find the time delays that corresponds to cross-correlation peaks.

Using the relationship between cross-correlation and CSD (from (2.3)

and (2.5)), the cross-correlation between two prefiltered microphone signals
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is

ε
gcc
ij (τij(θ)) = ∑

ω

ε
gcc
ij (ω) · eω fsτij(θ). (2.83)

Thus the TDOA estimate is

τ
gcc
ij (θ̂) = arg max

τij

ε
gcc
ij (τij(θ)). (2.84)

DOA estimates Θ̂ (defined in (2.62)) can then be found from the peaks.

Ψij(ω) can have various forms such as Roth, SCOT, or PHAT [35]. Partic-

ularly, when Ψij(ω) = 1/|Gxixj(ω)| in (2.82), (2.84) becomes the GCC-

PHAT estimation τ
gcc−phat
ij (θ̂) [35]. GCC methods relies on the anechoic

model [35, 36], and the PHAT is most often used in practice for better per-

formance compared to the other prefilters.

SRP-PHAT

The SRP-PHAT [43,44] can be classified either as a filter-and-sum beamform-

ing technique, or a TDOA-based method built upon the GCC-PHAT.

Apparently, the time delay in (2.84) depends on the DOA θ. In the imple-

mentation, the localization function of SRP-PHAT is defined as:

εsrp−phat(θ) =
IM

∑
i

IM

∑
j

ε
gcc−phat
ij (τij(θ)), (2.85)

where ε
gcc−phat
ij (τij(θ)) is defined in (2.83), using the PHAT prefilter. DOA

estimates Θ̂ (defined in (2.62)) can then be found from the peaks.

The SRP-PHAT uses all combinatory pairs of microphones of the array,

which contain redundant information. Although this improves the robust-

ness against reverberation, the summation in (2.85) may not guarantee high

location resolution. Test results are shown in Section 3.7 and Appendix F .
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MCCC

The standard MCCC method developed in [42,102] generalizes the classical

cross-correlation coefficient to the multichannel case in the time domain.

The far-field and anechoic assumptions are applied so that when perfectly

time-aligned in each channel, the impinging signal at any microphone can

be expressed as a linear combination of signals at the rest microphones. Its

spatial correlation matrix for each scanned location is defined as

R̃(
⇀
℘(θ)) =E[x⇀

℘
xT
⇀
℘
] ,


σ2

1 r12 . . . r1I

r21 σ2
2 . . . r2I

...
... . . . ...

rI1 rI2 . . . σ2
IM


⇀
℘

, (2.86)

where in x⇀
℘

, signals are aligned in time between microphones according to

the scanned location
⇀
℘(θ). Respectively, σi and rij are the autocorrelation

and cross-correlation coefficients. Thus when signals from microphones are

perfectly aligned in x⇀
℘

, the determinant of the spatial correlation matrix is

zero, indicating that the sound source comes from location
⇀
℘(θ).

Using the far-field model, the DOA estimate is

θ̂ = arg max
θ

ρ2
1:IM

(
⇀
℘(θ)) = arg min

θ

det[R̃(
⇀
℘(θ))], (2.87)

where the localization function

ρ2
1:IM

(
⇀
℘(θ)) , 1− det[R̃(

⇀
℘(θ))]

∏IM
i=1 σ2

i

, (2.88)

the determinant of a matrix is defined as det[·]. DOA estimates Θ̂ (defined

in (2.62)) can then be found from the peaks of the localization function.

Since the integer sample shifting may not perfectly align microphone sig-

nals in time (considering the finite sampling frequency), and that the local-

ization function relies on the determinant of the spatial matrix which consists

of correlation coefficients of all microphone pairs including those far apart
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(spatially aliased), the MCCC by itself may not provide good spatial resolu-

tion required for multi-speaker localization (cf. Appendix E ).

NEURO-FUZZY

Human listeners have the remarkable and often unparalleled capability in

accurately locating sound sources even in highly reverberant environments.

Computational Auditory Scene Analysis (CASA) approaches can be essen-

tially regarded as “machine learning” methods that model the human au-

ditory system based on the inference of psychoacoustic studies. They have

received much attention and achieved considerable useful results for the au-

dio signal processing arena in the past few decades [39,46,54,103–106].

In [39], a Neuro-Fuzzy speaker localization method was developed, based

on a range of CASA techniques, namely the gammatone filterbank, ERBS

(equivalent rectangular bandwidth scale), glimpsing, precedence effect, au-

ditory nerve spikes generation, inter-aural cross-correlation, phase-locking,

etc. The Neuro-Fuzzy method can localize multiple speakers in highly rever-

berant environments as demonstrated in [39], but it is not based on mathe-

matical derivations and motivations of some parameters have been unclear.

2.5.4 Summary and Critiques

The location estimators as described aim to provide estimates of locations

(e.g. Θ̂ in (2.62)). A brief summary of existing localization methods is made

as follows. Note that the intention of the critiques is not to refute the values

of respective localization methods, but rather to examine the underlying as-

sumptions and difficulties in the studied challenges, and thus motivate new

solutions in Chapter 3 for such cases.

1. Moving sources may not be an essential problem to beamformers, as

the beamformer response, e.g. (2.40), is independent with the ob-

served signals. However, due to the sidelobe responses, the DOA es-

timation can be easily offset when there are concurrent sources in

other directions, or besmeared when there is considerable reverbera-

tion. Moreover, due to the beamwidth of wideband beamformers, there
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can be ambiguities when concurrent sources locate in close locations,

where a high resolution estimator is necessary.

2. Subspace methods can achieve good spatial resolution when the re-

verberation is not strong and the number of sensors is larger than the

number of sources. However, the benchmark methods as discussed in

Section 2.5.2 rely on the covariance matrix (2.64), which may not con-

verge to the true values during a short period of time. For moving

sources in particular, the array steering matrix (2.26) or (2.35) is time

varying, which makes it more difficult for the resulting covariance ma-

trix to converge to the true values in a short measurement time. This

cannot be solved by averaging the covariance matrix over a long time,

because the covariance matrix over a long observation time for mov-

ing sources is actually linearly averaging the short-time observations

from different locations (cf. (2.65)), while the relationship between

the steering matrix and the locations is nonlinear, even in the anechoic

case. Reverberation further complicates the problem by introducing

coherent sources due to sound reflections.

3. CASA techniques have been motivated essentially by the idea of mak-

ing computers “work” like humans, hence can be classified into the

“machine learning” category. The Neuro-Fuzzy method relies on the

psychoacoustic inferences to mimic the localization mechanisms of the

human auditory system. However, while it is reasonable to make ma-

chines imitate human capabilities, the underlying signal model and

mathematical motivations were unclear in the literature.

4. TDOA-based methods can often provide better accuracy and resolution

for concurrent sources, compared with the wideband beamformers,

and are more applicable for localization of moving sources in contrast

with the subspace methods [45]. Reverberation is a common problem

to all these methods, and the ideal but challenging solution is to find

the direct-path cues before further processing (cf. Fig. 2.1). Due to

difficulties in finding the direct-path cues, simplified spatial character-
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istics of reflections are often assumed in (2.35), thus the redundant

information from multiple microphone pairs can be useful.

2.5.5 Localization Performance

The location estimators as summarized in the preceding part of Section 2.5

aim to produce an estimate of the location of each speaker, in each time

frame. Denote the speaker location as θ, and the estimate as θ̂ (θ̂ ∈ R).

For a static speaker at θ, the distribution of the estimate θ̂ can be com-

paratively easy to characterize. The probability density function (PDF) of

a random variable is completely characterized by its first- and second-order

moments, if it follows the Gaussian distribution, i.e.

p(θ̂) =
1√

2π|σθ̂|
e−(θ̂−E[θ̂])2/2σ2

θ̂ ∼ N (E[θ̂], σ2
θ̂
), (2.89)

where the mean is defined as

E[θ̂] ,
∫

θ̂ · p(θ̂)dθ̂, (2.90)

which is unbiased if E[θ̂] = θ. The variance is defined as

σ2
θ̂
, var(θ̂) , E[(θ̂ −E[θ̂])

2
]. (2.91)

The mean-square error (MSE) is defined as

MSE(θ̂) , E[(θ̂ − θ)
2
], (2.92)

which is also the variance, for an unbiased estimator.

The root-mean-square error (RMSE) is the positive square root of the

MSE, and will be used for evaluating the performance of location estimators

for static speakers.

For time-varying speaker locations, especially when the number of speak-

ers is also time-varying, the OSPA (optimal sub-pattern assignment) metric,

commonly used for measuring the performance of tracking filters, is more
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appropriate and its definition will be provided in Section 2.6.6.

2.5.6 Localization for Tracking

Provided with location estimates (with errors) as the observation6, tracking

speakers (with time-varying states) using the obtained observation is another

significant challenge.

Recall Fig. 2.2 in Section 2.1, the most common approach to such tracking

problem is to model the stochastic process as a discrete time (frame) Markov

process, which is characterized by its initial state PDF and state transition

PDF. The state is not directly observed, but estimated from realizations of

another related process, i.e. estimates from the localization step. The prob-

lem hence becomes the state estimation of a time-varying dynamical system.

In mathematical terms, suppose at time (frame) k, there are Nk speakers

with states Sk (Sk ∈ S assuming continuous state space), and Mk measure-

ments Zk.7 Denote Z0:l , (Z0, Z1, · · · , Zl). The objective of state estimation

is to find speaker states Ŝk based on observations, e.g. via

the expected a posteriori (EAP) Ŝk = E[Sk|Z0:l] , or, (2.93a)

the maximum a posteriori (MAP) Ŝk = arg max
Sk

p(Sk|Z0:l). (2.93b)

Particularly, the state estimation is called “prediction” when l < k; “filter-

ing” when l = k; and “smoothing” when l > k. The prediction and filtering

are pertinent to the online estimation of system states. Therefore in what

follows, the thesis focuses on the prediction and filtering. The related state

estimation algorithm is called a (tracking) filter.

6In the state estimation paradigm, observation and measurement are used interchange-
ably, and tracking is often treated as a synonym of state estimation or filtering.

7The symbol Z is used for measurements in general. It can be the DOA estimates Θ̂ from
the localization, or Cartesian coordinates.
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2.6 Tracking Overview

Significant efforts have been made in the area of state filtering, out of which

the recursive Bayesian approach [107] provides a general framework based

on the discrete-time Markov model. The celebrated Kalman filter [108]

can be regarded as a special case for the linear Gauss-Markov dynamical

and measurement process, and provides a close-form tractable solution with

minimum mean-square errors (MMSE) optimality [18]. For nonlinear state

transition models, the extended Kalman filter (EKF) [109] is a first-order

approximation based on local linearization, while the unscented Kalman

filter (UKF) [12] propagates the first and second moments using the sam-

pling principles of the unscented transform. The extensively used Sequential

Monte Carlo (SMC) filters [110, 111] use point-mass approximations to the

state PDF, and the ubiquitous particle filters perform SMC filtering via se-

quential importance sampling.

For uncertain measurements, data association is needed before applying

the Kalman filter. Typical data association techniques include the joint prob-

abilistic data association (JPDA) [13] and the multiple hypothesis tracking

(MHT) filter [112], as well as their variants. Traditionally, the JPDA filter as-

sumes that the number of objects is fixed and known and evaluates and gates

the joint association probability of all measurements to objects. Its computa-

tional complexity grows exponentially with the total number of targets and

measurements. The MHT exhaustively searches all previous time steps for all

possible combinations of measurement to object associations and maintains

hypotheses of high posterior probability. This way the number of hypothesis

increases exponentially with time. Thus various extensions have been devel-

oped [113,114]. However, as also summarized and articulated in [115], the

Bayesian consistency and the optimality of these traditional techniques was

unclear, while the Byes random finite set (RFS) approach [18, 24] gives a

mathematically consistent formulation for multi-object filtering.

The basic Bayes recursion, Kalman filter, Bayes RFS and the GLMB filter

are summarized as follows.
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2.6.1 Bayes Recursion

From (2.93), the a posteriori PDF is required for the EAP or MAP state esti-

mate. This is usually propagated by the Bayes recursion. Assume a first-order

Markov process, and denote the state transition PDF from time k to k + 1 as

fk+1|k(S|S′), where S and S′ denote state variables at time k + 1 and k respec-

tively. From measurement Z0:k, the PDF of the predicted state at k + 1 can be

found using the total probability theorem, i.e.

pk+1|k(S|Z) =
∫

fk+1|k(S|S′) pk|k(S
′|Z) dS′ , (2.94)

where pk+1|k(S|Z) , p(Sk+1|Z0:k), and the prior PDF pk|k(S′|Z) , p(S′k|Z0:k).

Using the Bayes’ rule, the posterior PDF of the state at time k + 1 given

new measurement zk+1 is thus

pk+1|k+1(S|Z) =
gk+1(Z|S) pk+1|k(S|Z)∫

gk+1(Z|S′) pk+1|k(S′|Z) dS′
, (2.95)

where pk+1|k+1(S|Z) , p(Sk+1|Z0:k+1), and gk+1(Z|S) , g(Zk+1|Sk+1) de-

notes the measurement likelihood due to the a priori knowledge (e.g. from

the localization stage in Part I). The normalizing denominator is required.

(2.94) and (2.95) form the basic Bayes prediction and filtering recursion.

Depending on the state transition and measurement models, i.e. fk+1|k(S|S′)
and gk+1(Z|S), a good variety of state filters can be found in the literature.

Particularly, the Kalman filter provides a closed-form solution to the linear

“Gauss-Markov”8 case when the prior state and noises are uncorrelated and

Gaussian, and the state transition and measurement models are linear.

8The Gauss-Markov process model shall not be confused with the Gauss-Markov estimate.



42 2.6 Tracking Overview

2.6.2 Linear Gauss-Markov Model and Kalman Filter

The simple linear Gauss-Markov model in the vector form specifies [116]

Sk+1 =Ak+1Sk + Bk+1uk+1 (2.96a)

Zk+1 =Hk+1Sk+1 + wk+1, (2.96b)

where Ak+1 (state transition), Bk+1, and Hk+1 (observation) are a priori
known matrices, uk+1 ∼ N (0, Σu) the driving noise vector, and wk+1 ∼
N (0, Σw) the observation noise vector.

The Kalman filter provides the optimal MMSE recursive solution [116]

Prediction Ŝk+1|k = Ak+1Sk (2.97a)

Prediction MMSE Mk+1|k = Ak+1MkAT
k+1 + Bk+1ΣuBT

k+1 (2.97b)

Kalman Gain Kk+1 =Mk+1|kHT
k+1(Σw +HT

k+1Mk+1|kHT
k+1)

−1

(2.97c)

Correction Ŝk+1 = Ŝk+1|k +Kk+1(Zk+1 −Hk+1Ŝk+1|k) (2.97d)

MMSE Matrix Mk+1 = (I−Kk+1Hk+1)Mk+1|k. (2.97e)

For more general scenarios, e.g. nonlinear state transition and measure-

ment models, the EKF and UKF can be used, but the linearization preserves

no optimality. However, the finite set statistics (FISST) theory provides a neat

solution in such cases [24], representing the measurements and states with

random finite sets (RFS’s) and retaining the Bayesian recursion formalism.

2.6.3 FISST and Bayes RFS Filters

In practice, the measurements (e.g. multi-speaker location estimates Θ̂) are

often sets of finite unordered estimates, indicating that the association is un-
known and time-varying between state estimates and measurements.

Denote the RFS multi-target posterior density at time k as πk(·|Z). Simi-

lar to (2.94) and (2.95), it is propagated by the multi-object Bayes recursion
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(see e.g. [21] or [18, Eq.(14.14), (14.50)]):

πk+1|k(S|Z) =
∫

fk+1|k(S|S′)πk(S
′|Z)δS′ , (2.98a)

πk+1(S|Z) =
gk+1(Z|S)πk+1|k(S|Z)∫

gk+1(Z|S′)πk+1|k(S′|Z)δS′
, (2.98b)

where πk+1|k(S|Z) , p(Sk+1|Z0:k), πk(S|Z) , p(Sk|Z0:k), and πk+1(S|Z) ,
p(Sk+1|Z0:k+1). States S and measurements Z are now RFS’s.

The standard dynamical and measurement model assumes that, each ob-

ject (with state sik ∈ Sk) either continues to exist at time k + 1 with prob-

ability pS,k+1(sik) and transit to a new state sik+1 with probability density

fk+1|k(sik+1 |sik), or dies with probability 1− pS,k+1(sik). Meanwhile, sik is ei-

ther detected with probability pD,k(sik) and generates an measurement zk

with likelihood gk(zk|sik), or missed with probability 1− pD,k(sik). In addi-

tion, due to newborn targets, there are spontaneous births that constitute

Sk+1, and due to non-ideal sensors, there are false alarms or clutter with in-

tensity κk(·). These parameters will be detailed later. For notational simplic-

ity, the functional dependence on time indices are omitted in the following.

The integrals in (2.98a) and (2.98b) are FISST (finite set statistics) set

integrals [18], which can be intractable. Practical implementations usually

require approximations (e.g. (C)PHD [16,19], CBMB [20], (G)LMB [21,22])

to make the recursion tractable without severely degrading the accuracy.

The thesis focuses on the application of the state-of-the-art (G)LMB filter,

which not only provides estimations of the multi-object states, but also jointly

tracks the associations (identities) of states over time for each object. This is

an important advancement for multi-speaker tracking. For completeness, a

brief summary of the (G)LMB filter is provided as follows.

2.6.4 GLMB RFS Filter

GLMB RFS

The GLMB RFS S , {si = (si, `i) | i ∈ N} is a closed-form solution to the

multi-object Bayes RFS recursion. It is a labeled RFS with state space S and
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label space L, (`i ∈ L), where the labels are unique, i.e. `i 6= `i′ , ∀i 6= i′.
The GLMB distribution is written as

ß(S) = ∆(S) ∑
ξ∈Ξ

w(ξ)(L(S))
[

p(ξ)
]S

, (2.99)

where ∆(S) is the distinct label indicator. p(ξ) is the probability distribution

of a target state, ξ represents a history of association map between targets

and measurements, Ξ is a discrete space, w(ξ)(L) is the probability of hy-

pothesis, and the multi-object exponential
[

p(ξ)
]S

, ∏s∈S

[
p(ξ)

]s
. The pro-

jection L((s, `)) = `, and L(S) = {L(s) : s ∈ S}. ∑L∈L ∑ξ∈Ξ w(ξ)(L) = 1,

where L is the set of labels.

Based on the GLMB distributions, the alternative δ-GLMB form is pro-

vided to facilitate numerical implementation [21]

ß(S) = ∆(S) ∑
(L,ξ)∈F (L)×Ξ

ω(L,ξ)δL(L(S))
[

p(ξ)
]S

, (2.100)

where ω(L,ξ) = w(ξ)(L) is the probability of the hypothesis (L, ξ). δL(L(S))
is the generalized Kronecker delta function for RFS denotations, which in-

dicates whether the set of labels in S matches that of L. The δ-GLMB is

completely characterized by the set of parameters {(ω(L,ξ), p(ξ)) : (L, ξ) ∈
F (L)×Ξ}. (See e.g. [21–23] and the references therein for detailed studies

of the (G)LMB and δ-GLMB RFS tracking filters.)

Similar to (2.98a) and (2.98b), the GLMB recursion consists of the multi-

object “update” step based on Bayes inference and the Chapman-Kolmogorov

[117] “prediction” step based on the state dynamical models.

UPDATE

If the current RFS prediction density is a δ-GLMB of the form (2.100), using

the current multi-feature measurement Z, the posterior density is still a δ-



45 2.6 Tracking Overview

GLMB [22], i.e.

ß(S|Z) = ∆(S) ∑
(L,ξ)∈F(L)×Ξ

∑
ϑ∈Θ(L)

ω(L,ξ,ϑ)(Z)δL(L(S))
[

p(ξ,ϑ)(·|Z)
]S

, (2.101)

where for notational convenience, the dependence on k is suppressed,

ω(L,ξ,ϑ)(Z) ∝ ω(L,ξ)[η
(ξ,ϑ)
Z ]L (2.102a)

η
(ξ,ϑ)
Z (`) =

〈
p(ξ)(·, `), ψZ(·, `; ϑ)

〉
(2.102b)

p(ξ,ϑ)(s, `|Z) = p(ξ)(s, `)ψZ(s, `; ϑ)

η
(ξ,ϑ)
Z (`)

(2.102c)

ψZ(s, `; ϑ) =


pD(s,`)g(zϑ(`)|s,`)

κ(zϑ(`))
, if ϑ(`) > 0

1− pD(s, `), if ϑ(`) = 0 ,
(2.102d)

〈·, ·〉 denotes inner product, g(zϑ(`)|s, `) is the single object likelihood for

the measurement zϑ(`) being generated by (s, `), and κ(·) is the intensity

function of Poisson RFS describing the clutter. Θ(L) denotes the subset of

current association maps with domain L.

After update, the maximum a posteriori (MAP) estimate of the cardinality

(number of speakers) is chosen, and the corresponding hypothesis with the

highest weight is used for the multi-object state estimate.

PREDICTION

If the current RFS filtering density from its previous update step is a δ-GLMB

of the form (2.100), the prediction density to the next time is also a δ-GLMB

given as [22]

ß+(S+) = ∆(S+) ∑
(L+,ξ)∈F (L+)×Ξ

ω
(L+,ξ)
+ δL+(L(S+))

[
p(ξ)+

]S+
, (2.103)

where [·]+ stands for prediction.

ω
(L+,ξ)
+ =ω

(ξ)
S (L+ ∩L)wB(L+ ∩B) (2.104a)
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ω
(ξ)
S (L) =[η

(ξ)
S ]L ∑

I⊇L
[1− η

(ξ)
S ]I−Lω(L,ξ) (2.104b)

η
(ξ)
S (`) =

〈
pS(·, `), p(ξ)(·, `)

〉
(2.104c)

p(ξ)+ (s, `) =1L(`)p(ξ)S (s, `) + 1B(`)pB(s, `) (2.104d)

p(ξ)S (s, `) =

〈
pS(·, `) f (s|·, `), p(ξ)(·, `)

〉
η
(ξ)
S (`)

(2.104e)

The inclusion function, a generalization of the indicator function, is defined

by

1Y (X ) ,

{
1, if X ⊆ Y

0, otherwise.
(2.105)

B is the space of newborn target labels. The set of newborn targets can be

represented by an LMB RFS {(wB, pB)}, where wB is the probability of a

birth hypothesis of newborn targets and pB is the probability distribution of

kinematic states that belong to the birth targets.

Since the form of the GLMB PDF is retained in the recursion, it is called a

conjugate prior [21]. The standard implementation of GLMB filter assumes

known birth probability densities {(wB, pB)}, which can be restricting in

practice. Moreover, the standard implementation of the (G)LMB filter have

been focusing on the single-feature state (e.g. kinematic location and speed)

filtering, which may be subject to the ambiguity problem when the states of

different objects are too close. Although the expressions of the Bayes RFS

filters may appear intricate, they are indeed neat closed-form solutions to

multi-object tracking, and can be computationally efficient [118,119].

MDB MODEL

Standard implementations of the GLMB filters require a priori knowledge of

object birth distributions, and therefore can be restrictive in practical applica-

tions. An adaptive birth model for Sequential Monte Carlo (SMC) implemen-

tations of PHD and CPHD filters has been proposed in [120]. An MDB for

SMC-CBMeMBer has been presented in [121]. The adaptive birth distribu-

tion for the LMB filter has also been proposed [23]. Similarly, [25] provides
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the MDB model for the GLMB filter described as follows.

The MDB model adaptively initiates the kinematic states and existence

probabilities of birth objects based on measurement data from previous time,

thereby eliminating the dependence of a priori knowledge of object birth

distributions.

Suppose measurements Z are not associated with any persistent object

labels at the current time frame. At the next time step, these measurements

will then initiate new-born objects. The set of new-born objects can be com-

pletely characterized by an LMB RFS, i.e. {r(`)B (z), pB(·, ·; z) : ` = `B(z)}z∈Z

where rB(z) denotes the existence probability of the non-empty birth object

initiated by measurement z, `B(z) denotes the assigned label, and pB(s, `; z)
is the probability density of the corresponding birth object.

The probability density of the new-born LMB RFS is thus

ßB(S+) = ∆(S+)wB(L(S+)) [pB]
S+ , (2.106)

where as used in (2.104a),

wB(L) = ∏
i∈B

(
1− r(i)B

)
∏
`∈L

1B(`)r
(`)
B

1− r(`)B

. (2.107)

The new-born likelihood for each measurement z ∈ Z can be found by

rU(z) = 1− ∑
(L,ξ)∈F (L)×Ξ

∑
ϑ∈Θ(L)

1zϑ
(z)ω(L,ξ,ϑ), (2.108)

where ω(L,ξ,ϑ) is given in (2.102a). It can be seen from (2.108) that, rU(z) =
0 if a measurement has been used in all hypotheses, while rU(z) = 1 for

measurements that have not been assigned to any of the objects.

In (2.107), the existence probability of the new-born object is obtained

via

rB(z) = min
(

rBmax , λB ·
rU(z)

∑ζ∈Z rU(ζ)

)
, (2.109)

where λB is the expected number of object birth at the next time, and rBmax ∈
[0, 1] is the maximum existence probability of a new-born object.
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The mean cardinality of the new-born labeled multi-Bernoulli RFS is

∑
ζ∈Z

rB(ζ) ≤ λB. (2.110)

A new birth of Bernoulli RFS is generated around the measurement, for

each measurement z that has non-zero new-born likelihood. Assuming a

Gaussian distribution, the probability distribution of the states is given in

(2.111), which is used in (2.104d) of the GLMB filter.

pB(s, `; z) =
Mb

∑
i=1

1
Mb

δ
s(i)z

(s), z ∈ Z, (2.111)

s(i)z ∼ N
(
s; mB(z), PB(z)

)
, i = 1, ..., Mb, (2.112)

where Mb denotes the number of generated states, mB(z) a function mapping

from an observation to its corresponding object state, and PB(z) the variance.

2.6.5 Multi-speaker Tracking

Although it may appear straightforward in using the MDB GLMB based filters

for the adaptive multi-speaker tracking (or feature filtering in general), the

benefits and challenges to be addressed are summarized as follows.

• The GLMB filter provides a closed-form solution, tracking not only the

kinematic states, but also the speaker identities (labels) jointly. Kine-

matic states can be expressed in terms of DOAs or Cartesian coordinates

(based on the triangulation using multiple microphone arrays). Con-

siderations in converting the DOAs to Cartesian coordinates, especially

when using the MDB model, will be detailed in Part II.

• In some applications, e.g. the bearing and range tracking, certain

kinematic state transition models are assumed fully known a priori
[21,22,25]. In speaker tracking however, it is rather impractical to as-

sume a completely known state transition function. Thus the Langevin

model is often used in the context of speaker tracking, to accommodate
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the random walks. Moreover, in the challenging reverberant environ-

ments, the robust localization methods are essential in order to obtain

reliable tracking results. Studies on multi-speaker tracking with strong

reverberation will be carried out in Part II.

• The standard implementation of the GLMB filter deals with only one

kinematic state [21, 22, 25], which may not be able to resolve the am-

biguity when multiple speakers locate closely, and hence more speaker

features are needed. Moreover, it is of practical importance to sepa-

rate other speaker features (e.g. speech signals, pitches) besides the

locations. Thus jointly filtering (i.e. tracking and separating) multiple

features of multiple speakers is an interesting challenge and its feasi-

bility will be investigated in Part II.

2.6.6 Tracking Performance

The commonly used RMSE measure may suffice the simple cases such as

a single speaker or static speakers, but not otherwise when the cardinality

error shall be taken into consideration (e.g. for clutter and miss-detections).

OSPA METRIC

The estimation accuracy of the multi-object localization and tracking meth-

ods is more closely evaluated using the OSPA (optimal sub-pattern assign-

ment) [122] metric, as it not only evaluates the location miss-distances but

also assesses the cardinality errors. The OSPA metric d̄p
(c) of two arbitrary

finite sets S = {s1, ..., sm} and Ŝ = {ŝ1, , ..., ŝn}, (0 ≤ m ≤ n) is defined as

d̄p
(c)
(S, Ŝ) ,

( 1
n
(

min
π∈Πn

m

∑
i=1

d(c)(si, ŝπ(i))
p + cp(n−m)

)) 1
p
, (2.113)

where p ≥ 1, c > 0, d(c)(s, ŝ) , min(c, ‖s− ŝ‖), and Πn denotes the set of

permutations on {1, 2, ..., n}, ∀n ∈ N. The distance d̄p
(c)
(S, Ŝ) is interpreted

as a p-th order per-object error. If m > n, d̄p
(c)
(S, Ŝ) = d̄p

(c)
(Ŝ, S). The order
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parameter p determines the sensitivity to outliers, and the cut-off distance c
determines the weighting for cardinality errors.

2.7 Problem Formulation and Proposed System

Based on the signal and system models as well as the discussions in pre-

vious sections, the proposed solution to the studied problem is shown in

Fig. 2.5. The work aims to extract locations (and sounds) of respective

speakers from the microphone recordings, based on the a priori knowledge

of microphone array geometries. The number of active speakers is unknown

and time-varying, and speakers can move while talking.

Recordings from Microphones
Locations of Speakers

(+ Sounds of Speakers)

System (proposed) Signals (estimated)Signals (available)

I. Localization
 (+ Separation)

II. Filtering (Tracking)

Figure 2.5: Formulation of the proposed system.

Recall Fig. 2.2, as shown in the general signal models (2.30) and (2.34),

the discrete signals available are the x[n] and X(ω), respectively. The de-

sired signals are the speaker locations, e.g. θq in (2.28) (and corresponding

sounds signals sq(t)), which are embedded in, and to be estimated from, the

available signal snapshots in short time frames and over time.

The proposed system consists of two major parts in logical order, as will

be further elaborated in what follows. Briefly speaking, Part I is regarding

speaker localization9 in short time frames, and Part II is mainly the feature

filtering (e.g. tracking) over time. The localization problem may be less

challenging if there is no sound reflections, the speakers are static (the lo-

cations do not change over time), and the speakers talk for long periods of

9Note that the speech separation is not the main focus of this thesis. It is hence simply
dealt with wideband beamforming techniques using location estimates.
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time so that there is sufficient data for each speaker location. For the pro-

posed localization methods in this thesis however, none of these assumptions

is presumed. Therefore as developed in the sequel (cf. Fig. 2.5), Part I deals

with the reverberant speaker localization in short time frames. Location (and

sound signal) estimates obtained from Part I are used as “observations” for

estimating time-varying speaker states in Part II.



Part I

Speaker Localization

52



Chapter 3

Speaker Localization

Acoustic localization of speakers has been an important audio signal pro-

cessing problem, which arises from the practical requirements of speech ac-

quisition, separation, recognition, transcription and speaker tracking. This

chapter studies the speaker localization in reverberant conditions in short

time frames. Some contributions of this chapter have been published in the

author’s journal article1 [45]. Further studies such as the Onset-GSRP and

the Onset-MCC implementation, the investigation of the redundant informa-

tion, more test results and comparative studies are also included.

3.1 Introduction

Despite the significant literature on sound source localization, challenges still

remain pertaining to strong reverberation and moving speakers. Section 2.5

has grouped speaker localization methods into three categories, based on

beamforming, subspace and TDOA techniques. A beamformer scans DOAs

and find peaks in the corresponding response. Beside traditional wideband

beamformers, the circular harmonics beamformer (CHB) [32–34] has at-

tracted recent attentions in the wideband source localization applications.

Prominent examples include the TF - CHB [34], and the EB - ESPRIT [40]

methods. Albeit straightforward, a wideband beamformer usually has com-

paratively wide beamwidth, hence limited DOA resolution versus the num-

ber of sensors. The sidelobe beampattern and concurrent sources may easily

offset peak locations of the steered-response. Subspace-based methods de-

composes the covariance matrix for narrowband parameter estimation. The

popular MUSIC (multiple signal classification) [27], ESPRIT (estimation of

signal parameters via rotational invariance techniques) [28] and their vari-

ants [29, 40, 123, 124], can provide good direction-of-arrival (DOA) resolu-

1©2018 IEEE. Reverberation-Robust Localization of Speakers Using Distinct Speech On-
sets and Multichannel Cross-Correlations, by Shoufeng Lin; IEEE/ACM Transactions on Au-
dio, Speech and Language Processing (TASLP). 2018 Nov 1;26(11):2098-111.
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tions for spatially uncorrelated narrowband sources, but still are not ideal

concerning strong reverberation and moving speakers.

TDOA estimation algorithms mainly rely on the generalized cross-correlation

(GCC) [35] or the eigenvalue decomposition (EVD) [36] method. The EVD

method is not straightforward for multiple concurrent speakers, or for com-

mon zeros between impulse responses of speaker-microphone channels [36].

The popular GCC method, including its classic phase transform (PHAT) pre-

filter, assumes free-field plane wave model and is thus considered sensitive

to strong reverberation. The SRP-PHAT is a reverberation-robust extension

to the GCC-PHAT, but as will be shown further in this chapter, it may not be

able to resolve closely located sources. The multichannel cross-correlation

coefficient (MCCC) method [41, 102] was motivated to leverage the redun-

dant information from multiple microphones. Using the determinant of the

spatial correlation matrix however, does not provide good localization reso-

lution for the MCCC, and although intuitive, it was unclear why the redun-

dant information can improve reverberation robustness. For computationally

viable localization implementations using multichannel cross-correlations,

the generalized steered response power (GSRP) method [125] has been de-

veloped, by inversely mapping relative time delays to spatial locations. To

address the reverberation problem, many exploited the “precedence effect”

by extracting speech onsets (cf. Section 2.2.2) as the reliable localization

cues [37,38,126–130]. However, the existing onset detection methods such

as [37] and [39] are built upon psychoacoustic experimental inferences (e.g.

the “glimpses” [131], “precedence effect” [132] and neural spikes genera-

tion [46,133]), rather than mathematical motivations and derivations.

Following the discussion in Section 2.5.4, this chapter presents three al-

gorithms for localizing speakers using microphone array recordings of rever-

berated sounds. The first two algorithms build upon an RIR model and use

direct-path signal components for reliable localization. To suppress reverber-

ation, speech onsets are detected and encoded to formulate the multichannel

cross-correlation coefficients in each subband. For computationally viable

implementation of DOA scan, the GSRP reverse mapping is used, and the

resulting localization estimators are thus referred to as the Onset-GSRP and
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the Onset-MCC. The third algorithm builds upon an RTF model and extends

the GCC-PHAT method by using redundant information of multiple micro-

phones to address the reverberation problem. Compared to the SRP-PHAT

method, the proposed MCC-PHAT has improved spatial resolution. The pro-

posed methods have been evaluated under adverse conditions using not only

simulated signals (reverberation time T60 of up to 1s) but also recordings in

a real reverberant room (T60 ≈ 0.65s). Comparing with some state-of-the-art

localization methods, experimental results confirm that the proposed meth-

ods can reliably locate static and moving speakers, in presence of strong

reverberation.

The chapter is organized as follows. Section 3.2 provides time domain

models for voiced sounds and the RIR. Section 3.4 proposes the Onset-GSRP

and Onset-MCC algorithms, using the detected and encoded speech onsets

as derived in Section 3.3. Section 3.5 exploits the redundant information

and proposes the MCC-PHAT method. The notations for DOA estimates are

provided in Section 3.6. Performance evaluations of proposed localization

methods are demonstrated in Section 3.7. Conclusions are given in Sec-

tion 3.8.

3.2 Time Domain Models

3.2.1 Voiced Speech Model

From Section 2.3, in presence of sound reflections, it is extremely challenging

to find direct-path cues without much a priori knowledge. Thus the speech

onset is often exploited. Based on the source excitation - vocal tract model

(cf. (2.6)) for the process of speech production [48, 51], as well as the am-

plitude and frequency modulation structure [134], a harmonic model can be

used for voiced sounds, i.e.

sq(t) =
Hq

∑
h̄=1

s(h̄)q (t), (3.1)
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where,

s(h̄)q (t) = A(h̄)
q (t) · cos

(
h̄ ·Ωq · t + φ

(h̄)
q (t)

)
, (3.2)

where sq(t) is the voiced speech signal from the q-th speaker, q is an integer

index, s(h̄)q (t) the h̄-th harmonic, integer h̄ the order of harmonics, integer

Hq the maximum order of harmonics, A(h̄)
q (t) ≥ 0 the envelope of each

harmonic, φ
(h̄)
q (t) ∈ R the phase (which is assumed constant for a short in-

terval of time), Ωq > 0 the angular fundamental frequency, which is usually

different for concurrent speakers. Compared to the modulating harmonic

frequency, the bandwidth of A(h̄)
q (t) is usually small. The speech onset cor-

responds to a rising ramp of A(h̄)
q (t) in this model.

3.2.2 Reverberation RIR Model

Following the discussions in Section 2.3, the acoustic RIR from an arbitrary

source q to sensor i can also be parametrized directly with the direct-path

and reflection responses. The early reflections typically contain some discrete

reflections, while the diffuse part is normally distributed with exponentially

decaying envelope. Assuming that sound sources are not located too close to

reflective surfaces, hence the early reflections are negligible [45, 68]. Thus

the RIR model is written as

hqi(t) =


hdqi , t = tdqi

hdqi · νqi(t− tdqi) · 10−3·
t−tdqi

T60 , t ≥ tdqi + τqi

0, otherwise

, (3.3)

where tdqi > 0 is the sound travelling time via the direct-path, hdqi > 0 is

the magnitude of the direct-path impulse response, νqi(t− tdqi) ∼ N (0, 1) is

a random variable, and τqi > 0 is the time duration of the early reflections,

which is also the delay for the first (usually strongest) diffuse reflection to

arrive after the direct-path. The direct-path TDOA between two microphones

is hence τij = tdqi − tdqj . The actual RIR is a realization of the model.

The early development of time domain RIR model is often accredited
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to Polack [135, 136], which can be viewed as a special case of (3.3) when

tdqi = 0 and τqi = 0. Using the property of mathematical expectation E[·],
it is easy to check that E[h2

qi(tdqi + T60)] = E[h2
qi(tdqi)] · 10−6, which is 60dB

below the direct-path response E[h2
qi(tdqi)] = h2

dqi
.

Note that τqi in (3.3) is usually over a few milliseconds (ms) so that one

can make a distinction between the direct-path and reflections. This can be

connected with some psychoacoustic observations that when there is no time

delay, a human listener may fuse two click sounds into a perceived “phan-

tom” source between them, which shifts towards the leading sound as time

delays increase to 1ms. With delays between 1ms and the “echo threshold” (a

few ms), one may hear only the leading sound [69,132]. Therefore, the RIR

model in (3.3) assumes that the early reflections within a few ms following

the direct-path are negligible.

3.3 Onset Detection

3.3.1 Subband Decomposition via Auditory Filterbank

From (2.29), the voiced signal at microphone i can be represented as

xi(t) ≈
Q

∑
q=1

ŝq(t) ∗ ĥqi(t) + ni(t), (3.4)

where ŝq(t) stands for a realization of the voiced speech signal model (3.1),

and ĥqi(t) denotes a realization of the RIR model in (3.3).

Based on the TF sparsity assumption [50] and the harmonic structure of

speech signal (3.1), to separate signal components from different speakers,

signals of each microphone can be decomposed spectrotemporally via an

auditory filterbank so that speech components from separate speakers do

not overlap much in each subband (see e.g. [37,39,46,57,58])

x(b)i (t) = xi(t) ∗ g(b)(t), (3.5)

where x(b)i (t) denotes the decomposed signals from the i-th microphone in
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subband b, and g(b)(t) is the filter impulse response of subband b, which

is aligned in time between subbands. Common auditory filters include the

gammatone filter [46,57,58], gammachirp filter, etc.

From (3.4) and (3.5), for the duration when the noise is small in the

particular subband, the decomposed signal in subband b becomes:

x(b)i (t) ≈
Q

∑
q=1

ŝq(t) ∗ ĥqi(t) ∗ g(b)(t). (3.6)

Moreover, using the TF sparsity and (3.1), for the harmonic component h̄ of

the q-th speaker that falls within the passband of subband b, (3.6) further

simplifies to

x(b)i (t) ≈ ŝ(h̄)q (t) ∗ ĥqi(t) ∗ g(b)(t), (3.7)

where the linearity, commutativity and associativity properties of convolu-

tion, and the frequency selectivity of the filterbank are used.

In reverberant environments, the subband signals x(b)i (t) in (3.7) are mix-

tures of direct-path and reflection components. Locations of speakers can be

found via detecting the direct-paths and suppressing random reflections.

3.3.2 Speech Onsets, Direct-paths and Reflections

Suppose there is an arbitrary distinct speech onset from speaker q beginning

at time ton ∈ R. From (3.3) it arrives at the microphone i via direct-path at

time

tqi = ton + tdqi . (3.8)

Assume that the reflections of preceding signals are negligible in comparison

with a distinct onset. Using the RIR model in Section 2.3.2, it can be found

that the diffuse reflections begin to arrive at tqi + τqi. Thus by expanding

the convolution ŝ(h̄)q (t) ∗ ĥqi(t) in (3.7), at the vicinity of the distinct onset,

x(b)i (t) is composed of its direct-path and reflections, i.e.

x(b)i (t) = x(b)di
(t) + x(b)Ri

(t), t ≥ tqi, (3.9)
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where the direct-path component is

x(b)di
(t) , [ŝ(h̄)q (t− tdqi) · ĥqi(tdqi)] ∗ g(b)(t), t ≥ tqi, (3.10)

and from (3.3) the reflections are

x(b)Ri
(t) ,

[ ∫ ∞

τqi

ŝ(h̄)q (t− tdqi−τ) · ĥqi(tdqi + τ)dτ
]
∗ g(b)(t)

=hR(t) ∗ x(b)di
(t), t ≥ tqi + τqi,

(3.11)

where hR(t) can be viewed as the impulse response:

hR(t) =

0, t < τqi

ν̂qi(t) · 10−3 t
T60 , t ≥ τqi,

(3.12)

which represents a linear time-invariant (LTI) system, connecting an arbi-

trary direct-path signal and its random reflections, for a distinct onset.

3.3.3 Upper Bound of Reflection Level

It can be seen from (3.12) that the exact values of reflections are unknown

without the complete knowledge of ĥqi(t), especially the ν̂qi(t) term. Thus

using the property that E(|νqi(t)|) ≡ 1, an upper bound of the level of reflec-

tions can be used instead, which is independent on ν̂qi(t).
Using (3.11) and from Appendix C , the level of reflections is

E
(
bx(b)Ri

(t)c
)
≤ h̃R(t) ∗ bx

(b)
di

(t)c , x̃(b)Ri
(t), (3.13)

where b·c is the half-wave rectification commonly used [137–139], i.e. bxc =
1
2(x+ |x|), ∀x ∈ R. x̃(b)Ri

(t) is an upper bound of the level of reflections. h̃R(t)
is the MMSE approximation of |hR(t)|.

h̃R(t) , E
(
|hR(t)|

)
=

0, t < τqi

10−3 t
T60 , t ≥ τqi.

(3.14)
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Moreover, since the envelope of a distinct onset is a rising ramp, the

delayed reflections are comparatively small. Thus for the duration of the

distinct onset,

x(b)i (t) ≈ x(b)di
(t), (3.15)

which aligns with the “precedence effect” [132] that speech onsets in micro-

phone signals are dominated by direct-path components.

Therefore from (3.13) and (3.15),

x̃(b)Ri
(t) ≈ h̃R(t) ∗ bx

(b)
i (t)c, t ≥ tqi + τqi. (3.16)

Note that the upper bound x̃(b)Ri
(t) is independent on the ν̂qi(t) term of

ĥqi(t). Thus it can be used as a consistent threshold for detecting distinct

onsets in microphone signals x(b)i (t).

3.3.4 Recursive Averaging for Reflection Level

In practice, signals are observed at a sampling rate of fs. Using the fact that

(3.14) is a low-pass filtering LTI process, a recursive averaging process to

approximate (3.16) is proposed:

x̄(b)i [m] =λ · x̄(b)i [m− 1] + (1− λ) · bx(b)i (m/ fs)c, (3.17)

where λ (0 < λ < 1) is a forgetting factor.

From (3.17), the recursive averages after the onset arrival can also be

rewritten as:

x̄(b)i [m] = (1− λ)
m

∑
l=mqi

λm−l · bx(b)i (l/ fs)c

= hA[m] ∗ bx(b)i (m/ fs)c, m ≥ mqi , round(tqi · fs),

(3.18)

where the impulse response is:

hA[m] =

0, m < 0

(1− λ) · λm, m ≥ 0.
(3.19)
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Equating the upper bound (3.16) and the recursive averages (3.18),

x̄(b)i [m] = x̃(b)Ri
(m/ fs), (3.20)

leads to

hA[m] ≈ h̃R(m/ fs). (3.21)

From (3.14) and (3.19),(1− λ) · λm ≈ 0, 0 ≤ m < mτqi

(1− λ) · λm ≈ 10−3 m
T60· fs , m ≥ mτqi ,

(3.22)

where mτqi , round(τqi · fs).

Thus for τqi larger than a few milliseconds (as discussed in Section 2.3),

from (3.22) for m ≥ mτqi , a non-trivial solution for (3.22) is

λ ≈(1− λ)−
1
m · 10−

3
T60· fs

≈10−
3

T60· fs .
(3.23)

When fs = 48000Hz, λ = 0.9998 for T60 = 0.72s, and λ = 0.99 for T60 =

15ms. It is obvious that λ increases as T60 increases (stronger reverberation).

As discussed in Section 2.3, T60 can be obtained via measurement or estima-

tion [67, 68]. Fig. 3.1 gives an illustration of the recursive averaging for a

subband signal. As shown next, the aim is to detect the speech onsets and

discard the speech offsets.

3.3.5 Onset Detection

From (3.15) and Appendix B , at the distinct onset

x(b)i (t) ≈ S̃(b)
qi (t) · cos(φ̃(b)

qi (t)), t ≥ tqi, (3.24)

where S̃(b)
qi (t) and φ̃

(b)
qi (t) are the envelope and phase defined in (7.19) and

(7.20), respectively in Appendix D . Thus from (7.27), an upper bound for
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Figure 3.1: Speech signal (top panel), subband signal, recursive average,
and encoded subband onset signal (bottom panel). ©2018 IEEE.

its recursive averages is derived, i.e.

S̃(b)
qi (m/ fs)

x̄(b)i [m]
≥ π. (3.25)

Note that the equality in (3.25) holds also when the envelope S̃(b)
qi (m/ fs)

is constant. Other parts of signals can be speech offsets or weak utterances

corrupted by the reflections. Thus those parts of signals are discarded when

(3.25) does not hold.

The envelope limits the peaks of subband signal, i.e.

S̃(b)
qi (m̂(b)

i,n / fs) = bx(b)i (m̂(b)
i,n / fs)c, (3.26)

where m̂(b)
i,n (n = 1, 2, ...) are indices of local peaks

m̂(b)
i,n = arg max

m
bx(b)i (m/ fs)c, ∀ m ∈ ( ~m(b)

i,n , ~m(b)
i,n ), (3.27)
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and index pairs ~m(b)
i,n and ~m(b)

i,n are consecutive zero-crossings that satisfy

bx(b)i (m/ fs)c > 0, ∀ m ∈ ( ~m(b)
i,n , ~m(b)

i,n ). (3.28)

Thus by comparing the local peaks with the recursive averages according to

(3.25), we can find the set of indices of distinct onset signals:

K(b)
i+ , {m | ~m(b)

i,n < m < ~m(b)
i,n ,
bx(b)i (m̂(b)

i,n / fs)c

x̄(b)i [m̂(b)
i,n ]

≥ π}. (3.29)

According to (3.15), (3.20) and (3.25), signals with indices m ∈ K(b)
i+ are

distinct onset signals where direct-path components are dominant, while the

rest signals of bx(b)i (m/ fs)c can be corrupted by reflection components and

hence are discarded.

3.3.6 Onset Encoding

Once the distinct onsets are found from the subband signals of microphones,

they can be encoded to find the locations of speaker q by estimating the

TDOA of direct-path sounds (i.e. differences of tqi in (3.8)) between multiple

microphones.

Assuming a slow-changing φ
(h̄)
q (t) in (3.2), the detected distinct onset

signals can be rewritten as a convolution:

bx(b)i (m/ fs)c ≈ ζ
(h̄,q)
cosine[m] ∗ ∑

m̂(b)
i,n ∈K̂(b)

i+

x(b)i (m/ fs) · δ[m− m̂(b)
i,n ], (3.30)

where ζ
(h̄,q)
cosine[m] is the non-negative part of the cosine term with peak at

m = 0,

ζ
(h̄,q)
cosine[m] , cos

(
2πh̄ fqm/ fs

)
, m ∈ (− fs

4h̄ fq
,

fs

4h̄ fq
), (3.31)
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the delta function δ[m] is defined as

δ[m] =

1, m = 0

0, otherwise
, (3.32)

and K̂(b)
i+ ⊂ K(b)

i+ is the set of indices of onset peaks in (3.27):

K̂(b)
i+ , {m̂(b)

i,n |
bx(b)i (m̂(b)

i,n / fs)c

x̄(b)i [m̂(b)
i,n ]

≥ π}. (3.33)

Since the precise timing information of onsets (the signal-scaled delta

functions in (3.30)) is crucial to time delay estimation, the slow-changing

ζ
(h̄,q)
cosine[m] term in (3.30) can impair the resolution in location estimates (see

e.g. the analysis for PHAT prefiltering in [35]). On the other hand however,

sharp peaks can be sensitive to noise and finite observation time [35]. Thus

the choice of encoding the ζ
(h̄,q)
cosine[m] term for cross-correlation represents a

compromise between good resolution, accuracy and reliability.

Considering that localization of multiple concurrent speakers requires

good resolution, and assuming that the noise is not too strong, the simple

encoding can be used by eliminating the ζ
(h̄,q)
cosine[m] term (or equivalently use

ζ
(h̄,q)
cosine[m] = δ[m]) and encoding the onsets directly with the scaled delta

functions in (3.30). The resulting signal (cf. Fig. 3.1) is denoted as x̂(b)i [m]:

x̂(b)i [m] = ∑
m̂(b)

i,n ∈K̂(b)
i+

x(b)i (m/ fs) · δ[m− m̂(b)
i,n ], ∀m ∈ Z. (3.34)

Some other ways of encoding the signals can be found in the literature that

generate spikes in-phase with local signal peaks before cross-correlation,

however they were inferred from psychoacoustic observations that the neural

spikes are generated by the hair cells in the organ of Corti [39,133].
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3.4 Onset-GSRP and Onset-MCC

In Section 3.3, the distinct onset cues that are dominated by direct-paths

have been found. The Onset-MCCC [45] scans through a spatial grid to cal-

culate corresponding MCCCs, and is hence computationally intensive. Based

on the Onset-MCCC method, this section proposes the Onset-GSRP localiza-

tion method using the encoded onset cues.

Assuming that all speech sources are in the far-field, from (2.80), the

TDOA (in discrete samples) from a source at
⇀
℘(θ) to locations of two micro-

phones
⇀
mi,

⇀
mj is

∆(ij)(
⇀
℘(θ)) = round(τij(θ) · fs), (3.35)

where the location on the azimuthal plane is (using rs to denote the distance

from the candidate source to the array center)

⇀
℘(θ) = rs · [cos θ, sin θ]. (3.36)

For each microphone pair, it is easy to find the range of the relative sample

delays over the entire desired space, i.e. [∆(ij)
min, ∆(ij)

max]. For compact array ge-

ometries, |∆(ij)
min| and |∆(ij)

max| are small. For example, an array of maximum di-

mension of da = 0.1m has maximum possible relative sample delay of about

14, at a sampling frequency of fs = 48000Hz. This saves considerable compu-

tational cost. Thus inspired by the inverse mapping idea in [125], this thesis

proposes the Onset-GSRP method by calculating the cross-correlations per

discrete sample delays within the range [∆(ij)
min, ∆(ij)

max]. Details are explained

as follows.

Denote the relationship between the location and the corresponding sam-

ple delay (3.35) as a function

∆(ij)(
⇀
℘) =M(

⇀
℘), (3.37)

whereM(·) stands for a mapping function, with an inverse functionM−1(·).
For a single microphone pair, there is ambiguity in the mapping that one par-

ticular sample delay may correspond to two azimuthal locations. However,
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this is resolved by the use of multiple microphone pairs. Thus the set of

locations that correspond to these discrete sample delays can be denoted as

℘̂(ij) = {⇀℘ | ⇀℘ =M−1(∆(ij)), ∀ ∆(ij) ∈ [∆(ij)
min, ∆(ij)

max]}. (3.38)

Meanwhile, corresponding to these sample delays (and hence the locations),

the cross-correlation coefficients can also be found for a frame length of N,

i.e.

e(b)ij [k,
⇀
℘] = xcorr

(
x̂(b)i [m], x̂(b)j [m− ∆(ij)(

⇀
℘)]
)

=
∑kM

m=kM−N+1+∆(ij) x̃(b)i [m] · x̃(b)i [m− ∆(ij)]√
∑kM

m=kM−N+1[x̃
(b)
i [m]]2 ·∑kM

m=kM−N+1+∆(ij) [x̃
(b)
i [m− ∆(ij)]]2

, ∀ ⇀
℘ ∈ ℘̂(ij),

(3.39)

where x̃(b)i [·] is x̂(b)i [·] with DC offset removed. Note that by definition the

cross-correlation coefficients |e(b)ij [k,
⇀
℘]| ∈ [0, 1].

These cross-correlation coefficients are then linearly interpolated across

the spatial grid. For example, if only the azimuthal source DOAs across

[0◦, 360◦) are desired and estimated at 1◦ grid steps, the locations can be

simply denoted as
⇀
℘m, indexed by the DOA. Consequently, between any

two consecutive locations
⇀
℘ma and

⇀
℘mb

, (ma 6= mb) with non-zero cross-

correlation coefficients,

e(b)ij [k,
⇀
℘m] = e(b)ij [k,

⇀
℘ma ]

m−mb
ma −mb

+ e(b)ij [k,
⇀
℘mb

]
ma −m
ma −mb

, m ∈ (mb, ma).

(3.40)

The same process repeats for all the microphone pairs, excluding those

far-apart to avoid spatial alias. Then for each point of location
⇀
℘m, the cross-

correlation coefficients are accumulated, i.e.

e(b)[k,
⇀
℘m] = ∑

(i,j)∈P(b)

e(b)ij [k,
⇀
℘m], (3.41)

where microphone pairs are selected to avoid spatial alias [39], which fol-
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lows (3.42), where only i < j pairs are used without duplication, i.e.

P(b) = {(i, j) | ‖⇀mi −
⇀
mj‖ < 2πv/[ fs(ω

(b)
c + 2ω

(b)
B )], i < j }. (3.42)

Finally all the subband results are accumulated to obtain the localization

function, i.e.

εonset−gsrp[k,
⇀
℘m] =

1
Nb

Nb

∑
b=1

e(b)[k,
⇀
℘m]. (3.43)

An intuitive alternative to the Onset-GSRP is by simply replacing the sum-

mation in (3.41) with the product operator, and the resulting localization

function still produces peaks corresponding to speaker locations, i.e.

εonset−mcc[k,
⇀
℘m] =

1
Nb

Nb

∑
b=1

∏
(i,j)∈P(b)

e(b)ij [k,
⇀
℘m]. (3.44)

This new algorithm is referred to as the Onset-MCC (to make a distinction

from the Onset-MCCC method in [45]) which, as will be explained in Sec-

tion 3.5 and evaluated in Section 3.7, produces reverberation-robust local-

ization results with the improved DOA resolution.

For compact microphone arrays with a maximal dimension da, the TDOAs

between microphones are considered independent of rs when rs � da. Thus

a fixed value of rs can be assumed to scan the DOA θ [39,45].

This chapter considers only azimuthal DOAs of speakers. The proposed

method however, can be easily extended for estimating Cartesian locations

of speakers in the azimuthal plane and 3D space using multiple microphone

arrays.

3.5 Redundant Information and MCC-PHAT

The RIR model in (3.3) may be restrictive by assuming that the source is not

located too close to reflecting surfaces, although it has enabled the derivation

and led to a working solution. Here a more general RTF model is used and a

new reverberation-robust localization approach is proposed by exploiting the
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redundant information from the microphone array. Note that for notational

simplicity, time frame indices of STFT signals are not written explicitly.

3.5.1 RTF Model

The RTF as described in (2.35) of Section 2.3 can be written as

Hqi(θq, ω) = dqi(ω) + v̂qi(ω) + ṽqi(ω), (3.45)

where

the direct-path dqi(ω) , e
−ω fstdqi

(θq) (3.46a)

early-reflections v̂qi(ω) , ∑̄
q

v̂q̄ie
−ω fstdqi

(θq̄i), (3.46b)

θq̄i denotes the set of DOAs from early reflections, v̂q̄i ∈ R (|v̂q̄i| < 1) the

magnitude, and ṽqi(ω) ∈ C the RTF of the diffuse reflections. Early reflec-

tions are considered directional (provided with perfectly smooth reflection

surfaces, cf. (2.17), otherwise only part of reflections are directional), and

in general stronger than the ensuing diffuse reflections (cf. Fig. 2.3). It is

also reasonable to assume that diffuse reflection responses are zero-mean

and uncorrelated [61] and spatially white, i.e.

E[ṽqi(ω)] = 0 (3.47a)

E[ṽqi(ω)ṽ?qj(ω)] = σ2
ṽ (ω)δi(j), (3.47b)

where δi(j) is a Kronecker delta function, i.e.

δi(j) =

0, if i = j

1, else,
(3.48)

and according to the above assumptions,

0 < σ2
ṽ (ω)� σ2

v̂q̄
(ω) < 1, (3.49)
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where σ2
v̂q̄
(ω) , v̂q̄i(ω) · v̂q̄j(ω), and for a compact microphone array, v̂q̄i(ω) ≈

v̂q̄j(ω).

Also assume that noise signals are zero-mean, uncorrelated and white,

and much weaker than the speech signal, i.e.

E[Ni(ω)] = 0 (3.50a)

E[Ni(ω)N?
j (ω)] = σ2

N(ω)δi(j), (3.50b)

where the noise variance σ2
N(ω) � σ2

S(ω), the speech signal power is de-

noted σ2
S(ω), and σ̂2

S(ω) denotes a short-time estimate of the speech signal

power. Unless otherwise noted hereafter, the mathematical expectations of

STFT domain variables are approximated with short-time averages over time

frames, under the WSS assumption.

3.5.2 Direct-path to Reflection Ratio

The classical GCC-PHAT method [35] has been described in Section 2.5.3.

From (2.81), (2.82) and (2.83), the GCC-PHAT estimator is rewritten here

ε
gcc−phat
ij (τij(θ)) = ∑

ω

Ψij(ω) · Gxixj(ω) · eω fsτij(θ), (3.51)

where Ψij(ω) = |Gxixj(ω)|−1, and when the sound of speaker q is dominant,

Gxixj(ω) = E[Xi(ω)X?
j (ω)]

=σ̂2
S(ω){e−ω fsτij(θq) + ∑̄

q
σ2

v̂q̄
(ω)e

−ω fs[tdqi
(θq̄i)−tdqj

(θq̄j)]}

+ σ̂2
S(ω) ∑̄

q
σv̂q̄(ω)e

−ω fs[tdqi
(θq)−tdqj

(θq̄j)]

+ E[Ocross−terms(ṽqi(ω), ṽ?qj(ω), Ni(ω), N?
j (ω))]

≈σ̂2
S(ω){e−ω fsτij(θq) + ∑̄

q
σv̂q̄(ω)e

−ω fs[tdqi
(θq)−tdqj

(θq̄j)] + ∑̄
q

σ2
v̂q̄
(ω)e−ω fsτij(θq̄)},

(3.52)

where from (3.47) and (3.50), the cross-terms of noise and diffuse reflections

in (3.52) are negligible. For a closely located microphone pair, θq̄i = θq̄j , θq̄,
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hence in the last line of (3.52), τij(θq̄) = tdqi(θq̄i)− tdqj(θq̄j).

Further assume that the early reflections do not considerably vary the

spectral distribution of the speech signal. Then the terms Ψij(ω)σ̂2
S(ω) and

Ψij(ω)σ̂2
S(ω)σ2

v̂q̄
(ω) can be treated as constants (i.e. pre-whitening weights)

for each frequency when the noise is not too strong in each time frame.

Therefore, using (3.45), (3.51) and (3.52), it can be easily seen that

ε
gcc−phat
ij (τij(θ))

≈∑
ω

Ψij(ω)σ̂2
S(ω)eω fsτij(θ)e−ω fsτij(θq)︸ ︷︷ ︸

direct-path

+ ∑
ω,q̄

Ψij(ω)σ̂2
S(ω)σ2

v̂q̄
(ω)eω fsτij(θ)e−ω fsτij(θq̄)

︸ ︷︷ ︸
early reflections

+ ∑
ω,q̄

Ψij(ω)σ̂2
S(ω)σv̂q̄(ω)eω fsτij(θ)e

−ω fs[tdqi
(θq)−tdqj

(θq̄j)]

︸ ︷︷ ︸
cross-terms of direct-path and early reflections

= δθ(θq)∑
ω

Ψij(ω)σ̂2
S(ω)︸ ︷︷ ︸

direct-path

+ ∑̄
q

δθ(θq̄)∑
ω

Ψij(ω)σ̂2
S(ω)σ2

v̂q̄
(ω)︸ ︷︷ ︸

early reflections

.

(3.53)

where the cross-terms of the direct-path and early reflections are negligible,

since there is no non-trivial DOA solution to τij(θ)− [tdqi(θq)− tdqj(θq̄j)] = 0
for a closely located microphone pair. Thus the localization function of the

GCC-PHAT produces a peak at θq, and also spurious peaks at θq̄ due to early

reflections, besides the negligible contributions by cross-terms.

Define the direct-path to reflection ratio (DRR) as the ratio of the domi-

nant direct-path peak to the strongest reflection peak. Thus from (3.53),

DRRgcc−phat =
1

max
q̄

(σ2
v̂q̄
)

. (3.54)

To improve the DRR, the well-accepted SRP-PHAT is one of the possible

approaches. From (2.85) and (3.53), the SRP-PHAT concentrates the direct-
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path peaks at θq, i.e.

εsrp−phat(θ) =
IM

∑
i

IM

∑
j

ε
gcc−phat
ij (τij(θ))

≈
IM

∑
i

IM

∑
j

∑
ω

Ψij(ω)σ̂2
S(ω)eω fsτij(θ)e−ω fsτij(θq)︸ ︷︷ ︸

direct-path

+
IM

∑
i

IM

∑
j

∑
ω,q̄

Ψij(ω)σ̂2
S(ω)σ2

v̂q̄
(ω)eω fsτij(θ)e−ω fsτij(θq̄)

︸ ︷︷ ︸
early reflections

= δθ(θq)
IM

∑
i

IM

∑
j

∑
ω

Ψij(ω)σ̂2
S(ω)︸ ︷︷ ︸

direct-path

+
IM

∑
i

IM

∑
j

∑̄
q

δθ(θq̄)∑
ω

Ψij(ω)σ̂2
S(ω)σ2

v̂ (ω)︸ ︷︷ ︸
early reflections

.

(3.55)

Note in (3.55) that there are I2
M microphone pairs used from a total of IM

microphones. This apparently indicates redundant information. Why would

SRP-PHAT work better than GCC-PHAT in reverberant environments? How

could the redundant information be useful?

Based on the assumptions that all the microphones are spatially close

and the early reflections are perfectly directional, the localization function of

each microphone pair produces spurious peaks due to directional early reflec-

tions, which perfectly align. Thus it is basically the same case with the GCC-

PHAT in that the DRR does not change, i.e. DRRsrp−phat = DRRgcc−phat. In

practice however, the reflection surfaces may not be perfectly smooth, and

the reflection coefficients may not be incident-angle-independent or frequency-

independent, hence not all of the spurious peaks from the localization func-

tions of different microphone pairs (induced by the reflection) may align at

a certain DOA. Thus the resulting DRR from (3.55) is

DRRsrp−phat ≥ DRRgcc−phat =
1

max
q̄

(σ2
v̂q̄
)

, (3.56)

which implies that the SRP-PHAT localization method may improve the DRR
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using the redundant information from all microphones.

3.5.3 Redundant Information

By exploiting the redundant information, another approach to improve DRR

is via multiplication of the GCC-PHAT functions, instead of the summation as

the SRP-PHAT does in (2.85). For example, using three microphones i, j, k,

εmultip(θ) = ∏
{ij}∈{ij,jk,ik}

ε
gcc−phat
ij (τij(θ))

≈∑
ω

∏
ij

Ψij(ω)σ̂6
S(ω)eω fs

[
τij(θ)+τjk(θ)+τik(θ)−τij(θq)−τjk(θq)−τik(θq)

]
︸ ︷︷ ︸

direct-path

+ ∑̄
q

∑
ω

∏
ij

Ψij(ω)σ̂6
S(ω)σ6

v̂q̄
(ω)eω fs[τij(θ)+τjk(θ)+τik(θ)−τij(θq̄)−τjk(θq̄)−τik(θq̄)]

︸ ︷︷ ︸
early reflections

= δθ(θq)∑
ω

∏
ij

Ψij(ω)σ̂6
S(ω)︸ ︷︷ ︸

direct-path

+ ∑̄
q

δθ(θq̄)∑
ω

∏
ij

Ψij(ω)σ̂6
S(ω)σ6

v̂q̄
(ω)︸ ︷︷ ︸

early reflections

.

(3.57)

Therefore, from (3.57), the DRR becomes DRRmultip = [ 1
max

q̄
(σ2

v̂q̄
)
]3, and it

is straightforward to see that for IM microphones,

DRRmultip = [
1

max
q̄

(σ2
v̂q̄
)
]
C2

IM , (3.58)

where the combination C2
IM

, IM · (IM − 1)/2. This is a significant improve-

ment from (3.54), since σ2
v̂q̄

< 1 from (3.49).
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3.5.4 MCC-PHAT

Following the motivation of exploiting the redundant information, a multi-

channel extension to the GCC-PHAT is formulated2

εmcc−phat(k, θ) , ∏
(i,j)∈P

ε
gcc−phat
ij (k, τij(θ)), (3.59)

where the set of microphone pairs P includes all microphone pairs with i < j.
For implementation, the real part of ε

gcc−phat
ij is used, and microphone pairs

that are far apart are eliminated as in (3.60), which is a trade-off between

localization performance and computational efficiency.

P = {(i, j) | ‖⇀mi −
⇀
mj‖ < v/ fmax); i < j}, (3.60)

where fmax is the maximum signal frequency considered.

From (2.83) and similar to (3.44), when θ matches a speaker DOA at time

frame k, ε
gcc−phat
ij would be maxima, hence a maximum of εmcc−phat(k, θ).

This extension of the GCC-PHAT method is referred to as the MCC-PHAT

method. When there are only two closely placed microphones, the MCC-

PHAT becomes the GCC-PHAT. Compared with the SRP-PHAT, the MCC-PHAT

provides superior resolution. This is easy to understand, as the SRP-PHAT can

be viewed as the MCC-PHAT with logarithmic scale, and each term in the

summation is scaled first logarithmically. The logarithmic scaling suppresses

better those values that are close to zero (indicating a low probability of

source existence), while still concentrating the peaks due to source DOAs,

thus providing better resolution. Detailed test results will be shown in Sec-

tion 3.7.1. Similarly, the summation in (3.41) of the Onset-GSRP can also be

replaced with the product operator, which leads to the Onset-MCC method

as will also be evaluated in Section 3.7.1.
2Although originally inspired by the Onset-MCCC, there are similarities between the pro-

posed MCC-PHAT and the already popular SRP-PHAT. Hence in the performance studies, the
two methods are compared, amongst other methods.
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3.6 DOA Estimates Extraction

Using the TF sparsity assumption for speech signals, the peaks of localization

functions may not appear at the same time, even for concurrent speakers.

Considering that the speakers cannot move too fast in an enclosed environ-

ment, temporal averaging of length tavg > 0 with time shift of tshi f t ∈ (0, tavg]

is used for the smoothed localization function in each time frame,

ε̄(k, θ) =
1

fs · tavg

k· fs·tshi f t

∑
k′=k· fs·tshi f t− fs·tavg+1

ε(k′, θ). (3.61)

Peaks of ε̄(k, θ) correspond to candidate DOA estimates of active speakers.

For an unknown number of concurrent speakers, distinct local peaks as in

(3.62) and (3.63) are selected. Define Θ̂k as the set of DOA estimates at

time frame k that correspond to local peaks of ε̄(k, ·), cf. (2.62),

Θ̂k = {θ̂ik | ik = 1, . . . , Nk}, (3.62)

where θ̂ik satisfies ε̄(k, θ̂ik) ≥ Tε̄ and

θ̂ik = arg max
θik

ε̄(k, θik), ∀θik ∈ [θ̂ik − θr, θ̂ik + θr], (3.63)

integer Nk is the number of estimated speakers at time frame k. Tε̄ ∈ R is

an empirical threshold that can be calibrated as the valid range of ε̄ depends

on the geometry of the microphone array, the microphones used as well as

the noise and interferences. Parameter θr (0 < θr ≤ 180◦) indicates the

minimum angular separation of a DOA estimator. A θr that is too small can

result in clutters of location estimates, while a θr that is too large can cause

miss-detections of DOAs. All angles are wrapped into [0◦, 360◦). When there

is no valid peak found from (3.63), Nk = 0 and Θ̂k = ∅.
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3.7 Numerical Studies

This section compares the performance of the proposed Onset-GSRP, Onset-

MCC, and MCC-PHAT, with the Neuro-Fuzzy [39], the SRP-PHAT, the MUSIC,

the TF-CHB [34] and the EB-ESPRIT [40] methods, not only in simulated re-

verberant and noisy conditions, but also in a real office room (T60 ≈ 0.65s).

The uniform circular microphone array is studied for its rotational symme-

try. A circular microphone array with IM = 8 equidistant omnidirectional

elements and radius ra = 0.05m is placed horizontally in the test environ-

ment, and speaker DOAs on the same azimuthal plane is evaluated. The mi-

crophone signals are sampled synchronously at a sampling rate of 48000Hz.

Note that it is straightforward to apply the proposed methods to other com-

pact array geometries.

3.7.1 Experimental Set-up

Choose rs = 1m in (3.36) and scan the DOA in 1◦ steps. The angular separa-

tion θr in (3.63) is chosen as 30◦ unless otherwise noted. The snapshot frame

length is 20ms. For temporal averaging in (3.61) the length is tavg = 0.5s.

Here the TF-CHB, MUSIC and EB-ESPRIT formulate covariance matrices over

20ms time segments. The TF-CHB, MUSIC and EB-ESPRIT do not require

high sampling rate, thus signals are resampled at 8000Hz, and accordingly,

they use frequencies up to 4000Hz.

For all tests of the Onset-GSRP and Onset-MCC methods here, λ = 0.9998
in (3.17), which corresponds to T60 ≈ 0.72s as in (3.23). The gammatone

filter [46,57,58] as the subband filter in (3.5) is used for its linear phase and

frequency selectivity:

g(b)(t) = (t + td)
ϑ−1e−2π f (b)b (t+td) cos(2π f (b)c t), t ≥ −td. (3.64)

Here integer ϑ is the order of filter (ϑ = 4 here), td is time delay for alignment

between filter bands, f (b)b scaling factor for the bandwidth [46,57], and f (b)c

the center frequency of each subband chosen on the equivalent rectangular
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bandwidth-rate scale (ERBS) [46]. The center frequencies of the filterbank

range from 250Hz to 3600Hz, and the number of subbands is Nb = 16. The

maximum frequency for MCC-PHAT is fmax = 4000Hz.

0
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012345678

x
−

a
x
is

 (
m

)

y−axis (m)

← Microphone Array

Speaker→

Figure 3.2: A static source not close to wall (DOA is 67◦).

The evaluations of five scenarios as follows are presented. Varying rever-

beration and additive white noise are applied. The reverberation time T60 of

the simulated environments ranges from 0.2 to 1s simulated using the image-

source method (ISM) [62,140]. Additive uncorrelated Gaussian white noise

is applied to each microphone and the signal-to-noise ratio (SNR) varies up

to 10dB.

SCENARIO 1 - A STATIC SOURCE NOT TOO CLOSE TO WALL (SIMULATION)

As shown in Fig. 3.2, the direction of the x-axis is defined as the 0◦ DOA. The

UCA is placed at the center of a rectangular room of 6m×8m×3m (width ×
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Figure 3.3: A static source close to wall (DOA is 45◦).

length × height). The speaker DOA is 45◦, and the distance to the closest

wall is more than 1m. The speech segment used is 4 seconds long.

SCENARIO 2 - A STATIC SOURCE CLOSE TO WALL (SIMULATION)

Following the discussion in Section 2.3.2, most of the methods can work

well for the localization of a single speaker that is not located close to an

acoustically reflective object. In this scenario, the more challenging case is

evaluated when a single static source is located close to the wall. The room

and microphone set-up is the same as in Scenario 1. As shown in Fig. 3.3,

the speaker DOA is 45◦, and the distance to the closest wall is fixed to 0.2m.

The speech segment used is 4 seconds long.
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Figure 3.4: Two static sources of close DOAs.

SCENARIO 3 - TWO STATIC SOURCES (SIMULATION)

Fig. 3.4 shows the test set-up for the scenario of two static concurrent speak-

ers. The DOA resolution using respective localization methods is studied.

The room and microphone set-up is the same as in Scenario 1. Two speakers

are located 2m away from microphone array center. Concurrent speech sig-

nals lasts for 4 seconds, each with the same averaged power. Two cases are

tested, with DOAs of 170◦ and 190◦, and 165◦ and 195◦ respectively. Hence

the DOA distances between the two speakers are 20◦ and 30◦, respectively.

The angular separation θr in (3.63) is chosen as 15◦ in this scenario.

SCENARIO 4 - THREE STATIC SOURCES (SIMULATION)

As shown in Fig. 3.5, three different static speakers (Speaker1, male; Speaker2,

female; Speaker3, male) talk concurrently in this scenario, each with a speech
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Figure 3.5: Top view of room and set-up (simulation). Locations of micro-
phones and speakers are respectively in circles and stars. ©2018 IEEE.

segment of 4 seconds and the same averaged source power. The room and

microphone set-up is the same as in Scenario 1. The speakers locate at DOAs

of 180◦ (Speaker1), 300◦ (Speaker2) and 60◦ (Speaker3), respectively, all at

a distance of 1.2m from the center of the microphone array.

SCENARIO 5 - THREE MOVING SOURCES (REAL-WORLD)

In this case, three speakers are moving while talking. The experiment is

carried out in a real office room with measured reverberation time of T60 ≈
0.65s. As shown in Fig. 3.6, the dimensions of the room are 3.4m×7.8m×2.7m

(width × length × height). Equipment used include the RMETM OctaMic

XTCs as microphone pre-amplifiers and the HDSPe MADI FX for data acqui-

sition, as well as omnidirectional electrect microphones. Microphones are
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Figure 3.6: Top view of room and set-up (real-world). Locations of micro-
phones are in black circles. Tracks of moving speakers in blue (Speaker1),
red (Speaker2) and green (Speaker3). Starting locations of tracks are solid
circles and ending locations are triangles. ©2018 IEEE.
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Figure 3.7: Raw signals of moving speakers (top three panels) and a nor-
malized real recording from one of the microphones in the real reverberant
room (bottom panel). ©2018 IEEE.

connected to RMETM OctaMic XTC, and HDSPe MADI FX acquires signals

from multiple channels of the latter. A camera is used to record the ground
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Figure 3.8: Test room set-up.

truth of speakers’ movement and sound to compare with estimated results.

The circular microphone array is placed close to the center of the room
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at [1.2, 3.9, 1.5]m. Omnidirectional electret microphones are used. Three

moving speakers talk and move in a random sequence. Speaker signals are

chosen from the TIMIT database [141]. The trajectories of speakers are also

plotted in Fig. 3.6, with different colors. Fig. 3.7 shows the waveforms of

speech signals and their starting and ending time, as well as the real record-

ing from one of the microphones in the reverberant room. As shown in

Fig. 3.8, the author of the thesis, has also spent the time and effort to procure

equipment, clean up and set up the room for recordings and experiment.

3.7.2 Test Results

SCENARIO 1 - A STATIC SOURCE NOT CLOSE TO WALL (SIMULATION)

Fig. 3.9 and Fig. 3.10 provide the normalized (and scaled by 10 lg(·)) DOA

estimation histograms of localization functions from the proposed Onset-

GSRP, Onset-MCC and MCC-PHAT methods as well as that of the Neuro-

Fuzzy method, the steered-response power of the TF-CHB, SRP-PHAT, MUSIC

methods, and the discrete estimates of the EB-ESPRIT method, respectively,

over SNR and T60. For the cases of static speakers, the EB-ESPRIT uses the

overall average (4 seconds) of segmental covariance matrices to achieve best

accuracy. It has discrete DOA estimates which are plotted in the diamond

symbol on the horizontal axes. The ground truth DOA is 67◦.
From Fig. 3.9, the proposed Onset-GSRP produces consistent peaks at

around 67◦ over T60 from 0.2s to 1s and SNR from ∞ to 10dB. The SRP-PHAT

and MUSIC also consistently produce peaks at around the ground truth DOA.

The TF-CHB however, shows considerable deviations due to the reverberation

or noise. The EB-ESPRIT produces DOA estimates close to the ground truth

at T60 = 0.2s, but otherwise shows significant errors due to reverberation.

It is interesting to note that the EB-ESPRIT is robust against noise, which is

expected from its formulation.

Fig. 3.10 shows estimation results from high resolution estimators. Clearly

both the proposed Onset-MCC and MCC-PHAT produce accurate peaks cor-

responding to the ground truth, except for the spurious peaks at T60 = 1s

and SNR=10dB. The Neuro-Fuzzy method produces more spurious peaks,
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especially at highly reverberant conditions.

The RMSE of the DOA estimates are provided in Table 3.1. Note that

as already pointed out in the experimental setup, the azimuthal DOAs are

scanned in 1◦ steps. Thus the RMSE becomes 0◦ for the cases when the

deviation is small (within 1◦) and the correct DOA (i.e. 67◦) is obtained in

all frames (i.e. all the peaks of localization functions correspond to 67◦). It

is clear that using the 1◦ step is sufficient to characterize and compare the

performance of all studied methods. Choosing a DOA resolution of smaller

than 1◦ is neither necessary nor too useful for speaker localization in practice.

SCENARIO 2 - A STATIC SOURCE CLOSE TO WALL (SIMULATION)

Fig. 3.11 and Fig. 3.12 provide the histograms of localization functions from

the proposed Onset-GSRP, Onset-MCC and MCC-PHAT methods as well as

that of the Neuro-Fuzzy method, the steered-response power of the TF-CHB,

SRP-PHAT, MUSIC methods, and the discrete estimates of the EB-ESPRIT

method, respectively, over SNR and T60. The static source locates at 0.2m

from the wall (cf. Fig. 3.3), at the DOA of 45◦. In this case, the early reflec-

tion from the closest wall is about 1ms behind the direct-path. With additive

noise at SNRs from ∞ to 10dB, it is interesting to see that all the methods

work fine at T60 = 0.2s, while as the reverberation increases, the EB-ESPRIT

could not find the correct DOAs (even though given the a priori knowledge of

one active source), and the dominant peak SRP of the TF-CHB also deviates

significantly from 45◦.
The Onset-GSRP, SRP-PHAT and MUSIC all produce correct peaks in all

the cases of this scenario. In Scenario 1 and 2 (cf. Fig. 3.4), the shortest dis-

tance from sources to wall is about 1m, which corresponds to about 6ms time

delay between the direct-path and the first early reflection. This follows the

assumptions and discussions about the early reflections of the RIR model in

Section 2.3.2. When the source is located close to (within about 1m) reflec-

tive surfaces, the performance of these localization methods may degrade,

but in general remains close to that of Scenario 1. Thus the onset detection

and encoding methods work reliably for the Onset-GSRP and Onset-MCC.
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In Fig. 3.12, while the strongest peaks of the Onset-MCC and MCC-PHAT

all correspond to the true speaker DOA, the Neuro-Fuzzy at SNR=10dB and

T60 ≥ 0.8s does not. The Onset-MCC produces spurious peaks at SNR=10dB,

and Neuro-Fuzzy has more spurious peaks in the given range. The peaks of

these three high resolution methods grow only slightly wider as the rever-

beration and noise increases. The RMSE of the DOA estimates are provided

in Table 3.2.

SCENARIO 3 - TWO STATIC SPEAKERS (SIMULATION)

Fig. 3.13 and Fig. 3.14 plot the DOA localization results for the case (cf.

Fig. 3.4) when two static speakers locate at DOAs of 170◦ and 190◦, respec-

tively. Overall, from Fig. 3.13, the TF-CHB forms a wide peak at around 180◦

in most cases except T60 ≥ 0.8s, indicating that the two speakers are also

fused. The EB-ESPRIT again assumes a known number of speakers (which

avoids the errors due to estimation of the number of speakers at adverse

conditions), and produces a DOA estimate at around 180◦ and a second es-

timate at close to 0◦. This indicates that the EB-ESPRIT also has ambiguity

to differentiate the two speakers. Except at T60 = 0.2s and high SNR, the

Onset-GSRP, the SRP-PHAT and MUSIC also fuse the two sources into one

(cf. Appendix F and Appendix G ). In Fig. 3.14, it is obvious that the Neuro-

Fuzzy method no longer forms two distinct peaks and the two speakers are

fused into one speaker in the estimation. However, the proposed Onset-MCC

and MCC-PHAT methods can reliably form two distinct peaks corresponding

to the ground truth in most cases.

Fig. 3.15 and Fig. 3.16 plot the DOA localization results for the case (cf.

Fig. 3.4) when two static speakers locate at DOAs of 165◦ and 195◦, respec-

tively. From Fig. 3.15, the TF-CHB and EB-ESPRIT still fuse the two speakers

into one. MUSIC can also resolve the two speakers in most cases. The SRP-

PHAT can only resolve the speakers at low reverberation and high SNR cases.

The proposed Onset-GSRP can resolve the speakers for cases of T60 ≤ 0.8s

when SNR≥40dB. In Fig. 3.16, all the three high resolution methods can

reliably form two distinct peaks corresponding to the ground truth in most
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cases.

The RMSE of the DOA estimates are provided in Table 3.3. For those cases

when estimators do not produce the right number of estimates reasonably

close to speaker DOAs, quantitative accuracy measures are not provided.

SCENARIO 4 - THREE STATIC SOURCES (SIMULATION)

Fig. 3.17 and Fig. 3.18 provide localization results for three static speakers.

Here it is assumed that the number of speakers is known a priori to the EB-

ESPRIT.

From Fig. 3.17, it can be seen that the SRP peaks from the TF-CHB are

close to ground truth DOAs at low reverberation (T60 = 0.2s), but are rel-

atively wider than other methods and much disturbed as the reverberation

gets stronger. The DOA estimates from the EB-ESPRIT can be accurate, but

show higher offsets at T60 = 0.4s and T60 = 1s than other cases. It can

also be seen that the EB-ESPRIT is robust against white Gaussian noise as

this matches the underlying noise subspace model it assumes. Note here

that assuming a known number of speakers gives EB-ESPRIT a considerable

advantage, as this avoids the errors due to the estimation of the number

of speakers. Both the well accepted SRP-PHAT and MUSIC, as well as the

proposed Onset-GSRP consistently produce three peaks corresponding to the

ground truth DOAs. Peaks of the MUSIC are most distinct at low reverbera-

tion, but get wider as the reverberation increases. Peaks of the SRP-PHAT are

most distinct at no noise cases (except for T60 = 0.2s), but get considerably

wider as the SNR drops. In comparison, the peaks of Onset-GSRP are rel-

atively the most consistent, indicating robustness against reverberation and

noise for the case of three concurrent speakers. The ranges of SRPs from

these methods are relatively confined, and hence are plotted in the same

figure.

Fig. 3.18 plots the results from high resolution location estimators, i.e.

the Onset-MCC, MCC-PHAT and the Neuro-Fuzzy. The MCC-PHAT has the

best resolution (most distinct peaks) overall, and for most cases can produce

peaks corresponding to the ground truth DOAs. The Neuro-Fuzzy method
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produces wider peaks compared to the MCC-PHAT. However, the peaks cor-

responding to Speaker1 (male at 180◦) get much weaker, especially as the

noise level increases (SNR=10dB). This is easy to understand, as the en-

coding of (3.34) leads to superior DOA resolutions, but strong noises can

disturb the peaks of subband signals hence the resulting cross-correlation

coefficients in DOA estimation (cf. the discussion in Section 3.3.6). This

indicates a trade-off between resolution and noise-robustness as discussed.

Table 3.4 provides the RMSE of the DOA estimates in this scenario from

different methods for SNR = ∞ and 40dB. It is obvious that the Onset-GSRP,

MCC-PHAT, Neuro-Fuzzy, SRP-PHAT and MUSIC methods achieve similar

DOA estimation accuracies, which are within 3◦. The Onset-MCC has slightly

larger errors. The TF-CHB and EB-ESPRIT methods have overall larger er-

rors compared to other methods. In general, the accuracy degrades as the

reverberation increases. Note that TF-CHB does not produce three peaks in

some cases (e.g. T60 = 0.8s and T60 = 1s), hence do not have valid RMSE

results to present. Similarly for SNR=10dB, when there are miss-detections

or spurious estimates, the RMSE measure may no longer be consistent or

informative, due to the difficulty in mapping the estimates with the ground

truth. Quantitative accuracy measure using the OSPA metric for such cases

will be given in the next Scenario.

SCENARIO 5 - THREE MOVING SPEAKERS (REAL-WORLD)

In this case, the localizations of three moving speakers are estimated, in

a real reverberant room (with measured T60 ≈ 0.65s). The trajectories of

speakers are given in Fig. 3.6. The raw speech signals of the three speakers

are given in Fig. 3.7.

As noticed in Scenarios 3 and 4, it is neither straightforward nor informa-

tive to use the RMSE as the localization performance measure, when there

are spurious estimates or miss-detections, especially when there are multi-

ple moving speakers as the locations change over time. Therefore, the OSPA

metric [122] is used here as a consistent localization performance measure.

It takes into account the permutations of speakers and evaluates not only
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the DOA miss-distances (offsets) but also the cardinality errors (errors in the

estimated number of speakers).

The OSPA metric is defined as (2.113) in Section 2.6.6. Apparently when

choosing p = 2, the OSPA metric can be viewed as an extended RMSE mea-

sure that selects closest estimate-truth pairs and includes the “penalty” for

estimation errors in the number of speakers. Usually the parameter c is cho-

sen to be greater than the maximum estimation deviation of respective local-

ization methods. Here p = 2 and c = 20◦ are chosen.

The final DOA estimates from (3.62) and OSPA results are given in Fig. 3.19.

Each column shows the results from a particular method, i.e. from the left

column to the right column, the methods used are respectively the Onset-

GSRP, Onset-MCC, MCC-PHAT, Neuro-Fuzzy, SRP-PHAT and MUSIC. Note

that the Onset-GSRP has lower DOA resolution, hence requiring a larger

θr (here 45◦ is used for Onset-GSRP, and 30◦ is used for the rest) to sup-

press spurious peaks in low noise cases. The TF-CHB and EB-ESPRIT do not

produce reliable results in this case of moving speakers, and hence are not

plotted. In the top panel of each column, DOA estimates over time are plot-

ted in black dots, while the ground truth locations of speakers are plotted

in red triangles. It can be seen from panels (a) to (e) that although there

are several spurious peaks and gaps, they produce close and clean DOA esti-

mates in general. The SRP-PHAT seems to have the best overall OSPA results.

MUSIC has a significant amount of spurious estimates and the worst overall

OSPA results, even though the ground truth number of speakers per each

frame is provided for its localization function. This follows the discussions

in Section 2.5.4 that subspace based methods may not work well for mov-

ing speakers with reverberation. In general, the Onset-GSRP, Onset-MCC,

MCC-PHAT, Neuro-Fuzzy and SRP-PHAT methods demonstrate similar per-

formance in this case of moving speakers with strong reverberation.

The OSPA results provide closer details of the DOA estimation errors.

Panels (g) to (l) provide the overall OSPA distances, which are composed of

the respective OSPA location errors (panels (m) to (r)) and OSPA cardinality

errors (panels (s) to (x)), as shown in (2.113). Here the OSPA location er-

rors measure the deviations from the location estimates to the ground truth
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locations. It can be seen from (m) and (q) that the proposed Onset-GSRP

method and the SRP-PHAT method have lowest averaged OSPA location er-

ror of about 3◦, and the maximum errors over time is less than 10◦. The

MCC-PHAT and the Neuro-Fuzzy methods as in (o) and (p) produce slightly

higher averaged OSPA location errors of about 4◦, and the maximum errors

over time is about 13◦. MUSIC in (r) shows higher offsets than the other

methods. The OSPA cardinality errors weigh the number of miss-detections

and spurious estimates in the estimated DOAs. For example, in panel (s)

at time of about 2s, a spurious estimate when there is no speaker gives an

OSPA cardinality error of c = 20◦, while in panel (t) at about 5s, a miss-

detection (only one speaker is detected) when there are two speakers gives

an OSPA cardinality error of 14.1◦. The averaged OSPA cardinality errors

for the Onset-MCC, MCC-PHAT, Neuro-Fuzzy and SRP-PHAT methods are all

around 3◦. MUSIC has highest cardinality errors as it produces more spuri-

ous peaks due to moving speakers and reverberation. To sum up, the overall

OSPA distances as shown in (g) to (l) demonstrate that the proposed Onset-

MCC and MCC-PHAT methods as well as the Neuro-Fuzzy and SRP-PHAT can

locate moving speakers with an averaged OSPA error of about 6◦, while the

MUSIC method produces considerably larger localization errors.

3.8 Conclusions and Discussions

3.8.1 Conclusions

This chapter proposes three novel reverberation-robust speaker localization

algorithms, which are referred to as the Onset-MCC, Onset-GSRP and MCC-

PHAT, respectively. The Onset-MCC and Onset-GSRP algorithms first decom-

pose speech mixtures into subbands via an auditory filterbank, based on the

speech signal model and the TF sparsity assumption. Then a novel onset

detection and encoding approach is derived to extract the direct-path com-

ponents from reverberant microphone recordings, based on the speech signal

and the acoustic RIR models. Furthermore, the subband cross-correlation co-

efficients of the direct-paths signals are reversely mapped from relative sam-
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ple delays to locations, and hence produce overall DOA localization func-

tions. The MCC-PHAT method builds upon the classic GCC-PHAT method,

and exploits the redundant information from multiple closely placed micro-

phones to suppress the impact of reverberation.

Performance of the presented methods is studied using not only simulated

signals of reverberation time from 0.2 to 1s, but also real recordings in an

office room of T60 ≈ 0.65s. Comparison with other baseline localization

techniques in various reverberant conditions demonstrates that the proposed

Onset-GSRP, Onset-MCC and MCC-PHAT localization algorithms can reliably

locate not only static speakers but also multiple moving speakers, in presence

of strong reverberation. The proposed Onset-MCC and MCC-PHAT methods

achieve better DOA resolutions compared with all other benchmark methods.

Appendix K also provides an analysis of the computational complexities of

the localization algorithms.

3.8.2 Discussions

Part I, in summary, studies the problem of speaker location (DOA) estimation

in short time frames, acoustically. The speaker DOA is estimated in each time

frame, while the available data are the snapshots of sound signals captured

by microphone arrays. Although encouraging results have been obtained in

comparison with the state-of-the-art methods, the DOA estimates may still

contain spurious estimates or miss-detections in challenging conditions, and

the association with speakers and between DOA estimates at consecutive

time frames remains unclear, especially for moving speakers.

Therefore, Part II of the thesis explores the problem of tracking speaker

states over time using imperfect observations (e.g. location estimates from

Part I). This requires associating correct identities to respective speaker states,

addressing the spurious estimates or miss-detections in the feature estimates,

and resolving the ambiguity when the single feature estimates of different

speakers are close. Thus Part II proposes two methods for speaker feature

filtering, based on the GLMB Bayes RFS framework. It first develops in Chap-

ter 4 an adaptive multi-speaker tracking filter that produces labeled trajecto-
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ries of speakers over time, which is evaluated in a reverberant environment.

Then in Chapter 5, by generalizing the speaker state to include not only the

kinematic feature, but also pitches and sound waveforms, a multi-feature

multi-speaker state filter is proposed, which can jointly track and separate

multiple features from multiple speakers, and help to resolve the ambiguity

problem that arises in the single feature filtering.



Part II

Feature Filtering

106



Chapter 4

Adaptive Bayes RFS Multi-speaker
Tracking

This chapter investigates the adaptive filtering of the kinematic feature of

speakers, in the challenging reverberant scenario. As discussed in Part I,

numerous speaker localization methods can be found in the literature, in-

cluding the subspace based methods [27–30], steered response power beam-

formers [10, 31–34], and TDOA based methods [35–39]. Most of the local-

ization methods may degrade or break down under challenging conditions.

Consequently, although the localization alone may provide location candi-

dates of speakers at discrete time frames, there however can be gaps or

miss-detections of speaker locations over time due to the nonstationarity of

speech signals and interference of concurrent speakers, and clutter or spuri-

ous estimates due to reverberation. Moreover, consistently obtaining speaker

trajectories via filtering unordered location estimates and associating them

with corresponding speakers is also a significant challenge. Therefore, this

chapter presents the multi-speaker tracking filter based on the Onset-MCC

and MCC-PHAT localization methods proposed in Part I, as well as the GLMB

Bayes RFS framework (cf. Section 2.6.4).

4.1 Introduction

A number of multi-speaker tracking methods following the localization step

[1,2,4,5,8] have been developed. Assuming in general the spurious peaks in-

duced by reverberation exhibit no temporal consistency from one time frame

to the next, while the peaks corresponding to speakers follow a kinematic

model, a particle filtering (PF) method using GCC and SBF front-ends was

implemented [2] to mitigate the reverberation problem. The idea is further

generalized [4] under a Bayes RFS filter framework that estimates TDOA

based on microphone pairs, and extracts tracks using an RFS bootstrap Se-

107
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quential Monte Carlo (SMC) filter. The above methods however, were eval-

uated at modest or low reverberation time (T60 ≤ 0.39s). Another particle

filter based algorithm has been developed in [142] using mutual informa-

tion (MI) and voice activity detection (VAD) measures. Its performance was

evaluated at reverberation time of T60 = 0.35s. It is unclear however how

the algorithms perform at more reverberant environments and when com-

peting speakers are moving while talking. Moreover, these tracking methods

do not systematically provide identities of trajectories, while in practice it is

useful to associate the trajectories to respective speakers. Recently a multi-

speaker tracker was developed [8], which adopts a computational auditory

scene analysis (CASA) [46] approach for localization and a “nearest neigh-

bour” type of multi-speaker tracker, and includes a simulated test case of

one moving speaker with concurrent static speakers. However, the “nearest

neighbour” tracker requires a heuristic time-to-live constant to bridge gaps

in static tracks, which may not suit complicated speaker motions, e.g. when

concurrent speakers are moving.

Based on the localization results in Part I, this chapter formulates a new

filter to estimate and track kinematic states of an unknown and time-varying

number of moving acoustic sources in highly reverberant environments, from

sound mixtures acquired by microphone arrays. The system consists of a

reverberation-robust location estimator proposed in Part I and the GLMB

Bayes RFS multi-object tracking framework. Uniform circular arrays (UCA)

are used for estimating the source DOAs. The location estimator extracts

the DOA measurements from sources via the MCC-PHAT or the Onset-MCC.

Cartesian coordinates of sources are then tracked and labeled via the GLMB

recursions. The MDB model is used for adaptive tracking of moving objects.

The proposed framework has been evaluated using real recordings in a re-

verberant room (T60 = 0.65s).

This chapter is organized as follows. Section 4.2 shows an overview of

the proposed system. The adaptive tracking filter is described in Section 4.3.

Numerical studies of the proposed methods are presented in Section 4.4, and

conclusions are given in Section 4.5.
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4.2 System Overview

Bayes RFS filters (cf. Section 2.6) have been the emerging family of closed-

form solutions to multi-object tracking [15–23]. The Probability Hypothesis

Density (PHD) [15,16] and the Cardinalized PHD (CPHD) [17,19] have been

well-accepted multi-object Bayes RFS tracking filters. Performance compar-

ison of CPHD with traditional methods can be found in [19], which shows

that CPHD is favourable than the PHD filter. However, CPHD still only prop-

agates the first-moment (intensity) and cardinality distributions. The most

current development of the Bayes RFS kind is the Generalized Labeled Multi-

Bernoulli (GLMB) filter, which jointly tracks multi-object labeled states. Thus

the multi-speaker tracking filter is developed based on the GLMB Bayes RFS

framework [21–23]. For adaptive tracking, the measurement-driven object

birth model for GLMB [25] is implemented, and due considerations are also

given to the GLMB filtering of multi-sensor measurements.

As shown in Fig. 4.1, the proposed system consists of two stages in gen-

eral, viz. the acoustic feature extraction (localization), and the multi-object

Bayes RFS filtering (GLMB) as discussed in Section 2.6.4.

MCC-PHAT

Onset-MCC

(Reverberation Robust)

Multi-object Bayes 
RFS Filter

Acoustic Feature 
Extraction

Multi-Speaker 
Acoustics and Sensors

Microphone 
Array 

Signals
Multi-sensor 

GLMB

<Measurement 
Driven Birth>

System OutputProposed System

Figure 4.1: The diagram of the proposed multi-speaker tracking framework.
Reverberated sound mixtures are acquired by circular Microphone Arrays.
Location (DOA) estimates of speakers are obtained at the acoustic feature
extraction stage based on the MCC-PHAT and Onset-MCC methods and fur-
ther filtered by the multi-sensor MDB GLMB tracking framework. Resulting
tracks of speakers are separated and labeled.

In the multi-speaker tracking implementation, the first stage is the acous-

tic source localization. The high resolution MCC-PHAT and Onset-MCC meth-
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ods are used for reverberation-robust localization [45]. The estimated DOAs

are then used to derive Cartesian locations based on locations of microphone

arrays. The unordered location candidates may contain spurious estimates

around true locations of speakers, as well as miss-detections. Moreover,

tracking the kinematic states (e.g. trajectories) of respective speakers is also

practically important, hence further filtering is necessary.

The second stage is the GLMB filter, which is supplied with the loca-

tion candidates from multiple microphone arrays of the first stage. This

multi-object tracking filter recursively processes the candidate locations, via

a Bayesian prediction and update recursion, thereby providing the estimated

speaker trajectories. The SMC implementation of GLMB is used because of

the nonlinear motion of speakers in enclosed environments. The measurement-

driven birth model for GLMB (cf. Section 2.6.4) is implemented [25] for

adaptive tracking [23, 120]. The filter provides not only trajectories of lo-

cations but also the associated label (speaker identity) for each estimated

track.

4.3 Filter Implementation

The GLMB recursion consists of the prediction and update steps. In the

prediction step, each object transits to a new state according to the state

transition function f (s|·, `) in (2.104e). In the update step, the state is con-

firmed with the measurement based on the likelihood function g(zϑ(`)|s, `) in

(2.102d). Since a nonlinear transform is required to convert DOA estimates

to Cartesian coordinates, care must be taken for the likelihood function when

the MDB model is used for adaptive filtering.

4.3.1 State Transition Function

The motion of speakers is rather random and unpredictable. Hence it would

be highly impractical to assume complete knowledge of the transition func-

tion for speakers. For practical tractability however, it is often assumed that

the motion of the speaker follows the Langevin model [1, 2, 4], which de-
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scribes also a first-order Markov process. Thus for each dimension of the

Cartesian coordinate system, the transition PDF (e.g. for the x-axis) is

f+(sx+|sx, `) =

[
1 t∆

0 e−βx·t∆

]
· sx + wx ·

[
0

σx
√

1− e−2βx·t∆

]
, (4.1)

where sx = [℘x, ℘̇x]T, ℘̇x is the speaker velocity on the x-axis, wx follows the

normal distribution to accommodate the random speaker acceleration and

the modelling uncertainty, i.e. wx ∼ N (0, 1) and t∆ is the time step. Model

parameters βx and σx are respectively the rate constant and the steady-state

root-mean-square velocity for the random motions of speakers.

4.3.2 Likelihood Function for Multi-sensor Measurements

In the studied scenario, the observation space and the state space are dif-

ferent and a linear transform does not exist between these two spaces. The

direct measurements are sets of DOAs, while the states are characterized by

the multi-speaker Cartesian locations and velocities, i.e. {s|s = [sT
x , sT

y ]
T}, cf.

(4.1). In such case, there are in general two ways to proceed with.

NONLINEAR TRANSFORM

The first method directly uses the measurement space to update the posterior

probability densities, if the object birth PDF in (2.104a) is known a priori. In

this case, the Bayes update can be carried out for measurements from every

single microphone array in an "iterated" way. The likelihood function for

each microphone array is complicated,

g(a)
d (θ̂|s̆) ∼ N

(
θ̂; arctan

( [0, 0, 1, 0] · s̆(a) −
⇀
M

(a)

y

[1, 0, 0, 0] · s̆(a) −
⇀
M

(a)

x

)
, σ2

θ̂

)
,

where
⇀
M

(a)
= [

⇀
M

(a)

x ,
⇀
M

(a)

y ]T is the location of the microphone array a, and

s̆(a) is an updated state from the previous “sensor” (i.e. microphone array).
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This "iterated" method suffices for a small number of microphone arrays.

When the number of microphone arrays is large however (e.g. using multiple

TDOA estimates from distributed microphone arrays [4]), the multi-sensor

GLMB filter implementation [119, 143] can be applied, to avoid loss of es-

timates due to the truncation process in each sensor update and hence the

dependence on the sequence of the sensor updates.

LINEAR TRANSFORM

The second approach moves the nonlinear transform to a pre-processing step,

by converting the direct measurements to a new observation space so that

a linear transform exists between the new observation space and the state

space. Triangulation is applied to pre-convert at each time instant all the

DOA measurements to Cartesian location candidates, which are then filtered

by the GLMB recursion. The measurement likelihood function is thus simple,

gc(ẑi,j|s) ∼ N
(
ẑi,j;

[
1 0 0 0
0 0 1 0

]
s, Pcart

)
, (4.2)

where the DOA estimates can be pre-converted to Cartesian locations via

triangulation, i.e.

arg(ẑi,j −
⇀
M

(a)
) = θ̂

(a)
i (4.3a)

arg(ẑi,j −
⇀
M

(b)
) = θ̂

(b)
j , (4.3b)

where
⇀
M

(a)
and

⇀
M

(b)
are the locations of microphone arrays, θ̂

(a)
i and θ̂

(b)
j

are DOA estimates respectively from the two microphone arrays, ẑi,j the cor-

responding Cartesian location candidate, and Pcart the variance of location

in the Cartesian coordinate.

Note that the “nonlinear transform” method still requires a “pre-conversion”

step to convert DOAs to Cartesian locations for the initialization of the recur-

sion. Moreover, when using the MDB for adaptive filtering, the birth PDF is

drawn from the measurements at every time instant. Thus the measurement-
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to-state pre-conversion is actually required for each recursion, which also

negates the benefit of using direct DOA measurements for the Bayes update.

Moreover, the “iterated” multi-sensor implementation requires a number of

sensor iterations in each Bayesian recursion. Therefore, in this thesis, the

“nonlinear transform” method is not further pursued, and the “linear trans-

form” is used to pre-convert the DOA estimates to the Cartesian location

candidates.

4.4 Numerical Studies

Generally speaking, the performance of the tracking filter largely depends

on the knowledge of the state transition function and the measurement ac-

curacy. When the state transition function is completely known, the MDB

GLMB filter is capable of adaptively tracking multiple objects in presence

of considerable measurement noise and clutter. A detailed example for the

multi-object range and bearing tracking can be found in [25]. For multi-

speaker tracking however, it would be rather impractical to assume a com-

plete knowledge of the speaker state transition function. Thus the Langevin

model (4.1) is often applied to accommodate the practically unpredictable

speaker motion. The evaluation of the resulting multi-speaker tracking im-

plementation is provided as follows.

4.4.1 Test Setup

The test set-up for speaker tracking is basically the same as that of the real-

world scenario in Section 3.7.1, except now two microphone arrays are used

for tracking in Cartesian coordinates.1 The evaluation uses real audio data

recorded in a reverberant office room with measured reverberation time of

T60 ≈ 0.65s. The raw speech signals and an actual recording in the room

are given in Fig. 3.7. The dimensions of the room is 3.4m×7.6m×2.7m

1It has been found in the study that for moving sources the simulation using the method
in [62, 140] and overlap-add may create unexpected spurious sources for reverberant con-
ditions. Thus in the thesis only the real-world recordings are used for moving sources.
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(width × length × height). Two UCAs are used with the radius of ra =

0.05m. Each microphone array has IM = 8 microphones. Microphone arrays

are placed close to the centre of the room: [1.2, 3.9, 1.5]m and [2.2, 3.9,

1.5]m, respectively. Fig. 4.2 depicts the room dimensions, locations of two

microphone arrays and three speaker trajectories. Three speakers talk and
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x
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y−axis (m)

 

←Array#1

←Array#2

Speaker 2→

Speaker 1→ ←Speaker 3

Figure 4.2: Room dimensions (2-D), locations of microphone arrays in black
circles, and tracks of speakers in red, blue and green. Starting locations are
solid circles and ending locations are triangles.

move in the room, and the number of active speakers at any time instant

is unknown to the algorithm and changes over time. One of the speakers

is female while the other two are male. The trajectories of speakers are

nonlinear.

Parameters are chosen as follows. λB = 0.3, rBmax = 0.15, and Mb =

30000 for the MDB model; pS = 0.98, pD = 0.9, βx = 0.5/s, σs = 0.5m/s,
κ = 0.08 uniformly distributed over the room. From Fig. 3.19, choosing the

DOA estimation error as 8◦ for moving speakers, the location deviation at a

distance of 1m is about (1m · 8◦π/180◦) ≈ 0.15m. Thus the variances are

chosen as PB = 0.152 · diag(1m, 1m/s, 1m, 1m/s)2 in (2.112), and Pcart =

(0.15m)2 · diag(1, 1) in (4.2) for the MDB GLMB filter. The time step used is

t∆ = 0.5s, which is sufficient for common speaker tracking. For performance

comparison, the SMC-CPHD [19] and its adaptive birth model [120] is also
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implemented with common parameters of the same values with the GLMB.

4.4.2 Evaluation Results For Speaker Tracking
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Ground Truth

DOA Estimates

Figure 4.3: Ground truth and estimated speaker DOAs from two microphone
arrays (T60 ≈ 0.65s), using MCC-PHAT and Onset-MCC methods.

The DOA estimates from the proposed localization methods are plotted

in Fig. 4.3, in comparison with the ground truth. As shown in the plots,

there are spurious peaks, miss-detections and offsets due to reverberation,

noise and estimation process. However, most of the DOAs are captured by

the proposed localization algorithms. The results from the MCC-PHAT and

Onset-MCC methods are close in general, except that the MCC-PHAT pro-

duces less miss-detections but more offset, while the Onset-MCC has more

clutter and miss-detections, but less offset. The miss-detections may result

in gaps in the location estimates as can be seen at around 12s. Heuristically

the locations can be connected over time to form separated tracks (using e.g.

nearest neighbour methods), but this thesis focuses on the applications of
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the state-of-the-art GLMB filter, which is a closed-form multi-object tracking

filter. The SMC implementations of respective multi-object filters are used.
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Figure 4.4: Estimated Cartesian tracks of speakers using MCC-PHAT DOA
measurements (pre-converted) via SMC-CPHD.

TRACKING RESULTS

Fig. 4.4 and Fig. 4.5 demonstrate the estimated filtering results of speakers

from the MDB SMC-CPHD using the triangulation results (4.3) of the DOA

estimates from the MCC-PHAT and the Onset-MCC methods, respectively.

Same parameters are used in both cases for the MDB SMC-CPHD filter. Ob-

viously, the CPHD does not associate the filtered locations with respective

speakers, neither does it establish connections of the filtered locations over

time.

Fig. 4.6 and Fig. 4.7 demonstrate the estimated trajectories of speakers

from the MDB SMC-GLMB using the triangulation results (4.3) of DOA lo-

calization results from the MCC-PHAT and the Onset-MCC methods, respec-

tively. Same parameters are used in both cases for the MDB SMC-GLMB
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Figure 4.5: Estimated Cartesian tracks of speakers using Onset-MCC DOA
measurements (pre-converted) via SMC-CPHD.

filter. Both figures show that the tracking results are close to ground truth.

Compared with CPHD results, not only the location estimates of speakers are

provided, but also the trajectories are assigned with separate labels (iden-

tities) that correspond to different speakers. Thus in what follows, focus is

kept on the evaluations of the GLMB implementations.

In Fig. 4.6, the short gaps (e.g. Speaker 2 at around 12s) did not break

the trajectories, as the location candidates before and after the gaps still

follow the kinematic models. In Fig. 4.7, the long gaps (Speaker 3 at around

12s) from the Onset-MCC however, result in lost of part of the track. This

lost of track can be fixed by some heuristic track management step, but is

not in the scope of the thesis. Thus the MCC-PHAT seems preferable to the

Onset-MCC in extracting speaker trajectories. It can also be seen that it takes

about two time steps to confirm a new track, mainly because that the MDB

models implemented assume no a priori knowledge of objects births. The

computational complexity analysis of the tracking methods is provided in

Appendix K .
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Figure 4.6: Estimated Cartesian tracks of speakers using MCC-PHAT DOA
measurements (pre-converted). Tracks with different labels are plotted with
different colors and symbols.

OSPA PERFORMANCE

OSPA results of the GLMB tracking are given in Fig. 4.8 and Fig. 4.9, respec-

tively. Parameters p = 2 and c = 0.6m are chosen here for evaluations. The

average Cartesian errors of the proposed algorithm are around 0.5m, which

is lower than the common inter-person distance. The speakers are correctly

identified with different labels. The beginning and ending time and dura-

tions of speaker activities are close to the ground truth. The OSPA metric (cf.

Section 2.6.6) provides three measures, viz. the overall OSPA distance, the

OSPA location error, and the OSPA cardinality error. From Fig. 4.8 that at

time 2s, a cardinality error of 1 out of 1 converts to c = 0.6m, while a cardi-

nality error of 1 out of 2 at time 7.5s converts to (1
2(2− 1)cp)

1
p = 0.4m. The

overall OSPA distances include both the location offsets and the cardinality

errors as defined in (2.113).

The Monte Carlo test is carried out to verify the consistency by repeating
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Figure 4.7: Estimated Cartesian tracks of speakers using Onset-MCC DOA
measurements (pre-converted). Tracks with different labels are plotted with
different colors and symbols.

the tracking algorithm for 500 times. The maximal deviations are also plot-

ted. In both cases, most of the time the maximum and minimum OSPA errors

overlap respectively. Thus the proposed system works consistently.

4.5 Conclusions

This chapter presents a new framework for adaptively tracking an unknown

and time-varying number of moving speakers in highly reverberant environ-

ments with nonstationary speech signals. The proposed framework consists

of two stages, namely the acoustic feature extraction (i.e. localization, cf.

Part I), and the Bayes RFS multi-object tracking filter (GLMB v.s. CPHD). The

acoustic feature extraction is based on the proposed MCC-PHAT and Onset-

MCC reverberation-robust localization methods from Part I. The Bayes RFS

tracking is implemented using the GLMB filter with the MDB model, and

supplied with multi-sensor measurements.
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Figure 4.8: OSPA Results using MCC-PHAT and SMC-GLMB.
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Figure 4.9: OSPA Results using Onset-MCC and SMC-GLMB.

Performance of the proposed multi-speaker tracking framework is demon-

strated using real recordings in a reverberant room at T60 ≈ 0.65s, with the
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scenario where one female speaker and two male speakers talk and move

in a reverberant room. As the results show, the labeled trajectories are rea-

sonably close to ground truth, despite of the significant challenges, such as

reverberation, moving speakers, time-varying number of speakers, and joint

labeled state tracking. The MCC-PHAT and Onset-MCC can both reliably

find speaker DOAs in presence of strong reverberation, and the MCC-PHAT

has comparatively less miss-detections. The MDB SMC-GLMB filter, supplied

with location measurements, estimates the kinematic states of multiple mov-

ing speakers jointly with identities. Comparison with the CPHD counterparts

also confirms the advantages of the GLMB filter implementations.



Chapter 5

Adaptive Multi-feature Multi-speaker
Tracking and Separation

As presented in Chapter 4, standard multi-speaker tracking algorithms usu-

ally only filter the kinematic feature state. In such implementations, ambigu-

ity arises when speakers are spatially close, which cannot be resolved without

using other features. Thus this chapter investigates the feasibility of jointly

tracking and separating multi-feature states of multiple speakers, based on

the MDB GLMB multi-object tracking filter. A multi-feature multi-speaker

tracking-and-separation method is proposed, using sound mixtures recorded

by microphones. The proposed multi-feature GLMB tracking filter treats the

set of vectors of speaker features (e.g. location, pitch and sound) as the

multi-feature multi-object observations, characterizes transitioning features

with corresponding transition models and overall measurement likelihood

function, thus jointly tracks and separates each multi-feature speaker, and

addresses the ambiguity problem of single feature state filters. As a proof-

of-concept, this chapter uses a simulated anechoic scenario to verify that

the proposed method can correctly track locations of multiple speakers and

meanwhile separate speech signals. Main contributions of this chapter have

been published in the author’s paper1 [6].

5.1 Introduction

Numerous acoustic multi-speaker tracking algorithms can be found in the lit-

erature [2,4,142,144]. Generic multi-object tracking filters [19,21–23] can

also be implemented to track multiple speakers online when provided with

speaker location estimates as observation data. These existing implementa-

1©2018 IEEE. Reprinted with permission from, Jointly Tracking and Separating Speech
Sources Using Multiple Features and the generalized labeled multi-Bernoulli Framework,
by Shoufeng Lin. 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2018).
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Figure 5.1: Multi-feature Multi-speaker Tracking and Separation. ©2018
IEEE.

tions of multi-speaker tracking methods however, usually track only a single

(kinematic) state of respective speakers. Nonetheless, single feature tracking

has the ambiguity problem when the feature observations are close to each

other. Apparently, by relying on the location information alone, the tracking

filters would take closely-located speakers as a single speaker, hence unable

to correctly identify and separate the sound sources in the mixture.

Separating original source signals from the mixtures recorded by micro-

phones has also a wide range of applications such as automatic meeting tran-

scription and speaker recognition. Many blind source separation (BSS) meth-

ods have been developed [50, 145–147], based on the independent compo-

nent analysis (ICA) or time-frequency masking (TFM) techniques. However,

it can be challenging for some BSS methods to continuously separate mov-

ing sources due to the well-known permutation problem. Thus the location-

based source separation methods, e.g. the wideband beamforming methods

(e.g. [10, 31, 76]), are often employed as an additional source separation

step after obtaining the location tracking results.

This chapter proposes a systematic multi-feature tracking-and-separation

filter based on the generalized labeled multi-Bernoulli (GLMB) framework

[21–23]. As shown in Fig. 5.1 (and cf., Fig. 4.1), multiple speaker features

are first obtained from sound mixtures by detecting locations of all candi-

date speakers, extracting their corresponding speech signals and estimating

the related acoustic identities (pitches). Each extracted vector of associated

speaker features of a candidate speaker, i.e. the location, pitch and the cor-
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responding speech signals, can be treated as an integral multi-feature target

observation. The set of multi-feature vectors forms the multi-target multi-

feature observations, which are then tracked in the proposed multi-feature

GLMB. Moreover, since the standard implementations of the GLMB frame-

work [21–23] track only a single feature, necessary adaptations are required

to support multi-feature tracking. The proposed method categorizes the lo-

cation and pitch as “transitioning” features, and the nonstationary sound

signal as a “non-transitioning” feature. In the multi-feature GLMB recursion,

transitioning features have their own first-order Markov transition models

and are directly used for track confirmation in the update step, while the

non-transitioning sound feature is zeroed (as silence) in the prediction step

and assigned with associated extracted sound in the update step. New state

transition function and measurement likelihood function for multiple transi-

tioning features are also presented. The multi-feature GLMB tracking filter

produces labeled tracks for respective speakers, the corresponding pitch esti-

mates, as well as the separated sound signals. Furthermore, it also addresses

the ambiguity problem because when speakers locate closely, their pitch in-

formation can be used to separate them in the multi-feature GLMB tracking

algorithm, and vice versa.

This chapter is organized as follows. Section 5.2 describes the speaker

feature extraction methods. The multi-feature GLMB filter is described in

Section 5.3. Numerical studies of the proposed methods are presented in

Section 5.4, and conclusions are given in Section 5.5.

5.2 Speaker Feature Extraction

5.2.1 Speaker Localization

All localization methods as discussed in Section 2.5 or proposed in Chapter 3

can be applied at this stage. Here the MCC-PHAT method as described in

Section 3.5.4 is applied for a satisfactory overall performance. The location

estimates are as denoted in (3.62), i.e. Θ̂k = {θ̂ik | ik = 1, . . . , Nk}.
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5.2.2 Sound Extraction

Speech signals from the DOA estimates θ̂ik can then be extracted from the

sound mixtures recorded by microphones. Here the wideband weighted least

square (WLS) beamforming method [31] as described in Section 2.5 is im-

plemented for sound extraction.

The WLS beamformer uses the filter-and-sum structure, and has J = 32
taps in each channel. Its mainlobe steers to the speaker DOA θ̂ik , and the

corresponding sidelobe ranges from θ̂ik + 15◦ to θ̂ik − 15◦. The frequency

range used is [20, 8000]Hz.

The real-valued (J · IM)× 1 optimal weight vector wik for a DOA θ̂ik is ob-

tained according to the wideband WLS beamformer [31], then the extracted

sound signal at time frame k can be calculated from (cf. (2.49)):

ŷik
[
n] = wT

ik xBF[n]. (5.1)

5.2.3 Acoustic Identity

The extracted sound ŷik that corresponds to a speaker location θ̂ik can fur-

ther be used to extract speaker’s acoustic identity, e.g. pitch, Gaussian Mix-

ture Model (GMM) [148] parameters, etc. Here the pitch is used as a simple

acoustic identity, as it can be estimated from a short segment of voiced sound,

different speakers usually have different pitch, and pitch of a speaker is usu-

ally distributed within a limited range. Numerous pitch estimation methods

can be found in the literature [106, 149–152]. The PEFAC (Pitch Estima-

tion Filter with Amplitude Compression) method [151] is employed. The

averaged estimate of each frame is used, which is denoted as F̂0ik .

From (3.62) and (5.1), the vector of associated location, pitch and sound

of each candidate speaker at frame k form a multi-feature observation zik ,

(θ̂ik , F̂0ik , ŷik). The multi-target multi-feature observation is thus

Zk , {zik | i = 1, ..., Nk}, (5.2)

where Zk = ∅ when Nk = 0.
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Instead of using the location estimates alone, the proposed multi-feature

GLMB filter jointly extract and track the location, pitch and sound features

as follows.

5.3 Multi-feature GLMB Recursion

The multi-feature GLMB RFS is the same form as (2.99), except that here

si , (θi, F0i, yi) ∈ X is the multi-feature target state vector, where θi, F0i, yi

denote the associated location and pitch feature states as well as the sound

waveform, respectively. The multi-feature GLMB recursion also consists of

the multi-object “update” step based on Bayes inference and the Chapman-

Kolmogorov [117] “prediction” step based on the state transition models.

5.3.1 Update

The form of multi-feature GLMB update is the same as (2.101). However,

the multi-feature likelihood function should be adapted.

g(zϑ(`)|s, `) denotes the multi-feature likelihood for the measurement

zϑ(`) ∈ Z being generated by (s, `) = ((θ, F0, y), `), where the feature y is

“non-transitioning” and assigned with ŷϑ(`) after update. Sound separation

for respective speakers over time is achieved by concatenating sound signals

y of the same target label. Assuming that the transitioning features (location

and pitch) are statistically independent, the proposed multi-feature likeli-

hood function is:

g(zθ(`)|s, `) , g(θ̂ϑ(`)|θ, `) · g(F̂0ϑ(`)|F0, `), (5.3)

where g(θ̂ϑ(`)|θ, `) = N (θ̂ϑ(`); θ, σ2
θ ) and g(F̂0ϑ(`)|F0, `) = N (F̂0ϑ(`); F0, σ2

F0
).

σθ = 2◦ and σF0 = 10Hz are the standard deviations of the observation of the

location and pitch, respectively. Following the definitions in [22], clutter is

assumed Poisson with an average of 0.044 clutter points per scan, i.e. the lo-

calization method produces almost clean location estimates in low reverbera-

tion. The probability of a target state being detected is pD = N (F0; 280, 302).
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After update, the maximum a posteriori (MAP) estimate of the cardinality

(number of speakers) is chosen, and the highest weighted corresponding hy-

pothesis is used for the multi-target multi-feature tracking results.

5.3.2 Prediction

The form of multi-feature GLMB prediction is the same as (2.103). However,

the multi-feature transition function must be adapted.

Using the assumption that transitioning features are statistically indepen-

dent, the proposed state transition function for the multi-feature GLMB is

f(s|·, `) = 1s(θ) · f(~θ|·, `) · 1s(F0) · f(F0|·, `), (5.4)

where the inclusion function is as defined in (2.105). The survival probability

here is pS(·, `) = 0.75, considering the dynamics of multiple features.

Assume that the speaker DOA follows the Langevin process with the same

form defined in (4.1) but with different parameter values,

f(~θ|~θ′, `) =
[

1 t∆

0 e−βθ ·t∆

]
·~θ′ + wθ ·

[
0

σθ

√
1− e−2βθ ·t∆

]
, (5.5)

where ~θ = [θ, θ̇]T, θ̇ is the velocity of DOA θ. t∆ = 0.1s is the time step,

wθ follows the normal distribution, i.e. wθ ∼ N (·; 0, 1). Model parameters

βθ = 0.2s−1 and σθ = 10◦/s are respectively the rate constant and the steady-

state root-mean-square velocity for the random motions of speakers.

Assume that the pitch of a speaker follows a simple normal distribution

around its previous estimate. Thus the state transition function for pitch is

f(F0|F0
′, `) = N (F0; F0

′, σ̃2
F0
), (5.6)

where σ̃F0 = 30Hz is the standard deviation for the transition of pitch. Adap-

tive measurement-driven target births are generated [23, 25]. New target

births are assumed to follow normal distributions around the previous mea-

surement, where the standard deviation is 5◦ for the DOA (cf. Part I, Sec-
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tion 3.7.2), and 30Hz for the pitch, respectively. The nonstationary sound

signals are treated as the non-transitioning feature, thus targets carry no

sound in prediction until the next update step of the multi-feature GLMB

recursion.

5.4 Numerical Studies

5.4.1 Experiment Setup

This section verifies and demonstrates the performance of the proposed multi-

feature GLMB framework in the scenario of three speakers.

The test set-up is as shown in the left panel of Fig. 5.1, where the room di-

mensions are 3.4m× 7.6m× 2.7m (width× length× height), the microphone

array locates at [1.2, 3.9, 1.5]m, which is composed of IM = 8 microphones

evenly distributed on a circle with a diameter of 0.1m. For clarity, an ane-

choic scenario is chosen that Speaker A (male) and B (female) both locate at

DOA of 232.1◦ while Speaker C (female) moves from DOA of 40◦ to 75◦, with

respect to the center of the microphone array. Fig. 5.2 plots the normalized

ground truth speech signals of respective speakers as well as their mixture

captured by one of the microphones. Obviously, using location (DOA) infor-

mation alone, standard implementations of tracking methods can only take

Speaker A and B as a same speaker.

5.4.2 Test Results

Fig. 5.3 provides the ground truth locations, estimated speaker locations,

pitch and separated sound signals. The top panel depicts the ground truth

locations in straight line segments, the estimated locations in symbol “×”

and tracking results in solid colored symbols. Different colored symbols rep-

resent different speakers. From the ground truth, there are two separate lines

of locations. Thus using location information alone, apparently the tracking

filters can only detect two speakers. However, by considering also the pitch

information, the proposed method has correctly found three speakers. The
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Figure 5.2: Ground truth (top three panels) of the normalized speech signals
of three speakers (one male and two female), and their mixture at one of the
microphones (bottom panel). ©2018 IEEE.

second top panel shows the pitch estimates and tracking results associated

with the location estimates and tracking results in the top panel. In these two

panels, the associated location and pitch estimates have spurious errors that

do not follow consistent kinematic patterns over time, thus are filtered by

the GLMB tracker. The tracking filter requires two time steps to confirm one

new track. This is reasonable as the measurement-driven birth model [25]

is used for adaptive target births. The pitch estimates of different speak-

ers fluctuate at different levels over time, and there is a significant jump in

pitch level at time of around 1.4s, which helps the tracker to confirm a new

speaker starting at 1.5s. The bottom three panels of Fig. 5.3 plots the ex-

tracted sound signals for respective speakers. Comparing with Fig. 5.2, most

of speech signals are recovered for each speaker. Thus the proposed multi-

feature GLMB tracking-and-separation method can jointly track and separate

multiple speakers.

The location tracking accuracy is evaluated using the OSPA metric [122],

with the cut-off parameter of 5◦ and the order parameter of 1. Thus car-

dinality estimation error of 1 out of 2 contributes to an OSPA error of 5
2
◦
.

Fig. 5.4 shows that the overall OSPA location tracking errors are within 5◦,
and the multi-feature GLMB achieves comparable location tracking accuracy

with the standard GLMB.
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Figure 5.3: Joint tracking and separation results from proposed methods.
Top two panels show the estimation and tracking results of speakers’ location
and pitch. Bottom three panels show the corresponding separated sound
signals. ©2018 IEEE.
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Figure 5.4: OSPA measure of the DOA tracking results, i.e. the overall OSPA
errors (top), the contribution of DOA errors (middle), and the contribution
of cardinality errors (bottom). ©2018 IEEE.

Table 5.1: PEASS evaluation results for speech separation, using the pro-
posed method, and the UCBSS, DUET methods. ©2018 IEEE.

Method Speaker OPS TPS IPS APS

Proposed
1 48.75 57.03 71.19 49.11
2 32.69 29.35 72.06 35.61
3 36.02 35.73 65.65 37.71

UCBSS
< 1, 2 > 18.66 45.84 43.21 24.33

3 25.00 6.10 83.97 3.50

DUET
< 1, 2 > 18.73 38.82 16.38 50.43

3 24.97 51.16 32.40 44.32

The quality of the separated sound signals are evaluated using the PEASS

metric [153], compared with the ground truth signals. The results are pro-

vided in Tab. 5.1. The performance is compared with two blind speech sep-

aration methods, i.e. the Underdetermined Convolutive Blind Source Sep-

aration (UCBSS) [147] and the Degenerative Unmixing Estimation Tech-

nique (DUET) [50]. Using the blind separation techniques, the speaker 1

and speaker 2 are regarded as one speaker. Thus the separated sound sig-

nals for speaker < 1, 2 > are compared with the mixture of Speaker A and

Speaker B. In general the DUET and UCBSS methods obtain close Overall

Perceptual Scores (OPS). The DUET method seems to provide more con-
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sistent performance than UCBSS when comparing the Target-related Per-

ceptual Score (TPS) and the Artifacts-related Perceptual Scores (APS), but

UCBSS has significantly higher Interference-related Perceptual Score (IPS)

than DUET. Overall, the proposed method provides consistent and superior

performance for the three separated speakers, according to the perceptual

scores.

5.5 Conclusions

This chapter presents a novel systematic implementation of the multi-feature

multi-speaker filtering method that not only can jointly track multiple speak-

ers and separate sound signals from speech mixtures, but also can resolve the

ambiguity of location tracking when speakers locate spatially close. It treats

the vector of candidate speaker location, pitch and sound as a multi-feature

target observation and jointly extracts and tracks these features in the GLMB

Bayes RFS recursion. Experimental results demonstrate encouraging results

in the studied scenario.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

The thesis investigates the challenges in the reverberant speaker localization

and multi-speaker feature filtering and presents several original approaches.

Three novel reverberation-robust speaker localization algorithms are pre-

sented, which are referred to as the Onset-GSRP, Onset-MCC and the MCC-

PHAT. The Onset-GSRP and Onset-MCC algorithms first decompose speech

mixtures via the auditory filterbank based on the voiced speech signal model

and time-frequency sparsity assumption. Then a novel onset detection and

encoding approach is derived to detect the direct-path components from re-

verberant microphone recordings, based on the voiced speech signal and

acoustic RIR models. Finally, the cross-correlation coefficients are reverse-

mapped from relative sample delays to spatial locations, and produce the

DOA localization results in a computationally tractable way. The MCC-PHAT

method builds upon the acoustic RTF model and the classic GCC-PHAT method,

and exploits the redundant information from multiple closely placed mi-

crophones to suppress the effect of sound reflections. Performance of the

presented methods is studied using not only simulated signals of reverber-

ation time from 0.2 to 1s, but also real recordings in an office room of

T60 ≈ 0.65s. Evaluation results show that the proposed Onset-MCC and

MCC-PHAT speaker localization methods can provide better DOA resolutions

than the Onset-GSRP and other baseline techniques. Comparative studies

demonstrate the benefits of the proposed algorithms, i.e. good resolutions,

reverberation-robustness and localization of moving speakers.

Moreover, an adaptive multi-speaker tracking filter is developed for an

unknown and time-varying number of moving speakers in highly reverber-

ant environments using microphone recordings of nonstationary speech sig-

nals. The proposed filter consists of two stages, namely the acoustic feature

(locations) extraction, and the GLMB Bayes RFS multi-object tracking. The

134
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acoustic feature extraction uses the proposed Onset-MCC and MCC-PHAT

reverberant-robust localization methods. The GLMB Bayes RFS filter is im-

plemented with the MDB model, and supplied with pre-converted Cartesian

location candidates from multi-sensor DOA estimates. Performance of the

proposed multi-speaker tracking framework is evaluated using real record-

ings in a reverberant room at T60 ≈ 0.65s, with the scenario where three

speakers talk and move in a reverberant room. The results indicate that the

MDB GLMB filter, supplied with location estimates, can adaptively track the

kinematic states of multiple moving speakers jointly with identities. Com-

parison with the CPHD filter also confirms the advantages of the GLMB filter

implementations.

Furthermore, a novel multi-feature multi-speaker filter is also proposed,

based on the GLMB Bayes RFS filter framework. It treats the vector of can-

didate speaker location, pitch and sound as a multi-feature observation, and

jointly filters (i.e. tracks and separates) these features in the MDB GLMB

Bayes RFS recursion. Experimental results demonstrate that the proposed

multi-feature multi-speaker filter can jointly track the locations and pitches

of multiple speakers and separate corresponding sound signals from speech

mixtures in the studied scenario.

6.2 Future Works

1. UCAs can provide isotropic localization performance (see e.g. [87]).

The works on theoretical performance bounds and variances of location

estimators using the redundant information, especially in reverberant

conditions and for moving sources, as well as the posterior performance

bounds for state estimation, are not included in the thesis. Existing

literature (e.g. [100,154–158]) also indicated the significance and the

level of challenges of a further study in this regard. Moreover, since the

thesis focuses on the challenges of reverberation and moving speakers,

further theoretical and practical performance studies for static speakers

can be carried out next for certain applications.
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2. The multi-feature multi-speaker filter has been verified in Chapter 5,

but since some estimators of the features (e.g. the pitch estimator and

the beamformer for speech separation) are not very reliable in presence

of reverberation, the test scenario is in an anechoic condition, and only

a proof-of-concept is given. Moreover, the more challenging scenario

when closely located speakers talk concurrently is to be investigated

with better speech separation methods. In future works, reverberation-

robust pitch estimators can be investigated, which may help in the joint

tracking and separation in more challenging multi-speaker scenarios,

e.g. the “cocktail party” problem [159–161]. Furthermore, the frame-

work provides a basis for following automatic speech recognition (ASR)

and natural language processing (NLP) in practical scenarios as well.

3. Fixed UCAs are used in the thesis for testing proposed and existing

methods. There are also cases when the sensor arrays are also moving.

In such scenarios, further investigation is needed.

4. An integrated multi-sensor multi-object filtering [143] can be imple-

mented for the case of multiple microphone arrays (e.g. distributed

array network), although not necessary in this thesis as only two mi-

crophone arrays are used, and the source code is not yet released by

the authors of the paper.

5. A simple fixed wideband beamformer is used for speech separation in

the thesis. Future works may include more adaptive speech separation

methods that are robust against reverberation.

6. Simulation of reverberated sound [62, 140] for moving speakers can

be improved in future studies. The current simulation found that the

overlap-add of simulated reverberated signals can produce unnatural

sounds and spurious localization errors. The fundamental cause of this

issue may be the conflict of the fixed sampling rate and the continuous

motion of speakers. Further investigation can be interesting.

7. The speaker localization and tracking methods proposed in this thesis
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can be implemented online. For offline implementations, state smooth-

ing is applicable, which can possibly lead to more accurate results.

Other extensions to the tracking framework and transition models are

possible for certain complicated scenarios in practice.

8. Microphone arrays may not be perfect, e.g. there may be perturbations

in microphone gain, phase, and locations. Thus automatic array cal-

ibration and robustness of proposed methods in such conditions also

deserves further investigation.

9. Implementing the works in real embedded systems (including hard-

ware and software) will also be of practical values. There are an in-

creasing number of smart home/meeting/industry and wearable de-

vices that play an important part in the daily life. With over 8 years of

professional engineering background in electronics products develop-

ment, the author is also keen on this.



Appendices

A Transfer Function for Room Acoustics

From the law of conservation of momentum (also known as the Euler’s equa-

tion),

∇p + ρ0
∂v
∂t

= 0, (7.1)

where ∇ denotes gradient, p the sound pressure, which is the difference

between the instantaneous pressure and the static pressure p0, v the particle

velocity, and ρ0 the static air density.

From the law of conservation of mass, in free space,

ρ0divv +
∂ρ

∂t
= 0, (7.2)

where ρ is the total air density, and div the divergence.

Assuming ideal gas,
p
p0

= ka
δρ

ρ0
, (7.3)

where ka is the adiabatic exponent (ka = 1.4 for air), and δρ the variation of

air density. The velocity of sound v =
√

ka · p0/ρ0.

From (7.1), (7.2) and (7.3), it is easy to derive the Helmholtz equation

∇2p =
1
v2

∂2p
∂t2 . (7.4)

For a point source with a single frequency Ω and volume velocity Q(Ω) =

Q̂eΩt, the solution to (7.4) is spherical wave, and at a distance of rd > 0 in

polar coordinates [61],

p(rd, t) = Ωρ0Q̂
e(Ωt−kλrd)

4πrd
, (7.5)

where kλ = Ω/v is the wave number. This leads to the transfer function

(2.9).

In an enclosed space with volume V, assuming the single frequency point
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source with a vanishingly small volume dV locate at location
⇀
℘0, (7.2) is

rewritten as

ρ0divv +
∂ρ

∂t
= ρ0q(Ω,

⇀
℘), (7.6)

where q(Ω,
⇀
℘) , q0(Ω)δ(

⇀
℘ − ⇀

℘0), q0(Ω) = Q(Ω)/dV,
⇀
℘ is an arbitrary

location. This leads to a modified Helmholtz equation

∇2p + k2
λ

∂2p
∂t2 = Ωρ0q(Ω,

⇀
℘). (7.7)

The solution to (7.7) can be expressed with the eigenfunctions, i.e.

p(Ω,
⇀
℘) = ∑

j
DjPj(

⇀
℘), (7.8)

where

Dj =
1
Kj

∫∫∫
V

Pj(
⇀
℘)p(Ω,

⇀
℘)dV, (7.9)

and eigenfunctions depend on the room boundaries and are orthogonal, i.e.

∫∫∫
V

Pi(
⇀
℘)Pj(

⇀
℘)dV =

Kj, for i = j,

0, for i 6= j.
(7.10)

Expand also the source function with eigenfunctions,

q(Ω,
⇀
℘) = ∑

j
CjPj(

⇀
℘), (7.11)

where

Cj =
1
Kj

∫∫∫
V

Pj(
⇀
℘)q(Ω,

⇀
℘)dV =

1
Kj

q0(Ω)Pj(
⇀
℘0), (7.12)

Inserting both (7.8) and (7.11) into (7.7), leads to

Dj = Cj
Ω

k2
λ − k2

j
. (7.13)



140 B The Direct-path Subband Signal

Therefore, the sound pressure is

p(Ω,
⇀
℘) = Ωρ0q0(Ω)∑

j

Pj(
⇀
℘)Pj(

⇀
℘0)

Kj · (k2
λ − |

⇀
k j|2)

, (7.14)

where
⇀
k j is the j-th eigenvalue. The RTF in (2.10) is provided for a rectan-

gular room with rigid boundaries [61].

B The Direct-path Subband Signal

From (3.2), the speech harmonic component is1

s(h̄)q (t) =A(h̄)
q (t) · cos

(
h̄ ·ωq · t + φ

(h̄)
q (t)

)
=

1
2

A(h̄)
q (t) · [e[h̄·ωq·t+φ

(h̄)
q (t)] + e−[h̄·ωq·t+φ

(h̄)
q (t)]]

(7.15)

Using linear-phase filters, e.g. the gammatone filter, from (3.64),

g(b)(t) = g̃(b)(t) · cos(2π f (b)c t)

=
1
2
· g̃(b)(t) · (e2π f (b)c t + e−2π f (b)c t)

(7.16)

where

g̃(b)(t) = (t + td)
ϑ−1e−2π f (b)b (t+td) (7.17)

From (3.2) and (7.16), when h̄ · ωq ≈ 2π f (b)c , the direct-path is given as

follows:

x(b)di
(t) ≈ [s(h̄)q (t− tdqi) · hqi(tdqi)] ∗ g(b)(t)

= hqi(tdqi) · [
1
2
· g̃(b)(t) · (e2π f (b)c t + e−2π f (b)c t)]

∗ [1
2

A(h̄)
q (t− tdqi)

1Considering frequency domain meanings of convolution and complex exponentials for
the Fourier transform and inverse Fourier transform.
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· [e[h̄·ωq·(t−tdqi
)+φ

(h̄)
q (t−tdqi

)]
+ e
−[h̄·ωq·(t−tdqi

)+φ
(h̄)
q (t−tdqi

)]
]

≈ 1
4

hqi(tdqi) · [A
(h̄)
q (t− tdqi) ∗ g̃(b)(t)]

· [e[h̄·ωq·(t−tdqi
)+φ

(h̄)
q (t−tdqi

)]
+ e
−[h̄·ωq·(t−tdqi

)+φ
(h̄)
q (t−tdqi

)]
]

=
1
2

hqi(tdqi) · [A
(h̄)
q (t− tdqi) ∗ g̃(b)(t)]·

cos(h̄ωq(t− tdqi) + φ
(h̄)
q (t− tdqi))

= S̃(b)
qi (t) · cos(φ̃(b)

qi (t)), t ≥ tqi, (7.18)

where

S̃(b)
qi (t) ,

1
2
· hqi(tdqi) · A

(h̄)
q (t− tdqi) ∗ g̃(b)(t), (7.19)

and

φ̃
(b)
qi (t) = h̄ωq(t− tdqi) + φ

(h̄)
q (t− tdqi). (7.20)

Particularly, in the case that the speech harmonic component is narrow-

band, and the center frequency is within the pass-band of the filter, (7.19)

can be approximated as

S̃(b)
qi (t) ≈ 1

2
· hqi(tdqi) · A

(h̄)
q (t− tdqi) · G̃

(b)(0), (7.21)

where G̃(b)( f ) is the Fourier transform of g̃(b)(t).
Thus from (7.18) and (7.21), the subband direct-path signal is an ampli-

tude modulated sinusoid with slow-changing phase.
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C The Expected Reflection Upper Bound

From (3.11),

E[bx(b)Ri
(t)c] = E

[1
2
[x(b)Ri

(t) + |x(b)Ri
(t)|]

]
=

1
2

E[|x(b)Ri
(t)|] = 1

2
E[|hR(t) ∗ x(b)di

(t)|]

≤1
2

E[|hR(t)| ∗ |x
(b)
di

(t)|]

=
1
2

E[|hR(t)|]∗|x
(b)
di

(t)|

=
1
2

E[|hR(t)|]∗
[
bx(b)di

(t)c+ b−x(b)di
(t)c

]
,

(7.22)

where b·c keeps the non-negative part of signals while clipping negative sig-

nals to zero, i.e. bxc = 1
2(x + |x|), ∀x ∈ R. In the third line of (7.22) the

equality holds when hR(τ) · x
(b)
di

(t− τ) all have the same sign, ∀τ ≥ τqi.

Thus from (7.18) and (7.22),

E[bx(b)Ri
(t)c]

≤1
2

E[|hR(t)|] ∗
[
bS̃(b)

qi (t) · cos(φ̃(b)
qi (t))c+ b−S̃(b)

qi (t) · cos(φ̃(b)
qi (t))c

]
=

1
2

E[|hR(t)|] ∗
[
S̃(b)

qi (t) · cos(φ̃(b)
qi (t))]

t∈T(b)
+

+ [−S̃(b)
qi (t) · cos(φ̃(b)

qi (t))]
t∈T(b)

−

]
=

1
2

E[|hR(t)|] ∗ [2S̃(b)
qi (t) · cos(φ̃(b)

qi (t))]
t∈T(b)

+

=E[|hR(t)|] ∗ bx
(b)
di

(t)c,
(7.23)

where
[−S̃(b)

qi (t) · cos(φ̃(b)
qi (t))]

t∈T(b)
−

≈[S̃(b)
qi (t +

Tb
2
) · cos(φ̃(b)

qi (t +
Tb
2
))]

t∈T(b)
−

=[S̃(b)
qi (t) · cos(φ̃(b)

qi (t))]
t∈T(b)

+

=bx(b)di
(t)c,

(7.24)

T(b)
+ is the set of time for non-negative cos(φ̃(b)

qi (t)), while T(b)
− is the set of

time for negative cos(φ̃(b)
qi (t)). Tb is the short-term period of cos(φ̃(b)

qi (t)).
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D Recursive Averages of A Half-wave Rectified

Periodic Signal

The recursive averages of the half-wave rectified sinusoid signal is calculated,

the limit and an upper bound for λ less than but close to 1. Fig. 7.1 gives an

intuition.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

Time Index

 

 
⌊x

(b)
i ⌋

1/π

x̄
(b)
i ,λ = 0.9998

x̄
(b)
i ,λ = 0.999

Figure 7.1: Intuition for the recursive average upper bound. Amplitude is
fixed to 1 for the half-wave rectified sinusoid. ©2018 IEEE.

Assume a periodic signal bx(b)i (l/ fs)cwith period of integer Kb , round(Tb ·
fs) > 0, beginning at time m0 ∈ Z. From (3.18), the limit of the recursive

average x̄(b)i [m] is:

lim
m→∞

x̄(b)i [m] = lim
m→∞

(1− λ)
k

∑
l=m0

λm−l · bx(b)i (l/ fs)c

= lim
m→∞

1− λ

Kb

m

∑
l=0

λ−l·Kb

m0+Kb−1

∑
l=m0

λm0+Kb−1−lbx(b)i (l/ fs)c

=
1− λ

1− λKb
· 1

Kb

m0+Kb−1

∑
l=m0

λm0+Kb−1−lbx(b)i (l/ fs)c.

(7.25)

Using the cosine signal expression as in (7.18) assuming that S̃(b)
qi (t) is

stable, the sum in (7.25) can be approximated using the integral, for λ close
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to but less than 1, as in (3.23).

∫ Tb

0
λTb−t · S̃(b)

qi (t) · bcos(φ̃(b)
qi (t))cdt · fs

≈
∫ Tb

0
S̃(b)

qi (t) · bcos(φ̃(b)
qi (t))cdt · fs

= S̃(b)
qi (t) · Tb · fs

π
.

(7.26)

Thus from (7.25) and (7.26) the limit approaches:

lim
m→∞

x̄(b)i (m) ≈ 1− λ

1− λKb
· S̃(b)

qi (m/ fs) ·
1
π
≤ S̃(b)

qi (m/ fs)
1
π

. (7.27)

Thus S̃(b)
qi (m/ fs)/π is an upper bound of the recursive averages of the signal

bx(b)i (m/ fs)c, which is also true when S̃(b)
qi (m/ fs) increases over time (e.g.

speech onsets).
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E The Localization of MCCC

Fig. 7.2 shows the localization test results from the MCCC method in the

same test scenario as in Fig. 3.4 of Chapter 3. The source DOAs are 170◦

and 190◦. It can be seen that the MCCC method cannot resolve the two close

DOAs and the two sources are fused into one. There are considerable spu-

rious peaks, and in most cases there is only about 0.1dB difference between

the desired peaks and the spurious peaks. Thus the further test results from

MCCC are not included in the detailed comparisons in Chapter 3.
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Figure 7.2: MCCC Localization Test.
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F The Localization of SRP-PHAT

The localization results of the SPR-PHAT method for two closely located

speakers in the same test scenario as in Fig. 3.4 of Chapter 3 are provided in

Fig. 7.3. The source DOAs are 170◦ and 190◦.
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Figure 7.3: SRP-PHAT Localization Test.

It can be seen that in this test scenario:

• Although the differences between the main and the spurious peaks are

only a few dBs, the SRP-PHAT is overall robust.

• The SRP-PHAT in general cannot differentiate the two closely located

sources (except for the low reverberation and no noise cases), and the

two sources are fused into one.

• There are more spurious peaks as the reverberation increases. Peaks

are smeared as the noise increases. These observations follow the dis-

cussions in Section 3.5.
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G The Localization of MUSIC

Fig. 7.4 shows the localization results of the MUSIC localization method in

the same test scenario as in Fig. 3.4 of Chapter 3. The source DOAs are 170◦

and 190◦. Although MUSIC is a well-accepted high resolution localization

method, it can be seen that the resolution degrades as the reverberation or

noise level increases. At high reverberation (e.g. T60 > 0.4s) the two sources

are fused into one. Moreover, the peaks get wider as the reverberation or

noise increases.
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Figure 7.4: MUSIC Localization Test.
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H The Localization of Onset-GSRP

Fig. 7.5 shows the localization results of the Onset-GSRP algorithm in the

same test scenario as in Fig. 3.4 of Chapter 3. The source DOAs are 170◦

and 190◦. The Onset-GSRP method cannot resolve the two closely located

sources and fuses them into one. However, compared with the MCCC method

in Fig. 7.2, the Onset-GSRP has improved performance, i.e. the main local-

ization peak is distinct, and the spurious peaks much weaker than the main

peak. It is also interesting to note that the peaks get wider as the reverbera-

tion or noise increases.
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Figure 7.5: Onset-GSRP Localization Test.
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I The Localization of Onset-MCC

Fig. 7.6 shows the localization results of the Onset-MCC method in the same

test scenario as in Fig. 3.4 of Chapter 3. The source DOAs are 170◦ and 190◦.
The Onset-MCC method produces reliable peaks corresponding to ground

truth speaker DOAs, except the spurious peaks at T60 ≥ 0.8s and SNR=∞.

Moreover, in comparison with Fig. 7.2, Fig. 7.3 and Fig. 7.4, the Onset-MCC

has better resolution than the MCCC, SRP-PHAT and MUSIC.
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Figure 7.6: Onset-MCC Localization Test.
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J The Localization of MCC-PHAT

Fig. 7.7 shows the localization results of the MCC-PHAT method in the same

test scenario as in Fig. 3.4 of Chapter 3. The source DOAs are 170◦ and 190◦.
As shown in Fig. 7.7, removing spatially aliased pairs as in (3.59) does not

significantly degrade the localization performance of the MCC-PHAT, com-

pared to using all microphone pairs. The MCC-PHAT produces reliable peaks

corresponding to ground truth speaker DOAs in most cases. Moreover, in

comparison with Fig. 7.2, Fig. 7.3 and Fig. 7.4, the MCC-PHAT has better

resolution than the MCCC, SRP-PHAT and MUSIC.
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Figure 7.7: MCC-PHAT Localization Test.
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K Computational Complexity of the Localization

Algorithms

This section provides an analysis of the computational complexities of the

proposed and existing baseline localization algorithms.

The test is carried out on a Thinkstation® with Xeon® E5-2640 CPU at

2.5GHz clock rate and 16GB DDR RAM, by running scripts using Matlab

2018b on the Windows 7 Professional operating system. The computational

time is recorded when analyzing a 8-channel microphone recording of 4-

second duration and 48kHz sampling rate. The result is shown in Fig. 7.8.

Computational Time of Methods

EB-E
SPR

IT

TF-C
H
B

M
C
C
C

M
U
SIC

SR
P-P

H
AT

M
C
C
-P

H
AT

O
ns

et
-G

SR
P

O
ns

et
-M

C
C

N
eu

ro
Fuz

zy
0

100

200

300

400

500

600

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Figure 7.8: Computational Complexity Test of Localization Methods.

It is apparent that the EB-ESPRIT algorithm is by far the most efficient

as it takes only 2.38 seconds in this case, while the Neuro-Fuzzy method

takes the longest time of almost 600 seconds to complete. The TF-CHB and

the MCCC algorithms have similar computational complexity (using about 50
seconds), while the MUSIC takes slightly longer (using 88 seconds). The SRP-

PHAT, MCC-PHAT, Onset-GSRP and the Onset-MCC seem to require similar

computational time of around 300 seconds. Note also that these last four
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methods are reverberation-robust, where the MCC-PHAT and Onset-MCC

methods can provide higher spatial resolution than the MUSIC method.

Fig. 7.9 provides the computational time for tracking location estimates

from the real data as described in Chapter 4. The SMC-CPHD takes less

than 2 seconds, which is much faster than the SMC-GLMB, but the latter

provides identity estimates (labels) associated with the speaker locations. It

takes longer for the SMC-GLMB to process the estimates from the MCC-PHAT

method than the Onset-MCC, since the MCC-PHAT gives less miss-detections

as discussed in Section 4.4.2.
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Figure 7.9: Computational Complexity Test of Tracking Methods.
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