82 research outputs found

    Auction Protocols for Decentralized Scheduling

    Full text link
    Scheduling is the problem of allocating resources to alternate possible uses over designated periods of time. Several have proposed (and some have tried) market-based approaches to decentralized versions of the problem, where the competing uses are represented by autonomous agents. Market mechanisms use prices derived through distributed bidding protocols to determine an allocation, and thus solve the scheduling problem. To analyze the behavior of market schemes, we formalize decentralized scheduling as a discrete resource allocation problem, and bring to bear some relevant economic concepts. Drawing on results from the literature, we discuss the existence of equilibrium prices for some general classes of scheduling problems, and the quality of equilibrium solutions. To remedy the potential nonexistence of price equilibria due to complementarity in preference, we introduce additional markets in combinations of basic goods. We present some auction mechanisms and bidding protocols corresponding to the two market structures, and analyze their computational and economic properties. Finally, we consider direct revelation mechanisms, and compare to the market-based approach.http://deepblue.lib.umich.edu/bitstream/2027.42/50443/1/gebfinal.pd

    Equilibrium analysis of capacity allocation with demand competition

    Full text link
    This article examines the capacity allocation decisions in a supply chain in which a supplier sells a common product to two retailers at a fixed wholesale price. The retailers order the supplier's product subject to an allocation mechanism preannounced by the supplier, and compete for the customer demand. We perform an equilibrium analysis of the retailers' ordering decisions under uniform and individually responsive allocations. Uniform allocation guarantees equilibrium orders, but is not necessarily truth inducing in the presence of demand competition. Further, we find that (1) neither the supplier nor either one of the retailers sees its profits necessarily increasing with the supplier's capacity, and the supplier may sell more with a lower capacity level, and (2) capacity allocation may not only affect the supply chain members' profits but also change the supply chain structure by driving a retailer out of the market. This article provides managerial insights on the capacity and ordering decisions for the supplier, the retailers, and the supply chain. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91147/1/21486_ftp.pd

    Online Ascending Auctions for Gradually Expiring Items

    Get PDF
    In this paper we consider online auction mechanisms for the allocation of M items that are identical to each other except for the fact that they have different expiration times, and each item must be allocated before it expires. Players arrive at different times, and wish to buy one item before their deadline. The main difficulty is that players act "selfishly" and may mis-report their values, deadlines, or arrival times. We begin by showing that the usual notion of truthfulness (where players follow a single dominant strategy) cannot be used in this case, since any (deterministic) truthful auction cannot obtain better than an M-approximation of the social welfare. Therefore, instead of designing auctions in which players should follow a single strategy, we design two auctions that perform well under a wide class of selfish, "semi-myopic", strategies. For every combination of such strategies, the auction is associated with a different algorithm, and so we have a family of "semi-myopic" algorithms. We show that any algorithm in this family obtains a 3-approximation, and by this conclude that our auctions will perform well under any choice of such semi-myopic behaviors. We next turn to provide a game-theoretic justification for acting in such a semi-myopic way. We suggest a new notion of "Set-Nash" equilibrium, where we cannot pin-point a single best-response strategy, but rather only a set of possible best-response strategies. We show that our auctions have a Set-Nash equilibrium which is all semi-myopic, hence guarantees a 3-approximation. We believe that this notion is of independent interest

    A multistage mechanism for managing aggressive flows in the next generation internet

    Get PDF
    In this note, we provide a multistage game form which may be used for managing aggressive flows which may cause network congestion or monopolisation. The mechanism here presented attains economic efficiency, technical e¢ciency and other desirable properties

    An Agent Based Market Design Methodology for Combinatorial Auctions

    Get PDF
    Auction mechanisms have attracted a great deal of interest and have been used in diverse e-marketplaces. In particular, combinatorial auctions have the potential to play an important role in electronic transactions. Therefore, diverse combinatorial auction market types have been proposed to satisfy market needs. These combinatorial auction types have diverse market characteristics, which require an effective market design approach. This study proposes a comprehensive and systematic market design methodology for combinatorial auctions based on three phases: market architecture design, auction rule design, and winner determination design. A market architecture design is for designing market architecture types by Backward Chain Reasoning. Auction rules design is to design transaction rules for auctions. The specific auction process type is identified by the Backward Chain Reasoning process. Winner determination design is about determining the decision model for selecting optimal bids and auctioneers. Optimization models are identified by Forward Chain Reasoning. Also, we propose an agent based combinatorial auction market design system using Backward and Forward Chain Reasoning. Then we illustrate a design process for the general n-bilateral combinatorial auction market. This study serves as a guideline for practical implementation of combinatorial auction markets design.Combinatorial Auction, Market Design Methodology, Market Architecture Design, Auction Rule Design, Winner Determination Design, Agent-Based System

    Bundling Equilibrium in Combinatorial auctions

    Full text link
    This paper analyzes individually-rational ex post equilibrium in the VC (Vickrey-Clarke) combinatorial auctions. If Σ\Sigma is a family of bundles of goods, the organizer may restrict the participants by requiring them to submit their bids only for bundles in Σ\Sigma. The Σ\Sigma-VC combinatorial auctions (multi-good auctions) obtained in this way are known to be individually-rational truth-telling mechanisms. In contrast, this paper deals with non-restricted VC auctions, in which the buyers restrict themselves to bids on bundles in Σ\Sigma, because it is rational for them to do so. That is, it may be that when the buyers report their valuation of the bundles in Σ\Sigma, they are in an equilibrium. We fully characterize those Σ\Sigma that induce individually rational equilibrium in every VC auction, and we refer to the associated equilibrium as a bundling equilibrium. The number of bundles in Σ\Sigma represents the communication complexity of the equilibrium. A special case of bundling equilibrium is partition-based equilibrium, in which Σ\Sigma is a field, that is, it is generated by a partition. We analyze the tradeoff between communication complexity and economic efficiency of bundling equilibrium, focusing in particular on partition-based equilibrium

    Dynamic threshold policy for delaying and breaking commitments in transportation auctions

    Get PDF
    In this paper we consider a transportation procurement auction consisting of shippers and carriers. Shippers offer time sensitive pickup and delivery jobs and carriers bid on these jobs. We focus on revenue maximizing strategies for shippers in sequential auctions. For this purpose we propose two strategies, namely delaying and breaking commitments. The idea of delaying commitments is that a shipper will not agree with the best bid whenever it is above a certain reserve price. The idea of breaking commitments is that the shipper allows the carriers to break commitments against certain penalties. The benefits of both strategies are evaluated with simulation. In addition we provide insight in the distribution of the lowest bid, which is estimated by the shippers
    corecore