914 research outputs found

    Investigating the Effects of the Mission Status Graphics Polar Star Display on Failure Detection Time and Situation Awareness for Mission and System Monitoring in General Aviation Aircraft

    Get PDF
    For years, the aviation industry has been under severe scrutiny over the safety of flight when cockpit automation is over relied on and when it is under utilized. This double-edged sword raises the question of situation awareness in aviation. With the recent boom in cockpit automation and advanced avionics some fear that the pilots are being put outside the loop . Unfortunately, humans are notoriously poor monitors of reliable systems over time. However, research is currently being conducted into a new form of display that has the ability to group a myriad of aircraft mission and system status information onto one display, thereby providing pilots with a clear and concise view of the big picture, in one glance. This display utilizes a regular geometric shape generated on a polar graphic plot to indicate whether all monitored parameters are within acceptable limits. Dubbed Mission Status Graphics, the regular geometric shape will warp to a non-symmetrical form indicating that a mission or system parameter has exceeded its normal operating range. NASA Langley Research Center is currently investigating this display system for application to commercial aircraft cockpits; however, it is believed that general aviation flight safety and pilot situation awareness could also benefit from the addition of this display in future cockpit designs

    A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation

    Get PDF
    Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity (neurometric) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs. © 2017 Borghini, Aricò, Di Flumeri, Sciaraffa, Colosimo, Herrero, Bezerianos, Thakor and Babiloni

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988

    Human Error and Accident Causation Theories, Frameworks and Analytical Techniques: An Annotated Bibliography

    Get PDF
    Over the last several decades, humans have played a progressively more important causal role in aviation accidents as aircraft have become more [complex]. Consequently, a growing number of aviation organizations are tasking their safety personnel with developing safety programs to address the highly complex and often nebulous issue of human error. However, there is generally no “off-the-shelf” or standard approach for addressing human error in aviation. Indeed, recent years have seen a proliferation of human error frameworks and accident investigation schemes to the point where there now appears to be as many human error models as there are people interested in the topic. The purpose of the present document is to summarize research and technical articles that either directly present a specific human error or accident analysis system, or use error frameworks in analyzing human performance data within a specific context or task. The hope is that this review of the literature will provide practitioners with a starting point for identifying error analysis and accident investigation schemes that will best suit their individual or organizational needs

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 407)

    Get PDF
    This bibliography lists 289 reports, articles and other documents announced in the NASA Scientific and Technical Information System during Nov. 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Improving practice : child protection as a systems problem

    Get PDF
    This paper argues for treating the task of improving the child protection services as a systems problem, and for adopting the system-focused approach to investigating errors that has been developed in areas of medicine and engineering where safety is a high priority. It outlines how this approach differs from the traditional way of examining errors and how it leads to different types of solutions. Traditional inquiries tend to stop once human error has been found whereas a systems approach treats human error as the starting point and examines the whole context in which the operator was working to see how this impacted on their ability to perform well. The article outlines some factors that seem particularly problematic and worthy of closer analysis in current child protection services. A better understanding of the factors that are adversely effecting practitioners’ level of performance offers the potential for identifying more effective solutions. These typically take the form of modifying the tasks so that they make more realistic and feasible demands on human cognitive and emotional abilities

    Quantifying Cognitive Efficiency of Display in Human-Machine Systems

    Get PDF
    As a side effect of fast growing informational technology, information overload becomes prevalent in the operation of many human-machine systems. Overwhelming information can degrade operational performance because it imposes large mental workload on human operators. One way to address this issue is to improve the cognitive efficiency of display. A cognitively efficient display should be more informative while demanding less mental resources so that an operator can process larger displayed information using their limited working memory and achieve better performance. In order to quantitatively evaluate this display property, a Cognitive Efficiency (CE) metric is formulated as the ratio of the measures of two dimensions: display informativeness and required mental resources (each dimension can be affected by display, human, and contextual factors). The first segment of the dissertation discusses the available measurement techniques to construct the CE metric and initially validates the CE metric with basic discrete displays. The second segment demonstrates that displays showing higher cognitive efficiency improve multitask performance. This part also identifies the version of the CE metric that is the most predictive of multitask performance. The last segment of the dissertation applies the CE metric in driving scenarios to evaluate novel speedometer displays; however, it finds that the most efficient display may not better enhance concurrent tracking performance in driving. Although the findings of dissertation show several limitations, they provide valuable insight into the complicated relationship among display, human cognition, and multitask performance in human-machine systems

    The impact of alerting designs on air traffic controller's eye movement patterns and situation awareness

    Get PDF
    This research investigated controller’ situation awareness by comparing COOPANS’s acoustic alerts with newly designed semantic alerts. The results demonstrate that ATCOs’ visual scan patterns had significant differences between acoustic and semantic designs. ATCOs established different eye movement patterns on fixations number, fixation duration and saccade velocity. Effective decision support systems require human-centred design with effective stimuli to direct ATCO’s attention to critical events. It is necessary to provide ATCOs with specific alerting information to reflect the nature of of the critical situation in order to minimize the side-effects of startle and inattentional deafness. Consequently, the design of a semantic alert can significantly reduce ATCOs’ response time, therefore providing valuable extra time in a time-limited situation to formulate and execute resolution strategies in critical air safety events. The findings of this research indicate that the context-specified design of semantic alerts could improve ATCO’s situational awareness and significantly reduce response time in the event of Short Term Conflict Alert activation which alerts to two aircraft having less than the required lateral or vertical separation
    corecore