205 research outputs found

    A New Approach to Automatic Saliency Identification in Images Based on Irregularity of Regions

    Get PDF
    This research introduces an image retrieval system which is, in different ways, inspired by the human vision system. The main problems with existing machine vision systems and image understanding are studied and identified, in order to design a system that relies on human image understanding. The main improvement of the developed system is that it uses the human attention principles in the process of image contents identification. Human attention shall be represented by saliency extraction algorithms, which extract the salient regions or in other words, the regions of interest. This work presents a new approach for the saliency identification which relies on the irregularity of the region. Irregularity is clearly defined and measuring tools developed. These measures are derived from the formality and variation of the region with respect to the surrounding regions. Both local and global saliency have been studied and appropriate algorithms were developed based on the local and global irregularity defined in this work. The need for suitable automatic clustering techniques motivate us to study the available clustering techniques and to development of a technique that is suitable for salient points clustering. Based on the fact that humans usually look at the surrounding region of the gaze point, an agglomerative clustering technique is developed utilising the principles of blobs extraction and intersection. Automatic thresholding was needed in different stages of the system development. Therefore, a Fuzzy thresholding technique was developed. Evaluation methods of saliency region extraction have been studied and analysed; subsequently we have developed evaluation techniques based on the extracted regions (or points) and compared them with the ground truth data. The proposed algorithms were tested against standard datasets and compared with the existing state-of-the-art algorithms. Both quantitative and qualitative benchmarking are presented in this thesis and a detailed discussion for the results has been included. The benchmarking showed promising results in different algorithms. The developed algorithms have been utilised in designing an integrated saliency-based image retrieval system which uses the salient regions to give a description for the scene. The system auto-labels the objects in the image by identifying the salient objects and gives labels based on the knowledge database contents. In addition, the system identifies the unimportant part of the image (background) to give a full description for the scene

    Approaches for Automated Object Recognition and Extraction from Images — a Study

    Get PDF
    Digital Image Interpretation is one of the most challenging and important tasks in many scientific and engineering applications. The two vital subtasks in image interpretation are recognition and extraction of object(s) of interest (OOI) from an image. When such tasks are manually performed, it calls for human experts, making them more time consuming, less cost effective and highly constrained. These negative factors led to the development of a computer system which performed an automatic analysis of visual information in order to bring in consistency, efficiency and accuracy in image analysis. This paper focuses on the survey of various existing automated approaches for recognition and extraction of OOI from an image in various scientific and engineering applications. In this work a categorization of these approaches is made based on the four principle factors (Input, Object, Feature, Attention) with which each approach is driven. Most of the approaches discussed in this paper are proved to work efficiently in real environments

    Automatic extraction of regions of interest from images based on visual attention models

    Get PDF
    This thesis presents a method for the extraction of regions of interest (ROIs) from images. By ROIs we mean the most prominent semantic objects in the images, of any size and located at any position in the image. The novel method is based on computational models of visual attention (VA), operates under a completely bottom-up and unsupervised way and does not present con-straints in the category of the input images. At the core of the architecture is de model VA proposed by Itti, Koch and Niebur and the one proposed by Stentiford. The first model takes into account color, intensity, and orientation features and provides coordinates corresponding to the points of attention (POAs) in the image. The second model considers color features and provides rough areas of attention (AOAs) in the image. In the proposed architecture, the POAs and AOAs are combined to establish the contours of the ROIs. Two implementations of this architecture are presented, namely 'first version' and 'improved version'. The first version mainly on traditional morphological operations and was applied in two novel region-based image retrieval systems. In the first one, images are clustered on the basis of the ROIs, instead of the global characteristics of the image. This provides a meaningful organization of the database images, since the output clusters tend to contain objects belonging to the same category. In the second system, we present a combination of the traditional global-based with region-based image retrieval under a multiple-example query scheme. In the improved version of the architecture, the main stages are a spatial coherence analysis between both VA models and a multiscale representation of the AOAs. Comparing to the first one, the improved version presents more versatility, mainly in terms of the size of the extracted ROIs. The improved version was directly evaluated for a wide variety of images from different publicly available databases, with ground truth in the form of bounding boxes and true object contours. The performance measures used were precision, recall, F1 and area overlap. Experimental results are of very high quality, particularly if one takes into account the bottom-up and unsupervised nature of the approach.UOL; CAPESEsta tese apresenta um método para a extração de regiões de interesse (ROIs) de imagens. No contexto deste trabalho, ROIs são definidas como os objetos semânticos que se destacam em uma imagem, podendo apresentar qualquer tamanho ou localização. O novo método baseia-se em modelos computacionais de atenção visual (VA), opera de forma completamente bottom-up, não supervisionada e não apresenta restrições com relação à categoria da imagem de entrada. Os elementos centrais da arquitetura são os modelos de VA propostos por Itti-Koch-Niebur e Stentiford. O modelo de Itti-Koch-Niebur considera as características de cor, intensidade e orientação da imagem e apresenta uma resposta na forma de coordenadas, correspondentes aos pontos de atenção (POAs) da imagem. O modelo Stentiford considera apenas as características de cor e apresenta a resposta na forma de áreas de atenção na imagem (AOAs). Na arquitetura proposta, a combinação de POAs e AOAs permite a obtenção dos contornos das ROIs. Duas implementações desta arquitetura, denominadas 'primeira versão' e 'versão melhorada' são apresentadas. A primeira versão utiliza principalmente operações tradicionais de morfologia matemática. Esta versão foi aplicada em dois sistemas de recuperação de imagens com base em regiões. No primeiro, as imagens são agrupadas de acordo com as ROIs, ao invés das características globais da imagem. O resultado são grupos de imagens mais significativos semanticamente, uma vez que o critério utilizado são os objetos da mesma categoria contidos nas imagens. No segundo sistema, á apresentada uma combinação da busca de imagens tradicional, baseada nas características globais da imagem, com a busca de imagens baseada em regiões. Ainda neste sistema, as buscas são especificadas através de mais de uma imagem exemplo. Na versão melhorada da arquitetura, os estágios principais são uma análise de coerência espacial entre as representações de ambos modelos de VA e uma representação multi-escala das AOAs. Se comparada à primeira versão, esta apresenta maior versatilidade, especialmente com relação aos tamanhos das ROIs presentes nas imagens. A versão melhorada foi avaliada diretamente, com uma ampla variedade de imagens diferentes bancos de imagens públicos, com padrões-ouro na forma de bounding boxes e de contornos reais dos objetos. As métricas utilizadas na avaliação foram presision, recall, F1 e area of overlap. Os resultados finais são excelentes, considerando-se a abordagem exclusivamente bottom-up e não-supervisionada do método

    Using contour information and segmentation for object registration, modeling and retrieval

    Get PDF
    This thesis considers different aspects of the utilization of contour information and syntactic and semantic image segmentation for object registration, modeling and retrieval in the context of content-based indexing and retrieval in large collections of images. Target applications include retrieval in collections of closed silhouettes, holistic w ord recognition in handwritten historical manuscripts and shape registration. Also, the thesis explores the feasibility of contour-based syntactic features for improving the correspondence of the output of bottom-up segmentation to semantic objects present in the scene and discusses the feasibility of different strategies for image analysis utilizing contour information, e.g. segmentation driven by visual features versus segmentation driven by shape models or semi-automatic in selected application scenarios. There are three contributions in this thesis. The first contribution considers structure analysis based on the shape and spatial configuration of image regions (socalled syntactic visual features) and their utilization for automatic image segmentation. The second contribution is the study of novel shape features, matching algorithms and similarity measures. Various applications of the proposed solutions are presented throughout the thesis providing the basis for the third contribution which is a discussion of the feasibility of different recognition strategies utilizing contour information. In each case, the performance and generality of the proposed approach has been analyzed based on extensive rigorous experimentation using as large as possible test collections

    Representation learning for street-view and aerial image retrieval

    Get PDF

    Modellgetriebene Entwicklung inhaltsbasierter Bildretrieval-Systeme auf der Basis von objektrelationalen Datenbank-Management-Systeme

    Get PDF
    In this thesis, the model-driven software development paradigm is employed in order to support the development of Content-based Image Retrieval Systems (CBIRS) for different application domains. Modeling techniques, based on an adaptable conceptual framework model, are proposed for deriving the components of a concrete CBIRS. Transformation techniques are defined to automatically implement the derived application specific models in an object-relational database management system. A set of criteria assuring the quality of the transformation are derived from the theory for preserving information capacity applied in database design.In dieser Dissertation wird das Paradigma des modellgetriebenen Softwareentwurfs für die Erstellung von inhaltsbasierten Bildretrieval-Systemen verwendet. Ein adaptierbares Frameworkmodell wird für die Ableitung des Modells eines konkreten Bildretrieval-Systems eingesetzt. Transformationstechniken für die automatische Generierung von Implementierungen in Objektorientierten Datenbank-Management-Systemen aus dem konzeptuellen Modell werden erarbeitet. Die aus der Theorie des Datenbankentwurfs bekannten Anforderungen zur Kapazitätserhaltung der Transformation werden verwendet, um Kriterien für die erforderliche Qualität der Transformation zu definieren
    corecore