476 research outputs found

    Neural Attentive Session-based Recommendation

    Full text link
    Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939, arXiv:1606.08117 by other author

    Deep Learning for Recommender Systems

    Get PDF
    The widespread adoption of the Internet has led to an explosion in the number of choices available to consumers. Users begin to expect personalized content in modern E-commerce, entertainment and social media platforms. Recommender Systems (RS) provide a critical solution to this problem by maintaining user engagement and satisfaction with personalized content. Traditional RS techniques are often linear limiting the expressivity required to model complex user-item interactions and require extensive handcrafted features from domain experts. Deep learning demonstrated significant breakthroughs in solving problems that have alluded the artificial intelligence community for many years advancing state-of-the-art results in domains such as computer vision and natural language processing. The recommender domain consists of heterogeneous and semantically rich data such as unstructured text (e.g. product descriptions), categorical attributes (e.g. genre of a movie), and user-item feedback (e.g. purchases). Deep learning can automatically capture the intricate structure of user preferences by encoding learned feature representations from high dimensional data. In this thesis, we explore five novel applications of deep learning-based techniques to address top-n recommendation. First, we propose Collaborative Memory Network, which unifies the strengths of the latent factor model and neighborhood-based methods inspired by Memory Networks to address collaborative filtering with implicit feedback. Second, we propose Neural Semantic Personalized Ranking, a novel probabilistic generative modeling approach to integrate deep neural network with pairwise ranking for the item cold-start problem. Third, we propose Attentive Contextual Denoising Autoencoder augmented with a context-driven attention mechanism to integrate arbitrary user and item attributes. Fourth, we propose a flexible encoder-decoder architecture called Neural Citation Network, embodying a powerful max time delay neural network encoder augmented with an attention mechanism and author networks to address context-aware citation recommendation. Finally, we propose a generic framework to perform conversational movie recommendations which leverages transfer learning to infer user preferences from natural language. Comprehensive experiments validate the effectiveness of all five proposed models against competitive baseline methods and demonstrate the successful adaptation of deep learning-based techniques to the recommendation domain

    Personalized Tag Recommendation via Denoising Auto-Encoder

    Get PDF

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    C-Rex: A Comprehensive System for Recommending In-Text Citations with Explanations

    Get PDF
    Finding suitable citations for scientific publications can be challenging and time-consuming. To this end, context-aware citation recommendation approaches that recommend publications as candidates for in-text citations have been developed. In this paper, we present C-Rex, a web-based demonstration system available at http://c-rex.org for context-aware citation recommendation based on the Neural Citation Network [5] and millions of publications from the Microsoft Academic Graph. Our system is one of the first online context-aware citation recommendation systems and the first to incorporate not only a deep learning recommendation approach, but also explanation components to help users better understand why papers were recommended. In our offline evaluation, our model performs similarly to the one presented in the original paper and can serve as a basic framework for further implementations. In our online evaluation, we found that the explanations of recommendations increased users’ satisfaction
    • …
    corecore