482 research outputs found

    Kaggle and Click-Through Rate Prediction

    Full text link
    Neller presented a look at Kaggle.com, an online Data Science and Machine Learning learning community, as a place to seek rapid, experiential peer education for most any Data Science topic. Using the specific challenge of Click-Through Rate Prediction (CTRP), he focused on lessons learned from relevant Kaggle competitions on how to perform CTRP

    Information Forensics and Security: A quarter-century-long journey

    Get PDF
    Information forensics and security (IFS) is an active R&D area whose goal is to ensure that people use devices, data, and intellectual properties for authorized purposes and to facilitate the gathering of solid evidence to hold perpetrators accountable. For over a quarter century, since the 1990s, the IFS research area has grown tremendously to address the societal needs of the digital information era. The IEEE Signal Processing Society (SPS) has emerged as an important hub and leader in this area, and this article celebrates some landmark technical contributions. In particular, we highlight the major technological advances by the research community in some selected focus areas in the field during the past 25 years and present future trends

    Cancellable Deep Learning Framework for EEG Biometrics

    Get PDF
    EEG-based biometric systems verify the identity of a user by comparing the probe to a reference EEG template of the claimed user enrolled in the system, or by classifying the probe against a user verification model stored in the system. These approaches are often referred to as template-based and model-based methods, respectively. Compared with template-based methods, model-based methods, especially those based on deep learning models, tend to provide enhanced performance and more flexible applications. However, there is no public research report on the security and cancellability issue for model-based approaches. This becomes a critical issue considering the growing popularity of deep learning in EEG biometric applications. In this study, we investigate the security issue of deep learning model-based EEG biometric systems, and demonstrate that model inversion attacks post a threat for such model-based systems. That is to say, an adversary can produce synthetic data based on the output and parameters of the user verification model to gain unauthorized access by the system. We propose a cancellable deep learning framework to defend against such attacks and protect system security. The framework utilizes a generative adversarial network to approximate a non-invertible transformation whose parameters can be changed to produce different data distributions. A user verification model is then trained using output generated from the generator model, while information about the transformation is discarded. The proposed framework is able to revoke compromised models to defend against hill climbing attacks and model inversion attacks. Evaluation results show that the proposed method, while being cancellable, achieves better verification performance than the template-based methods and state-of-the-art non-cancellable deep learning methods

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image
    corecore