4,016 research outputs found

    Text Summarization Techniques: A Brief Survey

    Get PDF
    In recent years, there has been a explosion in the amount of text data from a variety of sources. This volume of text is an invaluable source of information and knowledge which needs to be effectively summarized to be useful. In this review, the main approaches to automatic text summarization are described. We review the different processes for summarization and describe the effectiveness and shortcomings of the different methods.Comment: Some of references format have update

    Unsupervised linking of scientific articles to food systems taxonomies

    Get PDF
    In this thesis, a novel method for linking scientific articles to taxonomy terms in the domain of food systems research is presented. With food systems being in the center of 12 of the 17 United Nations Sustainable Development goals, there has been an ever-growing amount of scientific articles in this field. These articles are vital in understanding the complex nature of food systems and their inter-dependencies. However, finding relevant literature in this field is difficult for decision makers given the interdisciplinary nature of the field and that annotation and expert feedback is expensive. In the thesis, BERT-based models (SBERT, SPECTER and SciBERT) are adapted to the food systems area and fine-tuned for tasks such as text classification and text similarity, which represents a solution to the problem of finding relevant articles in the food systems domain. The proposed search system uses several taxonomies and data augmentation to achieve the results, which are visualized in a created website. Linking food systems research articles to taxonomy terms shows good accuracy, with models finetuned on domain data achieving better performance on classification task. The best fine-tuning strategy for SPECTER and SciBERT is the combination of domain adaptation and classification. Fine-tuning for text similarity for SBERT improves SBERT performance only slightly. The proposed method can be used in other domains than food systems

    A Novel Distributed Representation of News (DRNews) for Stock Market Predictions

    Full text link
    In this study, a novel Distributed Representation of News (DRNews) model is developed and applied in deep learning-based stock market predictions. With the merit of integrating contextual information and cross-documental knowledge, the DRNews model creates news vectors that describe both the semantic information and potential linkages among news events through an attributed news network. Two stock market prediction tasks, namely the short-term stock movement prediction and stock crises early warning, are implemented in the framework of the attention-based Long Short Term-Memory (LSTM) network. It is suggested that DRNews substantially enhances the results of both tasks comparing with five baselines of news embedding models. Further, the attention mechanism suggests that short-term stock trend and stock market crises both receive influences from daily news with the former demonstrates more critical responses on the information related to the stock market {\em per se}, whilst the latter draws more concerns on the banking sector and economic policies.Comment: 25 page

    What attracts vehicle consumers’ buying:A Saaty scale-based VIKOR (SSC-VIKOR) approach from after-sales textual perspective?

    Get PDF
    Purpose: The increasingly booming e-commerce development has stimulated vehicle consumers to express individual reviews through online forum. The purpose of this paper is to probe into the vehicle consumer consumption behavior and make recommendations for potential consumers from textual comments viewpoint. Design/methodology/approach: A big data analytic-based approach is designed to discover vehicle consumer consumption behavior from online perspective. To reduce subjectivity of expert-based approaches, a parallel Naïve Bayes approach is designed to analyze the sentiment analysis, and the Saaty scale-based (SSC) scoring rule is employed to obtain specific sentimental value of attribute class, contributing to the multi-grade sentiment classification. To achieve the intelligent recommendation for potential vehicle customers, a novel SSC-VIKOR approach is developed to prioritize vehicle brand candidates from a big data analytical viewpoint. Findings: The big data analytics argue that “cost-effectiveness” characteristic is the most important factor that vehicle consumers care, and the data mining results enable automakers to better understand consumer consumption behavior. Research limitations/implications: The case study illustrates the effectiveness of the integrated method, contributing to much more precise operations management on marketing strategy, quality improvement and intelligent recommendation. Originality/value: Researches of consumer consumption behavior are usually based on survey-based methods, and mostly previous studies about comments analysis focus on binary analysis. The hybrid SSC-VIKOR approach is developed to fill the gap from the big data perspective

    Sentiment Analysis of Persian Language: Review of Algorithms, Approaches and Datasets

    Full text link
    Sentiment analysis aims to extract people's emotions and opinion from their comments on the web. It widely used in businesses to detect sentiment in social data, gauge brand reputation, and understand customers. Most of articles in this area have concentrated on the English language whereas there are limited resources for Persian language. In this review paper, recent published articles between 2018 and 2022 in sentiment analysis in Persian Language have been collected and their methods, approach and dataset will be explained and analyzed. Almost all the methods used to solve sentiment analysis are machine learning and deep learning. The purpose of this paper is to examine 40 different approach sentiment analysis in the Persian Language, analysis datasets along with the accuracy of the algorithms applied to them and also review strengths and weaknesses of each. Among all the methods, transformers such as BERT and RNN Neural Networks such as LSTM and Bi-LSTM have achieved higher accuracy in the sentiment analysis. In addition to the methods and approaches, the datasets reviewed are listed between 2018 and 2022 and information about each dataset and its details are provided

    Neural Representations of Concepts and Texts for Biomedical Information Retrieval

    Get PDF
    Information retrieval (IR) methods are an indispensable tool in the current landscape of exponentially increasing textual data, especially on the Web. A typical IR task involves fetching and ranking a set of documents (from a large corpus) in terms of relevance to a user\u27s query, which is often expressed as a short phrase. IR methods are the backbone of modern search engines where additional system-level aspects including fault tolerance, scale, user interfaces, and session maintenance are also addressed. In addition to fetching documents, modern search systems may also identify snippets within the documents that are potentially most relevant to the input query. Furthermore, current systems may also maintain preprocessed structured knowledge derived from textual data as so called knowledge graphs, so certain types of queries that are posed as questions can be parsed as such; a response can be an output of one or more named entities instead of a ranked list of documents (e.g., what diseases are associated with EGFR mutations? ). This refined setup is often termed as question answering (QA) in the IR and natural language processing (NLP) communities. In biomedicine and healthcare, specialized corpora are often at play including research articles by scientists, clinical notes generated by healthcare professionals, consumer forums for specific conditions (e.g., cancer survivors network), and clinical trial protocols (e.g., www.clinicaltrials.gov). Biomedical IR is specialized given the types of queries and the variations in the texts are different from that of general Web documents. For example, scientific articles are more formal with longer sentences but clinical notes tend to have less grammatical conformity and are rife with abbreviations. There is also a mismatch between the vocabulary of consumers and the lingo of domain experts and professionals. Queries are also different and can range from simple phrases (e.g., COVID-19 symptoms ) to more complex implicitly fielded queries (e.g., chemotherapy regimens for stage IV lung cancer patients with ALK mutations ). Hence, developing methods for different configurations (corpus, query type, user type) needs more deliberate attention in biomedical IR. Representations of documents and queries are at the core of IR methods and retrieval methodology involves coming up with these representations and matching queries with documents based on them. Traditional IR systems follow the approach of keyword based indexing of documents (the so called inverted index) and matching query phrases against the document index. It is not difficult to see that this keyword based matching ignores the semantics of texts (synonymy at the lexeme level and entailment at phrase/clause/sentence levels) and this has lead to dimensionality reduction methods such as latent semantic indexing that generally have scale-related concerns; such methods also do not address similarity at the sentence level. Since the resurgence of neural network methods in NLP, the IR field has also moved to incorporate advances in neural networks into current IR methods. This dissertation presents four specific methodological efforts toward improving biomedical IR. Neural methods always begin with dense embeddings for words and concepts to overcome the limitations of one-hot encoding in traditional NLP/IR. In the first effort, we present a new neural pre-training approach to jointly learn word and concept embeddings for downstream use in applications. In the second study, we present a joint neural model for two essential subtasks of information extraction (IE): named entity recognition (NER) and entity normalization (EN). Our method detects biomedical concept phrases in texts and links them to the corresponding semantic types and entity codes. These first two studies provide essential tools to model textual representations as compositions of both surface forms (lexical units) and high level concepts with potential downstream use in QA. In the third effort, we present a document reranking model that can help surface documents that are likely to contain answers (e.g, factoids, lists) to a question in a QA task. The model is essentially a sentence matching neural network that learns the relevance of a candidate answer sentence to the given question parametrized with a bilinear map. In the fourth effort, we present another document reranking approach that is tailored for precision medicine use-cases. It combines neural query-document matching and faceted text summarization. The main distinction of this effort from previous efforts is to pivot from a query manipulation setup to transforming candidate documents into pseudo-queries via neural text summarization. Overall, our contributions constitute nontrivial advances in biomedical IR using neural representations of concepts and texts

    MatSciRE: Leveraging Pointer Networks to Automate Entity and Relation Extraction for Material Science Knowledge-base Construction

    Full text link
    Material science literature is a rich source of factual information about various categories of entities (like materials and compositions) and various relations between these entities, such as conductivity, voltage, etc. Automatically extracting this information to generate a material science knowledge base is a challenging task. In this paper, we propose MatSciRE (Material Science Relation Extractor), a Pointer Network-based encoder-decoder framework, to jointly extract entities and relations from material science articles as a triplet (entity1,relation,entity2entity1, relation, entity2). Specifically, we target the battery materials and identify five relations to work on - conductivity, coulombic efficiency, capacity, voltage, and energy. Our proposed approach achieved a much better F1-score (0.771) than a previous attempt using ChemDataExtractor (0.716). The overall graphical framework of MatSciRE is shown in Fig 1. The material information is extracted from material science literature in the form of entity-relation triplets using MatSciRE
    • …
    corecore