52,218 research outputs found

    Legal Risks of Adversarial Machine Learning Research

    Get PDF
    Adversarial machine learning is the systematic study of how motivated adversaries can compromise the confidentiality, integrity, and availability of machine learning (ML) systems through targeted or blanket attacks. The problem of attacking ML systems is so prevalent that CERT, the federally funded research and development center tasked with studying attacks, issued a broad vulnerability note on how most ML classifiers are vulnerable to adversarial manipulation. Google, IBM, Facebook, and Microsoft have committed to investing in securing machine learning systems. The US and EU are likewise putting security and safety of AI systems as a top priority.Now, research on adversarial machine learning is booming but it is not without risks. Studying or testing the security of any operational system may violate the Computer Fraud and Abuse Act (CFAA), the primary United States federal statute that creates liability for hacking. The CFAA’s broad scope, rigid requirements, and heavy penalties, critics argue, has a chilling effect on security research. Adversarial ML security research is likely no different. However, prior work on adversarial ML research and the CFAA is sparse and narrowly focused. In this article, we help address this gap in the literature. For legal practitioners, we describe the complex and confusing legal landscape of applying the CFAA to adversarial ML. For adversarial ML researchers, we describe the potential risks of conducting adversarial ML research. We also conclude with an analysis predicting how the US Supreme Court may resolve some present inconsistencies in the CFAA’s application in Van Buren v. United States, an appeal expected to be decided in 2021. We argue that the court is likely to adopt a narrow construction of the CFAA, and that this will actually lead to better adversarial ML security outcomes in the long term

    As firm as their foundations: can open-sourced foundation models be used to create adversarial examples for downstream tasks?

    Get PDF
    Foundation models pre-trained on web-scale vision-language data, such as CLIP, are widely used as cornerstones of powerful machine learning systems. While pre-training offers clear advantages for downstream learning, it also endows downstream models with shared adversarial vulnerabilities that can be easily identified through the open-sourced foundation model. In this work, we expose such vulnerabilities among CLIP’s downstream models and show that foundation models can serve as a basis for attacking their downstream systems. In particular, we propose a simple yet alarmingly effective adversarial attack strategy termed Patch Representation Misalignment (PRM). Solely based on open-sourced CLIP vision encoders, this method can produce highly effective adversaries that simultaneously fool more than 20 downstream models spanning 4 common vision-language tasks (semantic segmentation, object detection, image captioning and visual question-answering). Our findings highlight the concerning safety risks introduced by the extensive usage of publicly available foundational models in the development of downstream systems, calling for extra caution in these scenarios

    Reinforcement learning for efficient network penetration testing

    Get PDF
    Penetration testing (also known as pentesting or PT) is a common practice for actively assessing the defenses of a computer network by planning and executing all possible attacks to discover and exploit existing vulnerabilities. Current penetration testing methods are increasingly becoming non-standard, composite and resource-consuming despite the use of evolving tools. In this paper, we propose and evaluate an AI-based pentesting system which makes use of machine learning techniques, namely reinforcement learning (RL) to learn and reproduce average and complex pentesting activities. The proposed system is named Intelligent Automated Penetration Testing System (IAPTS) consisting of a module that integrates with industrial PT frameworks to enable them to capture information, learn from experience, and reproduce tests in future similar testing cases. IAPTS aims to save human resources while producing much-enhanced results in terms of time consumption, reliability and frequency of testing. IAPTS takes the approach of modeling PT environments and tasks as a partially observed Markov decision process (POMDP) problem which is solved by POMDP-solver. Although the scope of this paper is limited to network infrastructures PT planning and not the entire practice, the obtained results support the hypothesis that RL can enhance PT beyond the capabilities of any human PT expert in terms of time consumed, covered attacking vectors, accuracy and reliability of the outputs. In addition, this work tackles the complex problem of expertise capturing and re-use by allowing the IAPTS learning module to store and re-use PT policies in the same way that a human PT expert would learn but in a more efficient way
    • …
    corecore