171 research outputs found

    Security of Biometric Data Using Compressed Watermarking Technique

    Get PDF
    This paper has focus on biometric data security over open communication channel of biometric system. Here biometric data is encoded using cs theory and wavelet based embedding technique. The biometric data is convert into encoded sparse measurements which is generating using SVD, random seed and uniform quantization process. Then these encoded sparse measurements are embedding into the host color biometric data using wavelet based watermarking technique. This proposed technique has explored dimension reduction and computational security provided by compressive sensing. This proposed technique has also helps to compressed and to send secret data over noisy communication channel of biometric system against various attacks. The proposed technique provides more security compare to existed technique in literature due to CS theory. The novelty of proposed technique is that, watermark iris image information is compressed and encoded using CS theory and uniform quantization.DOI:http://dx.doi.org/10.11591/ijece.v4i5.664

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Comparison of DCT, SVD and BFOA based multimodal biometric watermarking systems

    Get PDF
    AbstractDigital image watermarking is a major domain for hiding the biometric information, in which the watermark data are made to be concealed inside a host image imposing imperceptible change in the picture. Due to the advance in digital image watermarking, the majority of research aims to make a reliable improvement in robustness to prevent the attack. The reversible invisible watermarking scheme is used for fingerprint and iris multimodal biometric system. A novel approach is used for fusing different biometric modalities. Individual unique modalities of fingerprint and iris biometric are extracted and fused using different fusion techniques. The performance of different fusion techniques is evaluated and the Discrete Wavelet Transform fusion method is identified as the best. Then the best fused biometric template is watermarked into a cover image. The various watermarking techniques such as the Discrete Cosine Transform (DCT), Singular Value Decomposition (SVD) and Bacterial Foraging Optimization Algorithm (BFOA) are implemented to the fused biometric feature image. Performance of watermarking systems is compared using different metrics. It is found that the watermarked images are found robust over different attacks and they are able to reverse the biometric template for Bacterial Foraging Optimization Algorithm (BFOA) watermarking technique

    Information Forensics and Security: A quarter-century-long journey

    Get PDF
    Information forensics and security (IFS) is an active R&D area whose goal is to ensure that people use devices, data, and intellectual properties for authorized purposes and to facilitate the gathering of solid evidence to hold perpetrators accountable. For over a quarter century, since the 1990s, the IFS research area has grown tremendously to address the societal needs of the digital information era. The IEEE Signal Processing Society (SPS) has emerged as an important hub and leader in this area, and this article celebrates some landmark technical contributions. In particular, we highlight the major technological advances by the research community in some selected focus areas in the field during the past 25 years and present future trends

    DCT Watermarking Approach for Security Enhancement of Multimodal System

    Get PDF

    Robust and Secure Watermarking Using Sparse Information of Watermark for Biometric Data Protection

    Get PDF
    Biometric based human authentication system is used for security purpose in many organizations in the present world. This biometric authentication system has several vulnerable points. Two of vulnerable points are protection of biometric templates at system database and protection of biometric templates at communication channel between two modules of biometric authentication systems. In this paper proposed a robust watermarking scheme using the sparse information of watermark biometric to secure vulnerable point like protection of biometric templates at the communication channel of biometric authentication systems. A compressive sensing theory procedure is used for generation of sparse information on watermark biometric data using detail wavelet coefficients. Then sparse information of watermark biometric data is embedded into DCT coefficients of host biometric data. This proposed scheme is robust to common signal processing and geometric attacks like JPEG compression, adding noise, filtering, and cropping, histogram equalization. This proposed scheme has more advantages and high quality measures compared to existing schemes in the literature

    Efficient software attack to multimodal biometric systems and its application to face and iris fusion

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters 36, (2014) DOI: 10.1016/j.patrec.2013.04.029In certain applications based on multimodal interaction it may be crucial to determine not only what the user is doing (commands), but who is doing it, in order to prevent fraudulent use of the system. The biometric technology, and particularly the multimodal biometric systems, represent a highly efficient automatic recognition solution for this type of applications. Although multimodal biometric systems have been traditionally regarded as more secure than unimodal systems, their vulnerabilities to spoofing attacks have been recently shown. New fusion techniques have been proposed and their performance thoroughly analysed in an attempt to increase the robustness of multimodal systems to these spoofing attacks. However, the vulnerabilities of multimodal approaches to software-based attacks still remain unexplored. In this work we present the first software attack against multimodal biometric systems. Its performance is tested against a multimodal system based on face and iris, showing the vulnerabilities of the system to this new type of threat. Score quantization is afterwards studied as a possible countermeasure, managing to cancel the effects of the proposed attacking methodology under certain scenarios.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica
    • 

    corecore