9 research outputs found

    Long-Lived Counters with Polylogarithmic Amortized Step Complexity

    Get PDF
    A shared-memory counter is a well-studied and widely-used concurrent object. It supports two operations: An Inc operation that increases its value by 1 and a Read operation that returns its current value. Jayanti, Tan and Toueg [Jayanti et al., 2000] proved a linear lower bound on the worst-case step complexity of obstruction-free implementations, from read and write operations, of a large class of shared objects that includes counters. The lower bound leaves open the question of finding counter implementations with sub-linear amortized step complexity. In this paper, we address this gap. We present the first wait-free n-process counter, implemented using only read and write operations, whose amortized operation step complexity is O(log^2 n) in all executions. This is the first non-blocking read/write counter algorithm that provides sub-linear amortized step complexity in executions of arbitrary length. Since a logarithmic lower bound on the amortized step complexity of obstruction-free counter implementations exists, our upper bound is optimal up to a logarithmic factor

    Communication-efficient randomized consensus

    Get PDF
    We consider the problem of consensus in the challenging classic model. In this model, the adversary is adaptive; it can choose which processors crash at any point during the course of the algorithm. Further, communication is via asynchronous message passing: there is no known upper bound on the time to send a message from one processor to another, and all messages and coin flips are seen by the adversary. We describe a new randomized consensus protocol with expected message complexity O(n2log2n) when fewer than n / 2 processes may fail by crashing. This is an almost-linear improvement over the best previously known protocol, and within logarithmic factors of a known Ω(n2) message lower bound. The protocol further ensures that no process sends more than O(nlog3n) messages in expectation, which is again within logarithmic factors of optimal. We also present a generalization of the algorithm to an arbitrary number of failures t, which uses expected O(nt+t2log2t) total messages. Our approach is to build a message-efficient, resilient mechanism for aggregating individual processor votes, implementing the message-passing equivalent of a weak shared coin. Roughly, in our protocol, a processor first announces its votes to small groups, then propagates them to increasingly larger groups as it generates more and more votes. To bound the number of messages that an individual process might have to send or receive, the protocol progressively increases the weight of generated votes. The main technical challenge is bounding the impact of votes that are still “in flight” (generated, but not fully propagated) on the final outcome of the shared coin, especially since such votes might have different weights. We achieve this by leveraging the structure of the algorithm, and a technical argument based on martingale concentration bounds. Overall, we show that it is possible to build an efficient message-passing implementation of a shared coin, and in the process (almost-optimally) solve the classic consensus problem in the asynchronous message-passing model

    Notes on Theory of Distributed Systems

    Full text link
    Notes for the Yale course CPSC 465/565 Theory of Distributed Systems

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing
    corecore