310 research outputs found

    Label-driven weakly-supervised learning for multimodal deformable image registration

    Get PDF
    Spatially aligning medical images from different modalities remains a challenging task, especially for intraoperative applications that require fast and robust algorithms. We propose a weakly-supervised, label-driven formulation for learning 3D voxel correspondence from higher-level label correspondence, thereby bypassing classical intensity-based image similarity measures. During training, a convolutional neural network is optimised by outputting a dense displacement field (DDF) that warps a set of available anatomical labels from the moving image to match their corresponding counterparts in the fixed image. These label pairs, including solid organs, ducts, vessels, point landmarks and other ad hoc structures, are only required at training time and can be spatially aligned by minimising a cross-entropy function of the warped moving label and the fixed label. During inference, the trained network takes a new image pair to predict an optimal DDF, resulting in a fully-automatic, label-free, real-time and deformable registration. For interventional applications where large global transformation prevails, we also propose a neural network architecture to jointly optimise the global- and local displacements. Experiment results are presented based on cross-validating registrations of 111 pairs of T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients with a total of over 4000 anatomical labels, yielding a median target registration error of 4.2 mm on landmark centroids and a median Dice of 0.88 on prostate glands.Comment: Accepted to ISBI 201

    Domain Adaptation for Novel Imaging Modalities with Application to Prostate MRI

    Get PDF
    The need for training data can impede the adoption of novel imaging modalities for deep learning-based medical image analysis. Domain adaptation can mitigate this problem by exploiting training samples from an existing, densely-annotated source domain within a novel, sparsely-annotated target domain, by bridging the differences between the two domains. In this thesis we present methods for adapting between diffusion-weighed (DW)-MRI data from multiparametric (mp)-MRI acquisitions and VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors) MRI, a richer DW-MRI technique involving an optimized acquisition protocol for cancer characterization. We also show that the proposed methods are general and their applicability extends beyond medical imaging. First, we propose a semi-supervised domain adaptation method for prostate lesion segmentation on VERDICT MRI. Our approach relies on stochastic generative modelling to translate across two heterogeneous domains at pixel-space and exploits the inherent uncertainty in the cross-domain mapping to generate multiple outputs conditioned on a single input. We further extend this approach to the unsupervised scenario where there is no labeled data for the target domain. We rely on stochastic generative modelling to translate across the two domains at pixel space and introduce two loss functions that promote semantic consistency. Finally we demonstrate that the proposed approaches extend beyond medical image analysis and focus on unsupervised domain adaptation for semantic segmentation of urban scenes. We show that relying on stochastic generative modelling allows us to train more accurate target networks and achieve state-of-the-art performance on two challenging semantic segmentation benchmarks

    Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net

    Get PDF
    Magnetic resonance imaging (MRI) provides detailed anatomical images of the prostate and its zones. It has a crucial role for many diagnostic applications. Automatic segmentation such as that of the prostate and prostate zones from MR images facilitates many diagnostic and therapeutic applications. However, the lack of a clear prostate boundary, prostate tissue heterogeneity, and the wide interindividual variety of prostate shapes make this a very challenging task. To address this problem, we propose a new neural network to automatically segment the prostate and its zones. We term this algorithm Dense U-net as it is inspired by the two existing state-of-the-art tools—DenseNet and U-net. We trained the algorithm on 141 patient datasets and tested it on 47 patient datasets using axial T2-weighted images in a four-fold cross-validation fashion. The networks were trained and tested on weakly and accurately annotated masks separately to test the hypothesis that the network can learn even when the labels are not accurate. The network successfully detects the prostate region and segments the gland and its zones. Compared with U-net, the second version of our algorithm, Dense-2 U-net, achieved an average Dice score for the whole prostate of 92.1± 0.8% vs. 90.7 ± 2%, for the central zone of 89.5±2% vs. 89.1±2.2 %, and for the peripheral zone of 78.1± 2.5% vs. 75±3%. Our initial results show Dense-2 U-net to be more accurate than state-of-the-art U-net for automatic segmentation of the prostate and prostate zones

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Prostate segmentation in MR images using ensemble deep convolutional neural networks

    Get PDF
    The automated segmentation of the prostate gland from MR images is increasingly used for clinical diagnosis. Since deep learning demonstrates superior performance in computer vision applications, we propose a coarse-to-fine segmentation strategy using ensemble deep convolutional neural networks (DCNNs) to address prostate segmentation in MR images. First, we use registration-based coarse segmentation on pre-processed prostate MR images to define the potential boundary region. We then train four DCNNs as voxel-based classifiers and classify the voxel in the potential region is a prostate voxel when at least three DCNNs made that decision. Finally, we use boundary refinement to eliminate the outliers and smooth the boundary. We evaluated our approach on the MICCAI PROMIS12 challenge dataset and our experimental results verify the effectiveness of the proposed algorithms
    • …
    corecore