9,967 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

    Full text link
    In this work, we consider the problem of decentralized multi-robot target tracking and obstacle avoidance in dynamic environments. Each robot executes a local motion planning algorithm which is based on model predictive control (MPC). The planner is designed as a quadratic program, subject to constraints on robot dynamics and obstacle avoidance. Repulsive potential field functions are employed to avoid obstacles. The novelty of our approach lies in embedding these non-linear potential field functions as constraints within a convex optimization framework. Our method convexifies non-convex constraints and dependencies, by replacing them as pre-computed external input forces in robot dynamics. The proposed algorithm additionally incorporates different methods to avoid field local minima problems associated with using potential field functions in planning. The motion planner does not enforce predefined trajectories or any formation geometry on the robots and is a comprehensive solution for cooperative obstacle avoidance in the context of multi-robot target tracking. We perform simulation studies in different environmental scenarios to showcase the convergence and efficacy of the proposed algorithm. Video of simulation studies: \url{https://youtu.be/umkdm82Tt0M

    Autonomous Demand Side Management Based on Energy Consumption Scheduling and Instantaneous Load Billing: An Aggregative Game Approach

    Full text link
    In this paper, we investigate a practical demand side management scenario where the selfish consumers compete to minimize their individual energy cost through scheduling their future energy consumption profiles. We propose an instantaneous load billing scheme to effectively convince the consumers to shift their peak-time consumption and to fairly charge the consumers for their energy consumption. For the considered DSM scenario, an aggregative game is first formulated to model the strategic behaviors of the selfish consumers. By resorting to the variational inequality theory, we analyze the conditions for the existence and uniqueness of the Nash equilibrium (NE) of the formulated game. Subsequently, for the scenario where there is a central unit calculating and sending the real-time aggregated load to all consumers, we develop a one timescale distributed iterative proximal-point algorithm with provable convergence to achieve the NE of the formulated game. Finally, considering the alternative situation where the central unit does not exist, but the consumers are connected and they would like to share their estimated information with others, we present a distributed agreement-based algorithm, by which the consumers can achieve the NE of the formulated game through exchanging information with their immediate neighbors.Comment: 11 pages, 7 figure

    Rate analysis of inexact dual first order methods: Application to distributed MPC for network systems

    Full text link
    In this paper we propose and analyze two dual methods based on inexact gradient information and averaging that generate approximate primal solutions for smooth convex optimization problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first order methods based on approximate gradients and we prove sublinear rate of convergence for these methods. In particular, we provide, for the first time, estimates on the primal feasibility violation and primal and dual suboptimality of the generated approximate primal and dual solutions. Moreover, we solve approximately the inner problems with a parallel coordinate descent algorithm and we show that it has linear convergence rate. In our analysis we rely on the Lipschitz property of the dual function and inexact dual gradients. Further, we apply these methods to distributed model predictive control for network systems. By tightening the complicating constraints we are also able to ensure the primal feasibility of the approximate solutions generated by the proposed algorithms. We obtain a distributed control strategy that has the following features: state and input constraints are satisfied, stability of the plant is guaranteed, whilst the number of iterations for the suboptimal solution can be precisely determined.Comment: 26 pages, 2 figure

    A Finite-Time Cutting Plane Algorithm for Distributed Mixed Integer Linear Programming

    Get PDF
    Many problems of interest for cyber-physical network systems can be formulated as Mixed Integer Linear Programs in which the constraints are distributed among the agents. In this paper we propose a distributed algorithm to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. In the proposed algorithm, at each communication round, agents solve locally a small LP, generate suitable cutting planes, namely intersection cuts and cost-based cuts, and communicate a fixed number of active constraints, i.e., a candidate optimal basis. We prove that, if the cost is integer, the algorithm converges to the lexicographically minimal optimal solution in a finite number of communication rounds. Finally, through numerical computations, we analyze the algorithm convergence as a function of the network size.Comment: 6 pages, 3 figure

    Distributed Control Methods for Integrating Renewable Generations and ICT Systems

    Get PDF
    With increased energy demand and decreased fossil fuels usages, the penetration of distributed generators (DGs) attracts more and more attention. Currently centralized control approaches can no longer meet real-time requirements for future power system. A proper decentralized control strategy needs to be proposed in order to enhance system voltage stability, reduce system power loss and increase operational security. This thesis has three key contributions: Firstly, a decentralized coordinated reactive power control strategy is proposed to tackle voltage fluctuation issues due to the uncertainty of output of DG. Case study shows results of coordinated control methods which can regulate the voltage level effectively whilst also enlarging the total reactive power capability to reduce the possibility of active power curtailment. Subsequently, the communication system time-delay is considered when analyzing the impact of voltage regulation. Secondly, a consensus distributed alternating direction multiplier method (ADMM) algorithm is improved to solve the optimal power ow (OPF) problem. Both synchronous and asynchronous algorithms are proposed to study the performance of convergence rate. Four different strategies are proposed to mitigate the impact of time-delay. Simulation results show that the optimization of reactive power allocation can minimize system power loss effectively and the proposed weighted autoregressive (AR) strategies can achieve an effective convergence result. Thirdly, a neighboring monitoring scheme based on the reputation rating is proposed to detect and mitigate the potential false data injection attack. The simulation results show that the predictive value can effectively replace the manipulated data. The convergence results based on the predictive value can be very close to the results of normal case without cyber attack
    corecore