680 research outputs found

    Holistic resource management in UAV-assisted wireless networks

    Get PDF
    Unmanned aerial vehicles (UAVs) are considered as a promising solution to assist terrestrial networks in future wireless networks (i.e., beyond fifth-generation (B5G) and sixth-generation (6G)). The convergence of various technologies requires future wireless networks to provide multiple functionalities, including communication, computing, control, and caching (4C), necessary for applications such as connected robotics and autonomous systems. The majority of existing works consider the developments in 4C individually, which limits the cooperation among 4C for potential gains. UAVs have been recently introduced to supplement mobile edge computing (MEC) in terrestrial networks to reduce network latency by providing mobile resources at the network edge in future wireless networks. However, compared to ground base stations (BSs), the limited resources at the network edge call for holistic management of the resources, which requires joint optimization. We provide a comprehensive review of holistic resource management in UAV-assisted wireless networks. Integrated resource management considers the challenges associated with aerial networks (such as three-dimensional (3D) placement of UAVs, trajectory planning, channel modelling, and backhaul connectivity) and terrestrial networks (such as limited bandwidth, power, and interference). We present architectures (source-UAV-destination and UAV-destination architecture) and 4C in UAV-assisted wireless networks. We then provide a detailed discussion on resource management by categorizing the optimization problems into individual or combinations of two (communication and computation) or three (communication, computation and control). Moreover, solution approaches and performance metrics are discussed and analyzed for different objectives and problem types. We formulate a mathematical framework for holistic resource management to minimize the linear combination of network latency and cost for user association while guaranteeing the offloading, computing, and caching constraints. Binary decision variables are used to allocate offloading and computing resources. Since the decision variables are binary and constraints are linear, the formulated problem is a binary linear programming problem. We propose a heuristic algorithm based on the interior point method by exploiting the optimization structure of the problem to get a sub-optimal solution with less complexity. Simulation results show the effectiveness of the proposed work when compared to the optimal results obtained using branch and bound. Finally, we discuss insight into the potential future research areas to address the challenges of holistic resource management in UAV-assisted wireless networks

    Intelligent and Secure Underwater Acoustic Communication Networks

    Get PDF
    Underwater acoustic (UWA) communication networks are promising techniques for medium- to long-range wireless information transfer in aquatic applications. The harsh and dynamic water environment poses grand challenges to the design of UWA networks. This dissertation leverages the advances in machine learning and signal processing to develop intelligent and secure UWA communication networks. Three research topics are studied: 1) reinforcement learning (RL)-based adaptive transmission in UWA channels; 2) reinforcement learning-based adaptive trajectory planning for autonomous underwater vehicles (AUVs) in under-ice environments; 3) signal alignment to secure underwater coordinated multipoint (CoMP) transmissions. First, a RL-based algorithm is developed for adaptive transmission in long-term operating UWA point-to-point communication systems. The UWA channel dynamics are learned and exploited to trade off energy consumption with information delivery latency. The adaptive transmission problem is formulated as a partially observable Markov decision process (POMDP) which is solved by a Monte Carlo sampling-based approach, and an expectation-maximization-type of algorithm is developed to recursively estimate the channel model parameters. The experimental data processing reveals that the proposed algorithm achieves a good balance between energy efficiency and information delivery latency. Secondly, an online learning-based algorithm is developed for adaptive trajectory planning of multiple AUVs in under-ice environments to reconstruct a water parameter field of interest. The field knowledge is learned online to guide the trajectories of AUVs for collection of informative water parameter samples in the near future. The trajectory planning problem is formulated as a Markov decision process (MDP) which is solved by an actor-critic algorithm, where the field knowledge is estimated online using the Gaussian process regression. The simulation results show that the proposed algorithm achieves the performance close to a benchmark method that assumes perfect field knowledge. Thirdly, the dissertation presents a signal alignment method to secure underwater CoMP transmissions of geographically distributed antenna elements (DAEs) against eavesdropping. Exploiting the low sound speed in water and the spatial diversity of DAEs, the signal alignment method is developed such that useful signals will collide at the eavesdropper while stay collision-free at the legitimate user. The signal alignment mechanism is formulated as a mixed integer and nonlinear optimization problem which is solved through a combination of the simulated annealing method and the linear programming. Taking the orthogonal frequency-division multiplexing (OFDM) as the modulation technique, simulation and emulated experimental results demonstrate that the proposed method significantly degrades the eavesdropper\u27s interception capability

    UAVs for Enhanced Communication and Computation

    Get PDF

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    New paradigms of distributed AI for improving 5G-based network systems performance

    Get PDF
    With the advent of 5G technology, there is an increasing need for efficient and effective machine learning techniques to support a wide range of applications, from smart cities to autonomous vehicles. The research question is whether distributed machine learning can provide a solution to the challenges of large-scale data processing, resource allocation, and privacy concerns in 5G networks. The thesis examines two main approaches to distributed machine learning: split learning and federated learning. Split learning enables the separation of model training and data storage between multiple devices, while federated learning allows for the training of a global model using decentralized data sources. The thesis investigates the performance of these approaches in terms of accuracy, communication overhead, and privacy preservation. The findings suggest that distributed machine learning can provide a viable solution to the challenges of 5G networks, with split learning and federated learning techniques showing promising results for spectral efficiency, resource allocation, and privacy preservation. The thesis concludes with a discussion of future research directions and potential applications of distributed machine learning in 5G networks. In this thesis, we investigate four case studies of both 5G network systems and LTE and Wifi (legacy parts). In chapter3, we implement an asynchronous federated learning model to predict the RSSI in robot localization indoor and outdoor environments. The proposed framework provides a good performance in terms of convergence, accuracy, and overhead reduction. In chapter4, we transfer the deployment of the asynchronous federated learning framework from the Wifi use case to a part of 5G networks (Network slicing), where we use the framework to predict the slice type for rapid and automated intelligent resource allocation. [...

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects
    corecore