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ABSTRACT

With the advent of 5G technology, there is an increasing need for efficient and effective

machine learning techniques to support a wide range of applications, from smart cities to

autonomous vehicles. The research question is whether distributed machine learning can

provide a solution to the challenges of large-scale data processing, resource allocation, and

privacy concerns in 5G networks. The thesis examines two main approaches to distributed

machine learning: split learning and federated learning. Split learning enables the separa-

tion of model training and data storage between multiple devices, while federated learning

allows for the training of a global model using decentralized data sources. The thesis inves-

tigates the performance of these approaches in terms of accuracy, communication overhead,

and privacy preservation. The findings suggest that distributed machine learning can pro-

vide a viable solution to the challenges of 5G networks, with split learning and federated

learning techniques showing promising results for spectral efficiency, resource allocation, and

privacy preservation. The thesis concludes with a discussion of future research directions

and potential applications of distributed machine learning in 5G networks.

In this thesis, we investigate four case studies of both 5G network systems and LTE

and Wifi (legacy parts). In chapter3, we implement an asynchronous federated learning

model to predict the RSSI in robot localization indoor and outdoor environments. The

proposed framework provides a good performance in terms of convergence, accuracy, and

overhead reduction. In chapter4, we transfer the deployment of the asynchronous federated

learning framework from the Wifi use case to a part of 5G networks (Network slicing),

where we use the framework to predict the slice type for rapid and automated intelligent

resource allocation. The results demonstrated the same findings in chapter3. In chapter5, we

introduce a novel split learning framework to fill the gap of some drawbacks of the federated

learning framework. We use it to predict mmWave 5G throughput in a traffic analysis of

wireless networks. The results demonstrate better performance compared to the vanilla

split learning approach. Finally, In chapter6, we set a comparison of performance between

the two proposed frameworks. We deploy the frameworks to predict the channel quality

indicator in terms of SNR. The results yield that the proposed split learning approach

performs better than the federated one.

Overall, We propose two methodologies; PC-SSL peer-coordinated sequential slit learn-

ing and AFD Asynchronous federated learning. The proposed PC-SSL minimizes the data

transmitted between the client BSs and a server by processing data locally on the clients.

This results in low latency and computation overhead in making handoff decisions and other

network operations. At the same time, the Federated learning model permits a reasonably

accurate decision for the resource allocation for different 5G users without violating their

privacy or introducing additional load to the network. Experimental results demonstrate

the efficiency of the asynchronous weight updating federated learning in contrast with the
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conventional FedAvg (Federated averaging) strategy and the traditional centralized learn-

ing model. In particular, our proposed technique achieves network overhead reduction with

a consistent and significantly high prediction accuracy that validates its low latency and

efficiency advantages.
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Chapter 1

Introduction

5G networks offer a substantial improvement in wireless communication, providing higher

speeds and more stable connectivity than previous generations. As a result, they have

emerged as a main driver of improved communication performance, driving more work-

loads to the edge and supporting low-latency data-driven use cases and applications [1].

5G networks, with rates of up to 10 Gbps, enable hitherto hard-to-deploy applications and

areas in smart communications, such as remote surgery, real-time virtual reality, and smart

city infrastructure. High-speed and low-latency connectivity provided by 5G networks can

transform various industries, including healthcare, transportation, and more. The advent

of 5G technology has marked a significant milestone in communication network evolution,

unlocking unprecedented opportunities for innovation. With unparalleled speed, minimal

latency, and the ability to connect massive numbers of devices, 5G can revolutionize indus-

tries by enabling autonomous vehicles, facilitating the creation of smart cities, and powering

the growth of the Internet of Things (IoT).

Aside from enabling new applications, 5G networks have been designed to support mas-

sive machine-type communication (mMTC) and ultra-reliable low-latency communication

(URLLC), both of which are critical to the advancement of emerging technologies like

autonomous vehicles and industrial automation. The mMTC functionality enables 5G net-

works to support a large number of connected devices, including IoT devices and sensors

while consuming little energy and transmitting data at high speeds. This capacity is critical

for the development of smart cities and other applications that gather and send data across

a huge network of interconnected devices. Conversely, URLLC alludes to the capacity of 5G

networks to furnish ultra-dependable, low-latency connectivity for applications necessitat-

ing immediate response times, such as autonomous vehicles and industrial automation [2].

By utilizing 5G networks, these applications can be operated in real-time from remote

locations, hence fostering greater flexibility and efficiency in transportation systems and

industrial processes.
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Reducing operational expenses and achieving returns on network investments are the

primary objectives of service providers who leverage AI. The growing intricacy of multi-

layer and multi-band combined 5G networks has led to a surge in demand for ML-powered

automation to help service providers maintain or decrease their operational costs [3].

Another important aspect of 5G networks is network slicing, a technique for creating

virtual network slices with specific QoS requirements for different types of applications.

Network slicing enables the efficient allocation of network resources, improves network per-

formance, and enhances user experience (Zhang et al., 2021) [4]. With network slicing,

service providers can offer tailored network services to different customers based on their

specific requirements, such as low latency or high throughput. Network slicing also al-

lows for flexible and dynamic allocation of network resources, essential for efficiently using

network resources and supporting diverse applications [5].

In 5G networks, network slicing constitutes a critical technology that enables the creation

of several virtual network slices across a singular physical infrastructure. Each slice is

individually optimized for a specific application, granting customized connectivity with

specific quality of service (QoS) requirements. The notion of network slicing was first

introduced in 5G networks as a solution to address various use cases with varying QoS

requirements, such as low latency for autonomous vehicles or high bandwidth for video

streaming services. Network slicing facilitates the efficient allocation of network resources

and enhances overall network performance by adapting to changes in network traffic and

user demands in real-time. Network slicing is anticipated to be essential in developing 5G

networks and implementing novel applications and services.

5G networks facilitate the integration of diverse connected nodes, including smart de-

vices and sensors, to cater to a broad spectrum of applications. In order to ensure the seam-

less operation of low-latency applications and maintain the confidentiality of data, there has

been a significant shift in mobile computing and 5G from centralized mobile cloud comput-

ing to mobile edge computing (MEC). The requirement to extract meaningful insights from

vast amounts of decentralized data while maintaining data privacy has prompted the emer-

gence of distributed machine learning on mobile edge. In recent years, considerable efforts

have been invested in academia and industry to advance these technologies [3].

While 5G systems seek to provide high throughput and ultra-low latency communication

services to improve users’ QoE [6]. Enabling intelligent capabilities in 5G systems using

deep learning is a costly affair due to the need for powerful hardware and software to

support complex training and inference. However, there are several emerging tools that

make deep learning feasible in mobile networks. These include advanced parallel computing,

distributed machine learning systems, specialized deep learning libraries, fast optimization

algorithms, and fog computing.

For the integration of machine learning in 5G network and MEC applications, there are
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two main approaches to consider: (i) decomposing the model to train or make inferences

with its individual components, or (ii) scaling and parallelizing the training process to

update the model at distributed locations linked to data containers. This emphasizes the

significance of utilizing distributed machine learning methods [7].

Split learning has proven to be especially useful in applications such as throughput

prediction, which is critical in optimizing network resource allocation and improving user

Quality of Service (QoS). Throughput prediction involves estimating the data rate that a

user can achieve at a specific time and location. The network can then dynamically allocate

resources to provide optimal QoS while minimizing waste. Real-time accurate throughput

prediction is crucial for supporting high-bandwidth applications like video streaming and

online gaming that require consistent and reliable network performance. This privacy-

preserving machine learning technique is effective in various network scenarios, such as edge

computing, 5G networks, and Internet of Things (IoT) systems. Research in the literature

on split learning for IoT networks found it to be superior to traditional federated learning

methods while maintaining user privacy. Another study on split learning for 5G networks

revealed that it improved the prediction accuracy of mmWave throughput while reducing

computation costs compared to traditional machine learning approaches. The success of

split learning in these network scenarios demonstrates its potential as a practical solution

for privacy-preserving machine learning in networks.

Since we can conclude that 5G networks and their legacy systems are highly dynamic,

the need for performance improvement in terms of spectral efficiency (.e.g., throughput,

delay, signal strength, bandwidth). While a ton of research is done on machine learning

deployment in 5G network systems, there is still a research gap in distributed learning

considerations. Our main two objectives are 1) Improve the performance of 5G network-

based systems by designing intelligent solutions built above the distributed machine learning

framework to improve the spectral efficiency of the network in different topologies, partic-

ularly the traffic analysis scenarios. 2) Preserve the privacy of the network users while

fulfilling the first objective. Through our work, we assume that all of the clients have sim-

ilar resources or computational powers, and the complexity of the deep learning model is

optimized towards the least participating client resources. The latter problem is discussed in

chapter5, where the split learning model is designed with the motivation of this limitation.

1.0.1 Contributions

Our main contributions are:

• An asynchronous federated learning framework used in RSSI (Radio signal strength

indicator) prediction, 5G network slicing, and Channel quality prediction use cases.
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• A novel Peer coordinated sequential split learning framework used in mmWave 5G

throughput prediction and Channel quality prediction use cases.
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Chapter 2

Background

2.1 Preliminaries: 5G Network Fundementals . . . . . . . . . . . . . . . . . . . 5

2.1.1 What Is New In 5G? . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mobile Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 5G Network Spectral Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Preliminaries: 5G Network Slicing . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Preliminaries: 5G intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Fundamentals of Deep Learning Models . . . . . . . . . . . . . . . . 10

2.5.1.1 Dense Neural Networks . . . . . . . . . . . . . . . . . . . . 10

2.5.1.2 Convolutional Neural Network . . . . . . . . . . . . . . . . 12

2.5.2 Distributed Deep learning approaches on edge . . . . . . . . . . . . . 14

2.5.2.1 Federated Learning (FL) architecture . . . . . . . . . . . . 14

2.5.2.2 Split Learning architecture . . . . . . . . . . . . . . . . . . 15

2.1 Preliminaries: 5G Network Fundementals

2.1.1 What Is New In 5G?

Radio waves have a limit to the amount of information they can carry based on the frequency

bands they operate on. When this limit is reached, the allocation may become Pareto-

optimal, which can negatively impact other users in the network (e.g., in 4G networks).

However, 5G networks have increased bandwidth, which allows for a greater number of

user devices and faster data transmission speeds, thereby improving network capacity. In

addition to providing more capacity for existing tasks, 5G also opens up opportunities

for innovative use cases, such as securely streaming high-quality video from a connected
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ambulance to a hospital. This technology enables a range of new types of smart devices and

applications for digitization in various industries. To scale these applications, AI solutions

are expected to play a critical role in managing the coordination of devices, radio, and

compute resources.

The 5G network is engineered to link devices beyond just smartphones, with multi-

ple types of connections tailored to the requirements of specific devices and applications.

These connections include an energy-conserving option, ideal for low-power devices like

smartwatches, as well as a highly stable and speedy option for industrial robots. Further-

more, network slicing can be implemented with 5G, allowing for the creation of distinct

network slices tailored for a particular use case. Each slice can optimize its resources to

meet the requirements of a specific service without unnecessary waste.

The 5G network offers innovative technologies that differentiate it from previous gen-

erations, with a particular focus on Mobile Edge Computing (MEC). One such technology

is Software-Defined Networking (SDN), which simplifies network management and service

deployment by dividing the control and data planes. The control plane is responsible for

policies on the cloud, while the data plane evaluates whether to forward traffic based on

the control plane policies [8]. Additionally, Network Virtualization Function (NVF) enables

the execution of network functions on virtualization software located on servers, making it

more flexible, automated, and scalable and avoiding overburdening the cloud with network

functions [9]. Furthermore, massive Multiple-Input Multiple-Output (MIMO) enhances the

signal-to-noise ratio without increasing transmission power, allowing for increased network

capacity through the offloading of tasks to an edge server from a UE [10].

The next-generation wireless access technology, 5G NR [11], is an important enabler

of MEC, which allows connectivity from different networks and devices, resulting in better

scalability and lower latency. 5G also enables device-to-device communication through ad-

hoc links, enabling communication between UE in close proximity without the need for the

signal to go through the base station, which can help in reducing traffic congestion and

improving network throughput [12].

To make the most of these new features of 5G, effective coordination and optimization of

data transmission and compute distribution across the network are essential. Distributed AI

offers a promising solution that utilizes both centralized and distributed resources, preserves

data privacy, and optimizes network performance while addressing the added complexity

associated with a range of use cases and applications.

2.2 Mobile Edge Computing

MEC plays a crucial role in implementing 5G networks and IoT and is widely regarded

as the most effective way to deliver computation and communication resources to mobile



7

devices [13]. The concept behind MEC is to run applications and processing tasks closer

to the end user, at the edge of the network. MEC technology offers a flexible and agile

approach to deploying applications while providing a distributed computing environment for

hosting applications and services. The ability to store and process content in close proximity

to cellular subscribers is especially important for real-time applications that require low

latency.

Moreover, real-time radio access network information can be shared with applications,

opening up new possibilities for future 5G applications. The combination of edge computing

and 5G presents significant opportunities across various industries. It enables computation

and data storage to be located near data sources, facilitating better data control, lower

costs, quicker insights and actions, and uninterrupted operations. It is projected that by

2025, 75% of enterprise data will be processed at the edge, a significant increase from the

current 10% [14].

However, The integration of MEC and 5G technology introduces various challenges. One

such challenge is handling delay-sensitive data generated by UEs in real-time use cases. Edge

servers can be utilized as intermediaries to efficiently transmit data and prevent significant

delays from directly accessing the cloud. Accurately predicting network demand is another

challenge, especially in real-time scenarios where the split between cloud offloading and

local processing on edge cloud varies. Resource management is also challenging, as edge

nodes lack the full computing capabilities of the cloud, and optimally allocating resources

based on constantly changing application requirements is complex. To improve QoE and

QoS, service providers must consider the different constraints and demands of users and use

cases in different geographical locations. Device and communication heterogeneity is an-

other challenge that requires complex, distributed systems to cater to the different entities.

Despite reduced communication between UE and the cloud, privacy and security remain

significant challenges due to the dynamic network requirements and the increasing number

of heterogeneous devices. Comprehensive security management systems are necessary but

may introduce overhead. These challenges may hinder the adoption of MEC in 5G and fu-

ture networks. However, they provide a foundation for designing systems that can perform

optimally by addressing the different requirements and constraints of various use cases [15].

2.3 5G Network Spectral Efficiency

5G spectral efficiency, also known as spectral efficiency or bandwidth efficiency, refers to

the ability of 5G networks to transmit more data over a given amount of radio spectrum

compared and is equivalent to the maximum number of data bits that can be transmitted to

a specified number of users per second while maintaining a good quality of service. This is

achieved through a combination of several technological advancements, including advanced
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antenna systems, higher-order modulation techniques, and more efficient coding schemes.

The spectral efficiency of 5G networks depends on several key parameters and compo-

nents, including:

• Modulation: Modulation is the process through which information in a wireless trans-

mission is encoded. All data sent through a wireless transmission is modulated in some

fashion. A wider bandwidth is achievable with more complex modulation. One of the

often employed modulation methodologies in 4G and 5G cellular systems is QAM, or

Quadrature Amplitude Modulation, a high-bandwidth modulation that encodes data

by adjusting the amplitude and phase of the signal. 5G networks use higher-order

modulation schemes, such as 256-QAM, which allow more bits to be transmitted,

increasing the amount of data that can be transmitted over a given spectrum [16].

• Coding: 5G networks use more efficient coding schemes, such as low-density parity-

check (LDPC) codes, which enable more reliable transmission of data over the air-

waves, even in challenging wireless environments.

• Multiple antennas: 5G networks use advanced antenna systems, such as massive

multiple-input, multiple-output (MIMO), which enable more efficient use of spectrum

by allowing multiple data streams to be transmitted and received simultaneously using

employing hundreds or even thousands of antennas connected to a base station [17].

• Spectrum allocation: 5G networks use spectrum more efficiently by allocating it dy-

namically to different users and applications based on their individual needs, using

techniques such as carrier aggregation and dynamic spectrum sharing.

• Network architecture: 5G networks are designed with a more distributed and flexible

architecture, with small cells and network function virtualization (NFV), enabling

more efficient spectrum use by reducing interference and optimizing network resources.

2.4 Preliminaries: 5G Network Slicing

Before delving into the details of 5G network slicing, we will introduce some key enabling

technologies that the network slicing concept is built on.

• Virtualization: The first technology is virtualization, which enables slice creation

of physical resources such as servers or network devices. Virtualization is an essential

technology that allows multiple applications or services to run on the same physical

infrastructure, improving resource utilization and reducing costs.

• SDN: The second technology is software-defined networking (SDN). Software-defined

networking introduces network programmability by separating the control plane from
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the data plane, and logically centralized network intelligence, which can be leveraged

to create new network services by dynamically chaining various functions based on

user requirements and network conditions [18] which enables more flexible and efficient

network management. SDN allows a shared infrastructure to support multiple client

instances efficiently. This is achieved by providing a complete abstract set of resources

isolated by the SDN controller’s virtualization, making it a natural fit for support-

ing network slicing. Using programmable interfaces and corresponding client-server

contexts, the SDN controller can dynamically orchestrate resources for network slices

belonging to the same context. Additionally, the recursive nature of SDN architecture

allows for end-to-end federated or recursive network slices across different domains.

These technologies underpin network slicing, which enables the construction of virtual-

ized, software-defined, and functionally optimized network segments. Network slices can be

tailored to match the demands of specific applications or users, resulting in differentiated

services and improved network performance overall.

To create a network slice, a network operator must define a set of characteristics that

describe the slice, such as the quality of service (QoS) requirements, security policies, and

network functions required. The operator can then allocate network resources such as

bandwidth, processing power, and storage to the slice based on the characteristics defined.

Once a network slice has been created, it can be managed separately from other network

slices, allowing different policies and configurations to be applied. Network slices can be

created dynamically in response to changing network conditions or user demands and scaled

up or down as needed.

Network slicing provides a more reliable and consistent user experience for users, as

network resources are optimized for specific applications or services. It also provides greater

flexibility, allowing users to choose the services and applications that best meet their needs.

However, network slicing also presents some challenges, particularly related to security

and privacy. Because network slices are functionally separated, there is a risk that malicious

actors could exploit vulnerabilities in one slice to gain access to other slices or the underlying

network infrastructure. Network operators must therefore ensure that appropriate security

measures are in place to protect against these risks.

Another challenge is the complexity of managing multiple network slices. Network

operators must have the tools and processes in place to manage and monitor multiple

slices, ensuring that they are performing as expected and that resources are being allocated

appropriately.

5G network slicing enables more efficient and flexible use of network resources. While it

presents some challenges, it has the potential to transform the way that mobile networks are

managed and operated, providing greater flexibility, reliability, and differentiated services

for both operators and users.
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2.5 Preliminaries: 5G intelligence

This sub-section depicts the fundamental ideas of diverse AI-enabled methods exploited in

the remaining chapters of the thesis for tackling challenges in different smart health use-

cases. Firstly, we discuss the traditional machine learning-based techniques, and then we

shed light on the neural network and deep learning techniques adopted in the thesis.

2.5.1 Fundamentals of Deep Learning Models

This sub-section illustrates some fundamental ideas behind Neural Networks (NN) and Deep

Learning (DL). NN is a sub-category of machine learning, and the deep learning sub-field

mainly originated from the NN as well. Neural networks and deep learning methods can

be categorized into three categories such as supervised, semi-supervised, and unsupervised

learning. Additionally, Reinforcement Learning (RL) is also considered another type of

DL/NN approach. The NN-based deep learning approach is also called universal learning

because we can apply it to almost any application domain [19]. The DL can be considered

as a viable approach when we have a lot of data in hand to analyze. Therefore, these

are appropriate techniques to solve diverse problems in the computing plane of IoT that

generates a tremendous amount of data continuously. Among various available variations

of the DL algorithms, in the following chapters, we have mainly utilized diverse custom

Artificial Neural Networks (ANNs), and Convolutional Neural Networks (CNNs) in order

to propose solutions to the selected problems in the mentioned 5G network use cases.

2.5.1.1 Dense Neural Networks

Artificial Neural Networks (ANN) are mathematical models that can be used to solve a

variety of problems, such as pattern recognition, autonomous control, and smart healthcare,

by leveraging a large amount of historical data to learn and improve over time. These

models have been widely adopted by various organizations to tackle problems across different

domains, with the economic sector being a key application area falling under the domain

of operations research [20]. Like the biological neural network, the fundamental building

block of an ANN is the artificial neuron or node, making it comparable to the biological

nervous system in terms of its function as an information processing model. In summary,

ANNs are a powerful tool for solving complex problems and can be thought of as a digital

model of the human brain’s information processing capabilities.

Dense neural networks, also known as fully connected neural networks, are a type of

artificial neural network that consists of multiple layers of interconnected neurons. In a

dense neural network, each neuron in a given layer is connected to every neuron in the

previous layer, and every neuron in the subsequent layer is connected to every neuron in
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the current layer. This creates a dense or fully connected structure that allows for complex,

nonlinear transformations of input data.

A dense neural network can be mathematically represented as a function that maps an

input vector x to an output vector y. Let X be a matrix of size n x m, where n is the

number of samples and m is the number of input features, and let Y be a matrix of size n

x k, where k is the number of output classes. The output of a dense neural network can be

computed as follows:

Y = f (W2 · f (W1 ·X + b1) + b2) (1)

where W1 and W2 are weight matrices of size m x p and p x k, respectively, b1 and b2

are bias vectors of size p and k, respectively, and f is an activation function that introduces

nonlinearity into the network.

Another representation of the DNN assuming the output of the dense neural network is

represented as a vector y of sizem, and the weights and biases of the network are represented

as matrices W (1),W (2), . . . ,W (L) and vectors b(1), b(2), . . . , b(L), where L is the number of

layers in the network, the equation for the output can be written as:

y = σ
(
W (L)σ

(
W (L−1)σ

(
. . . σ

(
W (2)σ

(
W (1)x+ b(1)

)
+ b(2)

)
. . .

)
+ b(L−1)

)
+ b(L)

)
(2)

where x is the input vector of size n and σ is the activation function applied element-wise

to the output of each layer.

The first layer of a dense neural network is the input layer, which receives the input data

and passes it through to the first hidden layer. The number of neurons in the input layer

is equal to the number of input features, while the number of neurons in the subsequent

hidden layers can be adjusted based on the complexity of the problem being solved. The

final layer of the network is the output layer, which produces the network’s prediction for

a given input.

The weights and biases in a dense neural network are learned through a process called

backpropagation, which involves computing the gradient of a loss function with respect to

the network’s parameters and updating them accordingly. The loss function measures the

difference between the network’s output and the true labels, and the goal of training is to

minimize this difference.

Fig. 2.1 illustrates a DNN model’s high-level architecture. Dense neural networks

(DNNs) are made up of three category layers: input, hidden, and output. The input layer

usually has up to n nodes, where n denotes the number of data features. Between the input

and output layers, more hidden layers can be inserted. For classification tasks, the output

layer has k nodes, where k is the number of classes and typically just one node for regression

or prediction tasks unless it’s a multi-regression task, then the number of the nodes is the

number of the predicted variables. The number of nodes in the hidden layers is random and



12

Figure 2.1: Architecture of a typical DNN model.

unrelated. The inputs are first weighted by the node’s connection weights and then summed

to determine a node’s output. A bias component is added to this total, and the result is sent

via an activation function, which brings non-linearity into the model. Various optimizers

based on gradient descent are used to learn model parameters or weights. Backpropagation

is used to change the weights until the learning phase is complete.

2.5.1.2 Convolutional Neural Network

Recently, one of the most popular categories of deep neural networks is the Convolutional

Neural Network (CNN). CNN is a typical NN that is extended across space via sharing

weights. Popular variations of the CNN are 1-D and 2-D CNN. The 1-D CNNs are gener-

ally customized to analyze tabular and time-series data, whereas the 2-D CNNs are widely

adopted for pattern detection from image data. As 1-D CNN requires significantly less

computational complexity than 2-D CNN, it is more suitable for lightweight real-time ap-

plications with limited resources, such as resource-hungry IoT sensors. A standard CNN

has multiple layers: convolutional, pooling, regularization, and fully connected/dense. The

dense layers and convolutional layers have parameters for training/learning; however, reg-
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ularization layers and pooling do not have learned parameters. Various studies have con-

cluded that CNN performs excellently in various AI tasks [21].

The typical architecture of CNNs consists of two fundamental parts: the feature ex-

tractor and the classification part. In the feature extraction layers, the previous layer’s

outcome is used as the input of a particular layer, and the result of that layer is then passed

to the next layer. Usually, the lower-level or shallow layers are responsible for extracting

higher-level features from the input data. With the propagation to the higher-level or deep

layers, the dimensions of the features are usually decreased depending on the kernel size

of the convolution. The max-pooling layers are also crucial for downsampling the features’

dimensions, reducing the computation. As the sub-sampling layer, the max and average

pooling are typically adopted to take the maximum and average values, respectively. After

several convolutional and sub-sampling layers, fully connected/dense layers are usually used

to conduct high-level reasoning. Like typical NNs, each neuron is connected to every other

neuron in the dense layers to generate global semantic information. However, an atomic-

dimensioned (i.e., 1x1 Conv) convolution layer can replace the fully-connected layer. The

last layer of CNNs is the output layer. The softmax activation function is commonly em-

ployed for classification tasks, and for regression/prediction tasks, the linear and sigmoid

activation function is applied chiefly [22].

In order to design a robust CNN model, we need to determine optimal values for dif-

ferent hyperparameters. Typically, in different layers of the CNN architecture, we need

to define a number of hyperparameters before the learning phase begins. Firstly, we have

the number of layers used in the CNN model, which determines how deep or shallow a

particular model is. In the convolution layers, typically, the kernel size and the number

of filters are the hyperparameters. The hyperparameter of the sub-sampling layer is usu-

ally the pool size for reducing the size of features. The regularization layer (i.e., dropout

layer) is often used in the CNN architecture to avoid overfitting. The dropout rate is the

general hyperparameter in the dropout layer. Other than these hyperparameters, we also

have a few other vital hyperparameters needed in the CNN model, such as the activation

function, optimizer, learning rate, batch size, and the number of epochs [23]. By finding

the appropriate values for the diverse set of hyperparameters of the CNN model, we can

control the trade-off between the performance (i.e., accuracy) and computation burden (i.e.,

memory and time requirements) of the resource-constrained IoT devices in order to analyze

health data. Hence, considering this trade-off, in the following chapter of the thesis, we

have emphasized the hyperparameter optimization for constructing suitable custom CNN

models to analyze medical data and efficient health data transmission.
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2.5.2 Distributed Deep learning approaches on edge

The use of distributed machine learning (ML) on edge is being extensively researched as a

more efficient approach for training deep learning models [24]. The main motivation behind

this is the potential for an enhanced model that incorporates data from various sources

while ensuring security, and minimizing communication, and computation overhead. There

are two primary distributed ML methods: Federated Learning (FL) and Split Learning

(SL).

2.5.2.1 Federated Learning (FL) architecture

Federated learning is a distributed machine-learning technique that allows multiple devices

to collaborate in the training of a machine-learning model, without exchanging raw data. In

the deployment of federated learning, a central server first selects a machine learning model

and distributes it to multiple devices, such as smartphones or IoT devices. Each device

then trains the model on its own data, using privacy-preserving computation techniques to

ensure that the data remains private. The updated model parameters are then transmitted

back to the central server, aggregating them to update the global model. This process is

repeated for multiple rounds, to improve the accuracy of the model over time.

Federated learning enables machine learning models to be trained on distributed data,

without compromising the privacy of the data. While it presents some technical challenges,

it has the potential to transform the way that machine learning is performed, particularly

in scenarios where data privacy is a concern. As federated learning continues to evolve, it

is likely to become an increasingly important technique for enabling distributed machine

learning applications in a range of domains, including healthcare, finance, and IoT.

Algorithm 1: FedAvg Algorithm

Input : C,K,E,B

Output: wfed

1 Function FedAvg(C,K,E,B):

2 wfed ← initialize model weights; for round = 1 to E do

3 m← min(K, |C|); Bt ← random m clients from C; St← empty list; for i = 1

to |B(t)| do
4 wi← get current weights of client i from server;

gi← compute gradient using local data on client i with weights wi;

St← append (wi, gi) to St;

5 end

6 g← average of gradients in St; wfed ← wfed − B
|C|

g;

7 end

8 return wfed;
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Algorithm 1 shows the Federated Averaging algorithm as follows: Initialize the model

weights to some initial values. For a certain number of communication rounds, do the

following: a. Select a random subset of clients (i.e., devices) from the set of all clients. The

size of this subset is the minimum between the total number of clients and a predefined

number. b. For each client in the selected subset, do the following: i. Get the current

model weights from the server. ii. Compute the gradient of the model using the local data

on the client with the current weights. iii. Add the pair of model weights and gradients

to a list. c. Compute the average of all the gradients in the list. d. Update the model

weights by subtracting a fraction of the average gradient from the current model weights.

The fraction is determined by the size of the subset of clients relative to the total number

of clients. Return the final model weights.

2.5.2.2 Split Learning architecture

Split learning is a distributed machine learning algorithm that enables models to be trained

on data distributed across multiple devices where the model is split between a client and

a server. The algorithm involves splitting the model into two parts: a front-end and a

back-end. The front end is distributed to each device, where it processes the data locally

and generates intermediate representations. These intermediate representations are then

sent to the back end, which combines them to generate the final output.

The split learning algorithm consists of several steps. The first step is data partitioning,

in which the data is divided into smaller subsets, and each subset is assigned to a specific

device. This ensures that the data remains on the device where it was generated, and

reduces the amount of data that needs to be transmitted between devices.

The second step is model splitting, in which the machine learning model is divided into

two parts: a front-end and a back-end. The front end is distributed to each device, where

it processes the data locally and generates intermediate representations. The back end is

located on a central server and receives the intermediate representations from all devices to

generate the final output.

The third step is training, in which the model is trained iteratively using a gradient

descent algorithm. During each iteration, the front end processes the data on each device

to generate intermediate representations, which are then transmitted to the back end. The

back end combines the intermediate representations and calculates the gradient of the loss

function. This gradient is then transmitted back to the front end, where it is used to update

the model parameters.

The fourth step is synchronization, in which the model parameters are synchronized

between the front end and the back end to ensure that they are consistent with each other.

This involves transmitting the updated model parameters from the front end to the back

end and then distributing the updated parameters back to each device.
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The split learning algorithm is particularly useful in scenarios where data privacy is a

concern, as it enables data to be kept on the device where it was generated rather than

being transmitted to a central server. Additionally, split learning can be used to reduce the

computational and communication costs associated with training machine learning models,

as it distributes the computation and communication load across multiple devices.

The split learning algorithm can be broken down into the following steps as shown in

algorithm 2:

• Partition of the model: The first step is to partition the neural network model into the

front-end and back-end. The front end is part of the model that processes the data

on the device, while the back end is part of the model that combines the intermediate

representations from all the devices.

• Distribute the front-end: The front-end is distributed to the devices that hold the data.

Each device processes the data locally using the front end, generating intermediate

data representations.

• Transmit intermediate representations: The intermediate representations are trans-

mitted from the devices to the back end. The transmission can be done in a compressed

form to reduce the bandwidth required.

• Combine intermediate representations: The back end combines the intermediate rep-

resentations from all the devices to generate the final output. This is done using the

back-end part of the neural network model.

• Update the model: The model is updated using the back-propagation algorithm. The

gradients are computed on the back end and transmitted to the devices, which are

used to update the front-end part of the model.
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Algorithm 2: Split Learning Algorithm

Input : X,Y, theta, alpha, eta

Output: theta

1 Function SplitLearning(X,Y, theta, alpha, eta):

2 theta1 ← front-end of theta; theta2 ← back-end of theta; for i = 1 to N do

3 theta
(i)
1 ← initialize front-end on device i;

4 end

5 for t = 1 to T do

6 for i = 1 to N do

7 Xi ← data on device i; Yi ← labels on device i; hi ← theta
(i)
1 (Xi);

zi ← theta2(hi); gi ← ∇ziL(Yi, zi); ∇theta2L(Yi, zi)← gi;

∇hi
L(Yi, zi)← thetaT2 gi; theta

(i)
1 ← theta

(i)
1 − eta∇

theta
(i)
1

L(Yi, hi);

8 end

9 theta1 ← average front-ends on all devices;

theta2 ← theta2 − alpha∇theta2L(Yi, zi);

10 end

11 return theta;
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3.1 Introduction

This chapter investigates the RSSI prediction for rapid and automated wireless networking

in indoor and outdoor environments. The performance of sensor nodes in a wireless net-

work is determined by the quality of the network’s essential links. Traditionally, essential

connections are detected via time-consuming on-field RSSI measurements. We investigate a

distributed ML technique for an approximation but quicker and communication-wise more
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efficient RSSI prediction in this research.

In typical models, an empirical or deterministic technique is employed to forecast environment-

related route loss [25]. Empirical models often comprise a set of equations generated from

extensive field data. In contrast, site-specific deterministic models employ physical prin-

ciples of radio propagation to forecast signal intensity or path loss at a given place. An

example of an empirical model is a path loss log distance model, which estimates the re-

ceived power at each receiver location based on the distance between the transmitter and

the receiver. However, these measures do not hold the assumptions in practice and produce

disappointing findings [26]. It is always dependent on physical disturbances and unseen

environmental factors.

In this context, we are exploring the possibility of using Machine Learning (ML) concepts

to predict Received Signal Strength Indication (RSSI) and estimate the path loss exponent

in wireless network deployments. Specifically, we are concentrating on using ML for RSSI

prediction by treating it as a supervised learning problem. To achieve this, we employed

a dataset that includes distance-based input features and measured RSSI values as the

output. We utilized two ML approaches - a simple linear regression model and an Artificial

Neural Network (ANN) model.

It has been observed that Machine Learning (ML) techniques have achieved remarkable

success in wireless systems, especially in terms of the accuracy of the models. Our approach

is to do more performance improvement by focusing on providing a distributed learning

framework to have lower latency and maintain high reliability and high prediction accuracy.

3.2 Problem Description and Motivation

We need to develop a model for wireless connectivity prediction since it’s vital in many

applications like the teleoperation of robots. There are several deterministic models for

indoor robot positioning; the most popular one is the path-loss exponent model. To consider

the non-deterministic part of the model, we use the Shannon-Hamilton theorem [27], which

indicates that the RSS can be modeled as in eq1

RSS = RSSd0 − 10η log10(
d

d0
)︸ ︷︷ ︸

deterministic

−Ψ(d)− Ω(d, t)︸ ︷︷ ︸
stochastic

; (1)

Where RSSdo is the RSS at a reference distance (d0),η is the propagation constant of

the environment, d is the distance of the receiver from the radio source, Ψ is a stochastic

(gaussian) variable representing (spatial) shadowing effects caused by the objects in the

environment, and Ω is another stochastic variable in the RSS representing (spatial and

temporal) multipath fading effects and dynamics in the environment [28]. On the other
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hand, the complexity of the environment and path factors in the outdoor environment

makes it challenging to formulate a mathematical model for it. We are motivated by this

problem and by the idea that indoor modeling still suffers from high variation in parameters

with any change in the setup environment and has a stochastic part that has a complex

pattern to model. All of these challenges could be addressed by using data-driven deep

learning models, which are capable of capturing complex patterns. An additional challenge

is that changing the environment will change its deterministic model of it. So we need a

distributed solution to learn from different environments and different setups at the same

time while perserving privacy and reducing the overhead in network communication. So we

propose an asynchronous federated learning framework.

3.3 Methodology

In this section, we present our proposed methodology based on the system model assump-

tion of RSS for indoor and outdoor wifi environments. In the remainder of this section, we

elucidate the dataset, the deep learning model leveraged for both local and global model

training, and our proposed federated learning framework with asynchronous weight updat-

ing capability.

3.3.1 Data

We use the dataset in [29]. This dataset provides the RSSI (Radio Signal Strength Indica-

tor) data collected with a mobile robot in two environments: indoor (KTH) and outdoor

(Dortmund). RSSI metric was used to collect the RSS data in terms of dBm. The mobile

robot’s location was recorded using its odometry (dead reckoning). The indoor data was

collected at Stockholm. The outdoor data was collected at an abandoned steel factory in

Dortmund, Germany. The RSS was collected using the RSSI metric in dBm. The mo-

bile robot data such as position and orientation was collected with the help of the Robot

Operating System (ROS) drivers of the respective robot.

3.3.2 Selection of Centralized Deep Learning Model for Network Slice

Prediction

Here, we describe our selection of the centralized deep learning model for RSSI prediction

given the considered system model. Among a number of candidate machine and deep

learning models, we select the Convolutional Neural Network (CNN) for their recent success

in communication networks. A CNN is a feed-forward neural network architecture with

convolutional layers, pooling layers, and fully-connected layers. Due to the format of the

RSSI data prepared (as mentioned in section 6.3.1), we use a one-dimensional Convolutional
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Neural Network (1D CNN) [30]. The detailed motivation behind choosing the 1D CNN for

proactively predicting network traffic and accordingly the corresponding network slices can

be found in [31,32].

3.3.3 Proposed Federated Learning Model with Asynchronously Weight

Update Capability

Federated learning was first introduced in [33] where local models are trained on differ-

ent distributed points. The centralized model is the aggregation of these local models by

averaging them. However, it lacks efficiency due to stale local nodes. Then, the asyn-

chronously weight updating federated learning approach was introduced in earlier work to

address this problem [34,35]. Motivated by the performance of our earlier work, we propose

our asynchronously weight updating federated learning framework for privacy-preserving,

low-latency network slicing. Our proposed framework resides in two separated operations,

namely training on the clients’ side and training on the central node (e.g., a server or a

cloud), respectively.

The way the asynchronous federated update works is by sending only the shallow layers

parameters and every certain number of time rounds it sends all the network parameters

which is called deep parameter update. The ratio of the shallow layers out of the total

neural network and the number of time rounds are both considered hyperparameters.

Algorithm 11 demonstrates the steps of the update and training in our proposed frame-

work. First, an update on the set of all available clients is received by the central node.

Then, the central node returns the pre-trained central model, denoted by Mc. Step 1 of

the algorithm initializes the parameters and hyperparameters of our considered 1-D CNN

model. In the following steps, the set of all clients is traversed, and we aggregate all of the

local parameters to form the centralized model and feedback to the clients. Then, we assess

the model’s performance and compare it with the minimum loss threshold. The training

process at the centralized model continues running until the loss is less than or equal to the

threshold.

The second part of the algorithm entails the procedure on each client’s side. This

procedure works with the inputs u, δ, T , and λ. λ denotes the shallow parameter update

ratio. The parameter is timestepu represents the iteration information at the deep model

parameter exchange step with the central node. First, the hyperparameters of the local

model (Mu) are initialized. The algorithm iteration starting afterward indicates that the

overall training process at each local node (i.e., every client) occurs from iterations t = 1

to t = T , where the parameter T denotes the number of time steps during which the entire

process for each client runs. The local model for each client is then trained. After δ time-

rounds, the ratio of the locally learned parameter, according to the shallow update rate and

time-round values, is sent to the central node when this condition remains valid.
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Algorithm 3: Proposed asynchronously weight updating federated learning algo-
rithm ofr network slice allocation.
Input: Distributed clients at subnetwork points, deep parameter rate λ

(0 < λ < 1), minloss , δ (time round), T (total number of iterations)
Output: Mc: Centrally trained model

1 Procedure at the central:
2 Mc ← θ;
3 while True do
4 for u = 1 to len(Clients) do
5 Update Mc by aggregating the recieved parameters (Wu) from Clients
6 end
7 Currentacc ← current performance of global model Mc;
8 if (losscurr < lossmin) then
9 break

10 end

11 end
12 return Mc

13 Procedure at the client:
14 Initialize: Hyperparameters
15 for (t=1 to T) do
16 Mu ← update the model of Clientu by adopting the model hyperparameters
17 if (t mod δ) = 0 then
18 t is assigned to timestepu
19 Wu ← extract local weights of λ from Mu transmit Wu, and timestepu to

the cloud.
20 else
21 Wu ← extract local weights of (1-λ) from Mu transmit Wu, and timestepu

to the cloud.
22 end

23 end

3.4 Performance Evaluation

To evaluate the performance of our proposed asynchronous weight updating federated learn-

ing framework, we first compare it with the synchronous weight updating (the vanilla fed-

erated learning) model performance with varying numbers of clients. In Algorithm 11, we

removed the condition of (t mod δ) at the clients’ side procedure to derive the synchronous

weight updating condition. Second, we evaluated the deep learning model performance

by monitoring the loss against various clients over several time rounds. In addition, we

compared the standalone, centralized model’s performance with that of our proposal, i.e.,

the client’s model aggregation. Third, we evaluated the performance of our asynchronous

weight updating strategy by monitoring the deep learning model loss with different time

rounds. Finally, we assessed the overhead model reduction, time-round values, and deep
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Figure 3.1: Loss performance (convergence) for varying numbers of clients (UEs) in case of
the proposed asynchronous weight updating method (Indoor environment).

parameter rates.

First, in Figs. 3.1 and 3.3, the performance of our proposed asynchronously weight up-

dating federated learning technique in terms of loss with an increasing number of clients

for indoor and outdoor data respectively. On the other hand, Figs. 3.2 and 3.4 show the

loss performance of the traditional method (synchronously weight updating mechanism)

for various UEs. As evident from these results, our proposed asynchronous weight updat-

ing method approximates the performance of the conventional method with an increasing

number of users. In summary, the performance of the proposal steadily improves with the

number of clients.

Next, Figs . 3.5 and 3.6 demonstrate the performance of our proposal in terms of loss

over varying time-rounds. The figure shows that the model performance increases with

the number of time rounds. A time-round value determines after how many iterations the

model will make a deep update instead of a shallow layer update of the local deep learning

model. For example, if the time-round value is five, a deep layer parameter update occurs
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Figure 3.2: Loss performance (convergence) for varying numbers of clients (UEs) in case of
the traditional synchronous weight updating method (Indoor environment).

in place every five iterations and the shallow update occurs in the remaining iterations.

That means a higher value of the time-rounds provides a larger focus on the shallow layer

updates. This result shows that the model performs better with more shallow updates,

focusing on the general features learned on the clients’ side more than the model-specific

features. Furthermore, experimental results demonstrate that the aggregated model training

performance over the epochs is comparable with the centralized model, thereby indicating

the reliability of our proposal in proactive slice-type allocation.

Finally, Figs. 3.7 and 3.8 demonstrate the overhead reduction (with the network band-

width usage percentage as a performance indicator) for varying deep parameter update

rates and different time-round values for each parameter. The result illustrates that the

increase in the deep learning parameters significantly improves the overhead reduction for

the considered time-rounds of 5, 10, 15, and 20.
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Figure 3.3: Loss performance (convergence) for varying numbers of clients (UEs) in case of
the proposed asynchronous weight updating method (Outdoor environment).
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Figure 3.4: Loss performance (convergence) for varying numbers of clients (UEs) in case of
the traditional synchronous weight updating method (Outdoor environment).
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Figure 3.5: Loss vs number of time-rounds in the proposed asynchronously weight updating
federated learning framework (Indoor environment).
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Figure 3.7: Overhead reduction ratio on memory used for different deep parameters rates
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Chapter 4

Efficient Wireless Network Slicing

in 5G Networks: An Asynchronous

Federated Learning Approach

While researchers continue to incorporate intelligent algorithms in Fifth Generation (5G)

and beyond networks to achieve high-accuracy decisions with ultra-low latency and signif-

icantly high throughput, the issue of privacy-preservation became a critical research area.

This is because mobile service providers not only need to satisfy the Quality of Service

(QoS) of users in terms of ultra-fast user connectivity but also ensure reliable, automated

solutions that will enable them to design a vast multi-tenant system on the same physical

infrastructure while preserving the user privacy. With the adoption of data-driven machine

learning models for providing smart network slicing in 5G and beyond networks and Internet

of Things (IoT) systems, the issue of privacy-preservation integration is yet to be considered.

We address this issue in this chapter, and design an asynchronous weight updating federated

learning framework that is efficient, reliable, and preserves the privacy as well as achieve the

required low latency and low network overhead. Thus, our proposal permits a reasonably

accurate decision for the resource allocation for different 5G users without violating their

privacy or introducing additional load to the network. Experimental results demonstrate

the efficiency of the asynchronous weight updating federated learning in contrast with the

conventional FedAvg (Federated averaging) strategy and the traditional centralized learn-

ing model. In particular, our proposed technique achieves network overhead reduction with

a consistent and significantly high prediction accuracy that validates its low-latency and

efficiency advantages.
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4.1 Introduction

Given the performance of the federated learning framework that we proposed in the pre-

vious chapter 3, in this chapter we deploy the framework on an essential part of the 5G

networks to improve the efficiency of network slicing in 5G networks.

Recently, the Fifth Generation (5G) and beyond networks have contributed to an expo-

nential growth in mobile traffic that has played a dominant role in realizing the much an-

ticipated ubiquitous connectivity toward a smart society. While 5G and beyond networks

have been associated with a significantly higher network capacity and throughput [36] in

contrast with the earlier generations of communication networks, the required level of intel-

ligence to automate resource allocation decisions is a desired (yet still not available) feature

in such systems. However, service providers frequently confront management challenges to

optimally and timely satisfy the load demands of the massive number of users (referred to

as user equipment or UEs) on multi-tenant networks. While the 5G and beyond networks

have proliferated mobile broadband supporting high data rates and reduced delay, thereby

promoting real-time services with high Quality of Service (QoS) performance and innovative

applications with stringent throughput and latency requirements [37]. However, since 5G

networks are envisioned as multi-service, multi-tenant networks, a larger eco-system with

intelligent (i.e., proactive) decision-making needs to be designed. For instance, in order

to offer a better Quality of Experience (QoE) to mobile UEs along with high speed and

reliability, it is important to take into consideration the network traffic requirements and

develop a new mechanism, i,e., a smart framework, to make proactive and accurate decisions

pertaining to wireless resource allocation in 5G networks.

As for the 5G resource allocation, network slicing is an important technique that en-

ables mobile operators to effectively manage a plethora of network instances across a single

infrastructure to provide a variety of services to wide and multiple UE-types with a high

level of QoS [38]. In this vein, an appropriate network slice selection for each UE device
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is required. Formulating the network slice selection is typically an optimization problem,

which is classically solved by a centralized entity in the mobile network system. However,

finding an optimal solution to such a problem is often not possible, and often heuristics are

employed to obtain faster solutions at the expense of sacrificing the quality of the solution.

To remedy the solution, machine, and deep learning algorithms can be leveraged to develop

data-driven models to enable mobile operators reasonably accurate network slice predic-

tions at real-time, thereby resolving the trade off between the solution quality and the time

required to obtain the solution. In other words, the machine/deep learning paradigm may

assist in the network slice prediction, based on which the resources required by the UEs can

be accurately assigned.

However, with the increase of the number of UEs with time and also the variety of

services used by the UEs within the 5G network ecosystem, we need the deep learning

model to be up-to-date. This poses two unique challenges. First, the privacy of the UEs

needs to be preserved while we collect data from all users to train the deep learning model.

Second, such a consistently changing model with a growing size of data on a large scale

will cause more load on the network itself, thereby significantly affecting the model decision

time and in turn, impacting the overall network latency.

In this chapter, we aim to address the aforementioned challenges by proposing a fed-

erated learning framework whereby the local parameters are updated in an asynchronous

manner. Thus, we facilitate a decentralized deep learning model that efficiently predicts

the network slice type with high accuracy, high speed, and reliability and maintains the UE

privacy simultaneously.

The remainder of this chapter is structured as follows. In section 5.2, we introduce the

existing research work in two categories, namely, network slicing in general and network

slicing with federated learning. Section 5.3 presents the problem formulation and the mo-

tivation behind our proposal. Section 6.3 presents our proposed asynchronously federated

learning algorithm. The performance of our proposal is evaluated in section 6.4. In section

??, we discuss the conclusion of our work contribution and future work.

4.2 Related Work

Several works are done in the literature on network slicing to ascertain the assignment of

devices to connections properly. In [39], researchers addressed the resource allocation in a

sliced multi-tenant network by determining how the capacity of the Mobile Virtual Network

Operator (MVNO) system is affected by the transmit power, allocated bandwidth, and the

number of users. Researchers in [40] suggested a methodology for managing network traffic

priorities for smart cities using the software-defined network (SDN) architecture, where

services that require priority are placed in virtualized networks, and the technique was
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demonstrated through a priority management layer in the SDN architecture. The work

in [41] introduced a new management architecture for 5G service based on SDN/NFV

(network function virtualization) to provide a distributed deployment of network slicing

that meet the network functions demands. On the other hand, the research work in [42]

considered a Radio Access Network (RAN) slicing deep learning architecture in order to

apply application-specific radio spectrum scheduling.

While the aforementioned research work considered network slice management in a clas-

sical manner, other researchers dedicated a substantial effort toward intelligently assigning

network slices using deep learning techniques. For instance, by considering deep learning

for network slicing, researchers in [43] designed a model called DeepSlice to achieve network

load efficiency and network function availability via accurately predicting the network slice

type to assign user-devices to appropriate links. However, the DeepSlice model is considered

a centralized learning environment. On the other hand, in applying a distributed learning

framework for network slice allocation, particularly via federated learning framework, the

researchers of [44] introduced a deep federated Q-learning (DFQL) technique to manage

and allocate resources for differentiated QoS services in networks. Furthermore, in [44], a

federated deep reinforcement learning (FDRL) framework was proposed to train bandwidth

allocation models among Mobile Virtual Network Operators (MVNOs) in RANs. In another

early work of applying the distributed learning approach to 5G network slicing, the research

work conducted in [45] employed federated learning to predict the slices’ service-oriented

Key Performance Indicators (KPIs) by forecasting the response time of the Mobility Man-

agement Entity (MME) as one of the key service-oriented KPI of a VNF running inside

a network slice. Next, researchers in [46] exploited a statistical federated learning (SFL)

framework to SFL enforce a slice-based service level agreement that was demonstrated

to result in further network overhead reduction in contrast with both the state-of-the-art

FedAvg and centralized constrained deep learning approaches. To provide 5G slicing ser-

vices in RAN, researchers in [47] envisioned a framework, referred to as O-RANFed, that

was shown to improve the performance of federated learning by a joint mathematical opti-

mization model of local learners selection and resource allocation. The O-RANFed system

employed the Successive Convex Approximation (SCA) method to improve the solution to

the original resource allocation problem.

4.3 Problem Description and Motivation

From the related research work in section 5.2, we understand that there is a research gap in

terms of distributed learning paradigm for network slice allocation to UEs in a 5G network

system. In particular, the existing research work did not consider UE privacy incorporation

while designing classical optimization models. On the other hand, other researchers con-
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sidered distributed models in a federated learning framework that may attain UE-privacy,

however, did not investigate how to further improve the network overheads while training

a large-scale, localized model for network slice allocation. These two problems consist of

the formal problem description in our work. Based on this problem, we consider an asyn-

chronous weight updating federated learning framework for network slicing that we adopt

as a model aggregation model.

4.4 Methodology

In this section, we present our proposed methodology based on the system model assump-

tion of network slices for contemporary mobile networks. For details of the considered

communication system model, readers are referred to the work in [43]. In the remainder

of this section, we elucidate the dataset preparation, the deep learning model leveraged for

both local and global model training, and our proposed federated learning framework with

asynchronous weight updating capability.

4.4.1 Dataset Preparation

Before delving into the details of the deep learning technique for network slice allocation for

UEs, we first describe the steps pertaining to dataset preparation. We employ the DeepSlice

dataset, utilized in [43], that consists of KPIs from both the network and UEs. The KPIs

include the type of UEs that request the connection, QoS Class Identifier (QCI), packet

delay budget, maximum packet loss, time instant, and the day of the week. The dataset

was collected from a variety of devices requesting access to the network operator that include

smartphones, general Internet of Things (IoT) devices, Augmented/Virtual Reality (A/VR)

devices, Industry 4.0 traffic, e911 or public safety communication, healthcare, smart city or

smart homes traffic, and so forth. In addition, unknown devices requesting access to one or

multiple services were included in the dataset.

Table 4.1 lists the features of the dataset according to [43]. The average amount of time

that each incoming request spends in the system is displayed in the second column. The

network slice categories include enhanced Mobile Broad Band (eMBB), Ultra Reliable Low

Latency, Communication (URLLC), massive Machine Type Communication (mMTC), and

the Master slice. The latter refers to a slice comprising network functions belonging to each

of the other slices [43], and serves as a default slice allocation for those UEs that are not

rendered a dedicated slice type.
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Table 4.1: Partial results summary.

Input Type
Duration

(sec)

Packet Loss

Rate

Packet Delay

Budget (ms)
Predicted Slice

Smartphone 300
0.01/0.001

/0.000001

60/75/100/

150/300
eMBB

IoT Device 60 0.01 50/300 mMTC

Smart Transportation 60 0.000001 10 URLLC

Industry 4.0 180 0.001/0.000001 10/50 mMTC/URLLC

AR/ VR/ Gaming 600 0.001 10/50 eMBB

Health care 180 0.000001 10 URLLC

Public Saftey / E911 300 0.000001 10 URLLC

Smart City / Home 120 0.01 50/300 mMTC

Unknown Device Type
60/120

/180/300

0.01/0.001

/0.000001

10/50/60/75/

100/150/300
eMBB/mMTC/URLLC

4.4.2 Centralized Deep Learning Model for Network Slice Prediction Fed-

erated Learning Model

We use the same framework used in chapter 3

4.5 Performance Evaluation

To evaluate the performance of our proposed asynchronously weight updating federated

learning framework, we first compare its performance with the synchronously weight up-

dating (the classic federated learning) model performance with a varying number of client

nodes (i.e., UEs). In Algorithm 11, at the clients’ side procedure, we removed the condition

of (t mod δ) to derive the synchronously weight updating condition. Second, we evaluated

the deep learning model performance by monitoring the loss against a varying number of

clients and over a different number of time-rounds. In addition, we compared the stan-

dalone, centralized model’s performance with that of our proposal, i.e., the clients models

aggregation. Third, we evaluated the performance of our asynchronously weight updating

strategy by monitoring the deep learning model loss with different time rounds. Finally, we

evaluated the overhead model reduction along with different time-round values and varying

deep parameter rates.

First, in Fig. 4.1, the performance of our proposed asynchronously weight updating

federated learning technique in terms of loss with an increasing number of clients (i.e.,
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Figure 4.1: Loss performance for varying numbers of clients (UEs) in case of the proposed
asynchronously weight updating method.

UEs). On the other hand, Fig. 4.2 shows the loss performance of the traditional method

(synchronously weight updating mechanism) for various UEs. As evident from these results,

our proposed asynchronously weight updating method approximates the performance of the

traditional method with an increasing number of users. In summary, the performance of

the proposal steadily improves with the number of clients.

Next, Fig. 4.3 demonstrates the performance of our proposal in terms of loss over varying

time-rounds. The figure shows that the model performance increases with the number of

time-rounds. This result shows that the model performs better with more shallow updates,

focusing on the general features learned on the clients’ side more than the model-specific

features. Furthermore, experimental results demonstrate that the aggregated model training

performance over the epochs is comparable with the centralized model, thereby indicating

the reliability of our proposal in proactive slice-type allocation.

Finally, Fig. 4.4 demonstrates the overhead reduction (with the network bandwidth

usage percentage as a performance indicator) for varying deep parameter update rates and

different time-round values for each parameter. The result illustrates that the increase in the
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Figure 4.2: Loss performance for varying numbers of clients (UEs) in case of the traditional
synchronously weight updating method.

deep learning parameters significantly improves the overhead reduction for the considered

time-rounds of 5, 10, 15, and 20.
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Chapter 5

PC-SSL: Peer-Coordinated

Sequential Split Learning for

Traffic analysis of mmWave 5G

Networks

Fifth Generation (5G) networks operating on mmWave frequency bands are anticipated to

provide an ultra-high capacity with low latency to serve mobile users requiring high-end

cellular services and emerging metaverse applications. Managing and coordinating the high

data rate and throughput among the mmWave 5G Base Stations (BSs) is a challenging

task, and it requires intelligent network traffic analysis. While BSs coordination has been

traditionally treated as a centralized task, this involves higher latency that may adversely

impact the user’s Quality of Service (QoS). In this chapter, we address this issue by consid-

ering the need for distributed coordination among BSs to maximize spectral efficiency and

improve the data rate provided to their users via embedded AI. We present Peer Coordi-

nated Sequential split learning dubbed PC-SSL, which is a distributed learning approach

whereby multiple 5G BSs collaborate to train and update deep learning models without

disclosing their associated mobile users data, i.e., without privacy leakage. Our proposed

PC-SSL minimizes the data transmitted between the client BSs and a server by processing

data locally on the clients. This results in low latency and computation overhead in mak-

ing handoff decisions and other network operations. Based on a real dataset, we evaluate

the methodology in the mmWave 5G throughput prediction use-case. The results demon-

strate that our methodology outperforms local models and has a comparable performance

to vanilla centralized split learning.
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5.1 Introduction

After we deployed the asynchronous federated learning framework in chapters 3 and 4, we

find that there is still some room for performance improvement in terms of a distributed

learning approach. Federated learning methodologies still have some limitations. First is

the computational limitations which are limited by the client’s capabilities, where the server

and the client still share the same deep learning model, you cannot expand the model to

the server’s capabilities but to the clients’. Second, the entire model is shared and sent over

the network to the clients, so every time we initialize or change the model it will put more

load on the network. Since split learning doesn’t have these limitations, we, in this chapter,

introduce a new method of split learning and deploy it for mmWave 5G traffic analysis

which is another important part of the 5G network where we predict the throughput to

participate in improving the 5G networks spectral efficiency.

Recently, Fifth generation (5G) cellular networks emerged to support Ultra-Reliable Low-

Latency Communication (URLLC), massive Machine Type Communication (mMTC), and

enhanced Mobile Broadband (eMBB) services. The high bandwidth in 5G networks can be

attributed to the new radio (NR) specifications, which encompass a wide range of frequen-

cies, including low-band through mid-band to high-band, particularly mmWave frequency

spectrum. These services open the way for a wide range of intriguing applications, including

(Industrial) IoT, autonomous driving, Augmented/Virtual Reality (AR/VR), and ultra-high

resolution and high-responsive metaverse applications. While the majority of commercial

5G services deployed globally in 2019 utilized mid-band and low-band frequencies for 5G

systems, mmWave-enabled 5G BSs started to be commercially deployed [48].

5G mmWave technology offers higher data transfer rates and lower latency, opening up

a plethora of new application fields and use cases. However, The signal intensity, signal-to-

noise ratio (SNR), the distance between the device and the base station, and the number of
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Figure 5.1: A typical scenario of the netwrok traffic analysis problem based on user’s mo-
bility and location in mmwave 5G networks.

devices connected to the network are all essential variables that affect the throughput of 5G

mmWave networks, making it challenging to estimate [49–51]. Conventional, centralized

traffic analysis methods for forecasting 5G mmWave throughput include gathering and

analyzing network data, which may be both time-consuming and privacy-violating.

The ultra-high bandwidth of mmWave 5G, which may theoretically reach up to 20 Gbps,

opens up interesting new possibilities for supporting a wide range of current and future ap-

plications that require high bandwidth anticipated of the 5G eMBB service. However, many

technical challenges face mmWave radios, including directionality, limited range, and high

sensitivity to obstructions, making the design and management of 5G services based on

mmWave radio difficult. Also, It might be challenging to establish and maintain a solid

communication link with user equipment (UE), especially when the UE moves around as

depicted in Fig. 5.1. Given these challenges, it is hard to carry out a real-time network

traffic analysis and make proactive decisions regarding the bandwidth allocation, load bal-

ancing, user handoff, and so forth in a seamless manner. In other words, even though

the development of mmWave 5G networks has transformed the telecommunications sector,

adopting the mmWave frequencies has significant barriers, such as limited coverage area

and increased path loss [51–53]. As a consequence, a key challenge in mmWave 5G net-

work design is how to accurately predict the network throughput [54]. While conventional

machine learning models have been employed to address this issue, they typically demand

the exchange of vast amounts of data between devices and BSs, posing privacy and security

concerns.



44

To address the 5G mmwave BSs distributed coordination, in this chapter, we present

a split learning approach since this concept allows data to be incorporated into the deep

learning models locally on BSs without violating privacy of the mobile users they serve. In

particular, we explore the use of split learning for throughput prediction in mmWave 5G

networks, and demonstrate its potential to improve network performance while maintaining

user privacy. Split learning is a novel machine learning technique allowing multiple parties

to train deep learning models to allow them to learn cooperatively without granting access to

data [55]. By keeping the client data on the device and processing it locally, split learning

can preserve the privacy of sensitive data while enabling efficient model training. This

approach significantly reduces the amount of data that needs to be shared between the user

device and the central server, making it ideal for applications in which data privacy is a

concern. In the context of mmWave 5G networks, split learning can be used to predict

network throughput while maintaining user privacy, as the data remains on the device and

is not shared with the network operator or other users. By enabling network operators to

predict throughput more accurately and allocate resources more efficiently, split learning

can help optimize the performance of 5G mmWave networks and enable the deployment of

new and innovative applications.

5.2 Related Work

Several works on throughput prediction in 5G are done in the literature using deep learning

and machine learning methodologies [56]. Authors in [57] establish a technique for esti-

mating the cellular link throughput for end-users and evaluating the efficacy of network

slices. To achieve this, they conduct a measurement study to investigate real-world sce-

narios, including driving in urban, sub-urban, and rural areas, and experiments in crowded

environments. Then, they construct machine learning models that utilize lower-level metrics

that portray the radio environment to forecast the attainable throughput. In [58], authors

propose a deep-learning-based TCP approach for a disaster 5G mmWave network. Their

model learns about the node’s mobility and signal strength and predicts the network is

disconnected and reconnected, which helps adjust the TCP congestion window. Their work

aims to provide network stability and higher network throughput. In [59], authors propose

a deep learning-based framework to design and optimize a 5G air-to-ground network. They

deploy a deep neural network to predict the user throughput and another DNN to optimize

the throughput deployment parameters.

While conducting research on intelligent 5G throughput prediction using deep learning

models, other scholars have also focused on the development of distributed 5G intelligent

systems that prioritize privacy preservation. Several research was done using split and

federated learning in 5G intelligent applications [60, 61]. In [62] authors propose a secure
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framework based on blockchain and federated learning (FL) that leverages smart contracts

to prevent unreliable and malicious participants from participating in the FL process. The

system automatically identifies such participants through the execution of smart contracts

and thus mitigates the risk of poisoning attacks. Additionally, they incorporate local dif-

ferential privacy techniques to safeguard against membership inference attacks. Authors

of [63] introduce a novel hybrid threat detection approach using split-ML that leverages

both machine learning and human intelligence to detect cyber threats. Their work focuses

on analyzing Distributed Denial of Service (DDoS) attacks based on their temporal and

threshold behavior across various network communication protocols.

5.3 Problem Description and System Model

In this section, we first present our considered system model, followed by a formal description

of the research problem.

The motivation behind our work is to introduce a decentralized technique of split learn-

ing to make every client (i.e., 5G BS) capable of making accurate generalized decisions

without the need for communication with a centralized server. Furthermore, we may con-

clude from the associated related research work in section 5.2 that there is a research gap

in distributed learning systems in terms of throughput prediction in a 5G network system

choosing a use-case based on traffic analysis of mmWave 5G networks. Moreover, previous

studies did not take into account user-privacy while developing optimization models for

traffic analysis in 5G networks. In Fig. 5.1, we depict a typical scenario of our use-case.

The BSs perform the sequential split learning training process to be up-to-date in terms of

deep learning model weights. The deep learning model at each BS analyzes every connected

user’s data based on the location and mobility and then predicts the throughput for that

user. Based on the throughput, an intelligent decision could be made. For example, in the

figure, the pedestrian is shown to suffer from low throughput due to obstacles, a scenario

in which the user-device could change the BS it is connected to based on its location and

mobility.

Based on the described scenario and problem setting, Fig. 5.2 illustrates the architecture

of our peer-coordinated split learning system model. The training flows sequentially till the

last user, and then the last user closes the circle by making the first user the next user. Every

process between the user’s client and its server is indicating a conventional local training

process. And every process between the user’s server and the next user’s client represents

a vanilla peer-to-peer split learning process. This process is described mathematically as

follows. Assume that we have the neural network model denoted by M(x : θ), where x refers

to the input and θ refers to the model parameters. In a peer-to-peer paradigm, the L layers

of the model are split into Ls and Ld layers, denoting shallow and deep layers, respectively.
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Figure 5.2: Peer-coordinted Split learning architecture. Note that during a time-round, a
BS takes up the role of a server while other BSs serve as a client, and this is repeated for all
the BSs in the considered 5G network. Also, note that the users refer to the participating
BSs which aim to perform decentralized coordination for analyzing the network traffic with
privacy-preservation. This simple yet powerful concept lays the foundation for a peer BS-
coordinated split learning mechanism.

The client-end has the sub-model of Ls, and the server-side comprises the submodel L−Ld.

Then, a process called data smashing takes place at the client-end, which transfers the

input x into the feature representation H = h(x), where H denotes the features vector

represented by A(F (x : θs)). Here, A refers to the activation function of the last layer in

the Ls layers, and F represents the submodel of M . Then, the feature vector is sent to the

server, where the output of the server is represented by Y = A(F (H : θd)) such that Y in

our aforementioned problem setting denotes the throughput of the considered 5G network

system.

5.4 Methodology

In this section, we introduce our suggested decentralized technique, which is based on

the network system model spatial parameters, along with user traffic and mobility, for

commercial 5G mmWave networks. For further information on the communication setup

and system under consideration, readers should refer to the work in [54]. We explain

the dataset processing, the deep learning model used for training, and our proposed peer-

coordinated sequential split learning architecture, referred to as PC-SSL, in the remainder

of this section.
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Table 5.1: Information about Areas.

Area Intersection Airport Loop

Description Outdoor
4-way traffic
intersection

Indoor mall-area with shopping booths Loop with
railroad
crossings,
traffic sig-
nals, and
open park
restaurants

Trajectories 12 2 2

Trajectory Length 232 to 274 m 324 to 369 m 1300 m

5.4.1 Dataset Preparation

Before delving into the technicalities of the deep learning approach for networks, we intro-

duce the data set adopted for our considered use-case. We considered the Lumos5G dataset,

which is a collection of network performance data for over 100 commercial mmWave 5G

BSs in the United States [54]. The dataset includes a range of features related to network

performance, including signal strength, signal-to-noise ratio, channel quality, and network

load. The data were collected using a custom data collection framework developed by

Lumos Networks that includes a set of mobile measurement units to verify the network

performance at various locations around each BS. Table 5.1 describes the locations from

which data are collected. The dataset covers a range of different scenarios and use-cases,

including indoor and outdoor environments, static and mobile devices, and different levels

of network congestion. Overall, the Lumos5G dataset represents a valuable resource for

researchers and practitioners interested in studying mmWave 5G network performance and

developing new approaches for network performance prediction. Table 5.2 summarizes the

data statistics while Table 5.3 presents the data attributes. In the data processing phase,

we cleaned the data and applied preliminary processing (normalization and discretization)

alongside feature selection. For our classification task, we selected the thresholds for the

achievable throughput as follows; 0-150 Mbps as low throughput, 150-700 Mbps as medium

throughput, and above 700 Mbps as high throughput.

5.4.2 Selection of Centralized Deep Learning Model for Throughput pre-

diction

Here, we describe our selection of the centralized deep learning model for network for

Throughput prediction given the considered system model. Among a number of candidate
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Table 5.2: Summary of the data statistics used in the study.

Data Points 563,840 (per-sec. throughput w/ feature) samples

Mobility Modes Walking (331 km), Driving (132 km), Stationary

Data 38, 632 GBs of data downloaded over 5 G

Duration 6 months

Table 5.3: Data Fields and Descriptions.

Field Description

Raw values

Latitude & longitude UE’s spatial coordinates

User’s mobility/activity Indicates whether the user is walking, standing, or driving.

Moving speed UE’s moving speed reported by Android API

Compass direction The horizontal direction of travel of the UE with respect to
the North Pole (also referred to as azimuth bearing) and its
accuracy

Post-processed values

Throughput Downlink throughput reported by iPerf 3.7

Radio type Indicates whether the UE is connected to 5G or 4G

Cell ID Identifies the tower the user is connected to

Signal strength Signal strength of LTE (rsrp, rsrq, rssi) and 5G (ssrsrp,
ssrsrq, ssrssi)

Horizontal handoff UE switches from one 5G panel (cell ID) to another

Vertical handoff UE switches between radio types (e.g., 4G to 5G)

UE-Panel distance Distance between the UE and the panel it is connected to

Positional angle (θp) Angle between UE’s position relative to the line normal to
the front-face of the 5G panel

Mobility angle (θm) Angle between the line normal to the front-face of the 5G
panel and UE’s trajectory
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machine and deep learning models, we select the DNN (Deep Neural Network) for its recent

success in communication networks and being a lightweight DL model. A DNN is a feed-

forward neural network architecture with Dense layers fully-connected and usually high in

Depth. Due to the format of the network slice data prepared (as mentioned in section 5.4.1),

we use a DNN.

5.4.3 Proposed Sequential Split Learning Model

Split learning was first introduced in [55]

Algorithm 11 demonstrates the steps of the update and training in our proposed frame-

work. The algorithm works by splitting the model between the server and user devices,

where the server holds the global model parameters and user devices hold their own local

model parameters. The algorithm iterates over a fixed number of iterations T, and for each

iteration, it randomly selects a subset of user devices to update their local model param-

eters. The split ratio r determines the proportion of user devices that will update their

local model parameters during each iteration. If a user device is selected to update its local

model parameters, it computes the local gradient of the loss function with respect to the

model parameters based on its own data and sends the gradient to the server. The server

updates the global model parameters using the received gradients and sends the updated

parameters back to the user’s device. If a user device is not selected to update its local

model parameters, it sends a random batch of its data to the server to be used for updating

the global model parameters. The algorithm combines the updated model parameters from

all user devices using the average function to obtain the final global model parameters.

In algorithm 14, we introduce our algorithm and illustrate the main differences between

it and the vanilla algorithm. Looking into 14 in every iteration, we loop on the number

of towers, and every tower is considered a server and client. During the learning process,

every tower updates its server from its client and then starts a peer-to-peer split learning

process with the next tower client in the stack. After that, the server updates its weights

and its client’s weights then the next tower’s server is updated and repeats the process. The

learning process is done sequentially in a closed loop where every tower gets updates from

the previous one and starts the peer-to-peer mechanism with the next one.

5.5 Performance Evaluation

To evaluate the performance of our proposed framework, we present two comparisons be-

tween every tower’s model in the two approaches of standalone and sequential learning.

First, we compare the accuracy progress of every tower in the two approaches as illustrated

in figs., 5.3,5.4,5.5.
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Algorithm 4: SplitNN Algorithm

Input : (x, y) ∈ D, batch size B, number of epochs E, learning rates αc, αs

Output: Trained client and server models

1 Initialize client and server models fc and fs randomly;
2 for each epoch e ∈ [1, E] do
3 Divide the data into batches D1, D2, ..., D|D|/B;

4 for each batch Di ∈ D do
5 Client computes the gradients ∇cL(fc(xi; θc), yi) and sends them to the

server;
6 Server aggregates the gradients from all clients, updates the server model

parameters, and sends the updated model parameters to the clients;
7 Client updates its own model parameters using the server’s updated model

parameters;

8 end
9 Server updates its own model parameters using the updated model parameters

from the clients;

10 end
11 return Trained client and server models fc and fs;

Figure 5.3: Comparison of first tower model in Standalone approach and Sequential learning
approach
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Figure 5.4: Comparison of Second tower model in Standalone approach and Sequential
learning approach

Figure 5.5: Comparison of Third tower model in Standalone approach and Sequential learn-
ing approach
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Algorithm 5: PC-Sequential SplitNN Algorithm

Input : (x, y) ∈ D, batch size B, number of epochs E, learning rates αc, αs ,
Stack of Towers T[Servers, Clients], number of Towers n

Output: Trained client and server models

1 Initialize client and server models fc and fs randomly;
2 for each epoch e ∈ [1, E] do
3 Divide the data into batches D1, D2, ..., D|D|/B;

4 for each batch Di ∈ D do
5 for each tower t in T[Servers, Clients] do
6 Clienti computes the gradients ∇cL(fc(xi; θc), yi) and sends them to the

server;
7 Serveri completes the forward pass and compute the gradients;
8 Clienti updates its model parameters.;
9 Serveri+1 updates its model parameters.;

10 Clienti+1 updates its model parameters.;

11 end

12 end

13 end
14 return Trained stack of clients and servers models fc and fs;

Then illustrate the accuracy performance progress of every tower in the sequential model

and the server performance of the vanilla split learning model as illustrated in fig. 5.6.

We then evaluate each model of the towers in both the two scenarios of standalone

and SSL alongside the central model with vanilla splitNN. We use accuracy, precision, and

F1-score in evaluation. Table 5.4 shows the results of these metrics in a micro-analysis

methodology for all three classes.

Table 5.4: Metrics results summary of all models.

Models
Metrics

Accuracy Precision F1-score

SSL models
Tower1 0.825 0.749 0.756 0.802 0.5 0.624 0.778 0.462 0.674
Tower2 0.822 0.778 0.753 .795 0.581 0.612 0.776 0.48 0.682
Tower3 0.823 0.759 0.757 0.787 0.526 0.622 0.779 0.454 0.679

Standalone models

Tower1 0.820 0.733 0.747 0.825 0.467 0.614 0.761 0.468 0.66
Tower2 0.809 0.747 0.743 0.777 0.493 0.60 0.759 0.415 0.668
Tower3 0.8 0.742 0.738 0.77 0.483 0.60 0.747 0.448 0.649
Central 0.823 0.77 0.78 0.78 0.549 0.666 0.783 0.506 0.699
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Figure 5.6: Comparison of Central model in Standalone approach and all towers in Sequen-
tial learning approach
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Chapter 6

Distributed learning Paradigms for

channel quality estimation in LTE

Networks
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6.1 Introduction

This chapter investigates channel quality indicator prediction in terms of SNR. Fifth Gen-

eration (5G) technology is intended to enable large data speeds on the downlink and uplink

through more reliable and low latency systems. New Radio (NR) represents an advance-

ment to 4G/LTE wireless systems in terms of Radio Access Networks (RANs). In 5G-based

network systems, Device-to-Device (D2D) wireless communications are emerging rapidly in

the 5G-enabled Internet of Things (IoT) and massive MIMO fields [64–67].

Estimation techniques for Signal-to-Noise Ratio (SNR) have been extensively studied

and have contributed to network optimization in both past and current wireless communi-

cation technologies. Although SNR estimation techniques have been extensively researched
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and enabled network optimization, there are still opportunities to improve their accuracy

and readiness. For example, better accuracy in SNR prediction can lead to improved trans-

mission, such as modulation, power, and capacity. Similarly, shorter prediction turnaround

time or latency can result in more efficient transmission, with less overhead and more data

payload. Deep Learning (DL) is a new paradigm that has been successfully applied in

various domains. DL has also been utilized in wireless communication.

Despite the expanding work in channel quality indicator prediction, particularly in terms

of SNR, the deployment of a distributed learning paradigm is not popular yet, especially

in D2D communication systems. In this chapter, we deploy our two distributed learning

paradigms namely the asynchronous federated learning framework and the peer-coordinated

sequential split learning.

6.2 Problem Description

Our system model’s network topology can be considered as a D2D system composed of

a device set of N transmitter-receiver (Tx − Rx) pairs. The configuration of Tx − Rx

connection can be represented as follows: 1) A source node S, acting as an access point

or a service-providing end that communicates with a mobile user equipment (UE). 2) A

D2D relay node R that sends data to the following node. 3) A D2D Rx node, also called

destination node D (such as an access point or base station), that receives data from a

D2D relay node. In order to improve the spectral efficiency through the channel quality qC

parameter, we need to design a model for SNR prediction as a channel quality indicator CQI.

This channel quality indicator, i.e., SNR, can be estimated using the following equation:

SINR = 10 log10
σS

(σI + σN )

where σS , σI , and σN denote the desired signal power, interference signal power, and noise

power, respectively.

6.3 Methodology

In this section, we present our proposed methodology based on the system model assumption

of channel quality estimation based on SNR. In the remainder of this section, we elucidate

the dataset, the deep learning model leveraged for both local and global model training,

and our proposed distributed learning frameworks.
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6.3.1 Data

We use the dataset in [68]. This data set includes measurements of the signal strength of a

WSN link in an indoor scenario. It consists of more than 8000 data records between a Tx–Rx

pair placed over a distance of 10 to 35 m, and it has different measurement metrics such as

energy, throughput, delay, and packet loss. In our evaluation, we use two measurements of

distance (the 10m distance as the closest and the 35m point as the furthest).

6.3.2 Selection of Centralized Deep Learning Model

We are using the same deep learning model mentioned in chapter3 (1D CNN), with more

lightweight layers.

6.3.3 Proposed Distributed Learning Models.

In this chapter, we use both the asynchronous federated learning framework mentioned in

chapter3 and the sequential split learning framework introduced in chapter 5.

6.4 Performance Evaluation

To evaluate the performance of our proposed distributed learning framework, we compare

the two frameworks in terms of convergence, overhead reduction, and RMSE performance

on test data with iterations. We first compare model convergence performance with varying

numbers of clients for both sub-datasets as shown in figs 6.1 and 6.2. Then we compare the

performance of the two methodologies in terms of overhead reduction in a communication

network (Memory usage) with varying the number of clients as shown in figs 6.3 and 6.4.

Finally, we compare the convergence of RMSE during the training of both of the models

with varying iterations as shown in figs 6.5 and 6.6.

We conclude from these results that the peer-coordinated split-learning approach outper-

forms the asynchronous federated learning in terms of convergence and overhead reductions.
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Figure 6.1: Convergence performance for varying numbers of clients (UEs) comparing Peer
coordinated sequential split learning with Asynchronous federated learning.
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Figure 6.2: Convergence performance for varying numbers of clients (UEs) comparing Peer
coordinated sequential split learning with Asynchronous federated learning.
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Figure 6.3: Overhead reduction ration on memory used for varying number of clients (UEs)
deep comparing Peer coordinated sequential split learning with Asynchronous federated
learning.
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Figure 6.4: Overhead reduction ration on memory used for varying number of clients (UEs)
deep comparing Peer coordinated sequential split learning with Asynchronous federated
learning.
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Figure 6.5: RMSE vs number of Epochs, A comparison between Peer coordinated sequential
split learning and Asynchronous federated learning approach. Distance = 10m
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Figure 6.6: RMSE vs number of Epochs, A comparison between Peer coordinated sequential
split learning and Asynchronous federated learning approach. Distance = 35m
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Chapter 7

Conclusions and Future Works

This chapter summarizes the contributions of the dissertation work and manifests potential

future research directions.

7.1 Contributions

This thesis presents two paradigms for privacy-preserving, distributed machine learning

in 5G networks. The first approach is an asynchronous weight-updating federated learning

framework for proactive network slicing. It allows for collecting more data for more accurate

decisions without violating user privacy. This approach provides a reliable, low-latency

method with reduced overhead, resulting in higher throughput. The proposed framework

is capable of data-driven models for multi-tenant systems without the need for increased

computational resources at a centralized node level.

The second approach is a decentralized split learning methodology for mmWave through-

put prediction. The proposed sequential split learning framework enables each 5G base sta-

tion to learn from a larger pool of user data (e.g., user location, mobility, traffic patterns,

application types, and so forth), leading to more accurate and generalized decisions based

on data-driven techniques with no need to establish communication with a central base sta-

tion. This approach also ensures that user privacy is not leaked. This approach also ensures

user privacy is not violated. The main objective of this paradigm is the development of a

self-contained decision-making system that does not rely on a centralized server, allowing

for intelligent decisions based on user mobility and traffic analysis. The results demonstrate

the effectiveness of data-driven models in a spatial, wide-scale, multi-tenant system without

requiring additional computational resources at a centralized level.

The proposed two paradigms’ performance proves the feasibility and reliability of dis-

tributed AI frameworks in 5G-based network systems and their core parts and legacy parts,

particularly regarding traffic analysis of communication.
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7.2 Future Directions

Several future directions are possible.

• Using PC-SSL Peer-coordinated split learning alongside with expanding the dataset to

include more device and signal types for broader IoT device applications and extending

the work beyond traffic analysis to temporal analysis based on the user’s history.

• Expand the network slicing dataset (.e.g., more device types, signal types) to serve

a broader range of IoT devices. Further research work is needed also for generating

labels for local users (e.g., using a semi-supervised approach) and for applying other

model aggregation methods to serve a broader spectrum of service types.

• Expand the centralized models to different machine learning algorithms with dis-

tributed learning frameworks. Classical machine learning models could be considered,

such as decision trees, random forests, and support vector machines, introduce a new

collaborative learning methodology with classical models.

• Evaluate the impact of network topology on the performance of the distributed learn-

ing frameworks. We may study how different network topologies affect distributed

learning algorithms’ accuracy and convergence speed.

• Explore the use of transfer learning techniques to improve the performance of the

proposed frameworks by investigating how pre-training models on related tasks or

domains can help improve accuracy and reduce the data needed for training or affect

heterogeneity.

• Find whether and how the proposed distributed learning models could be vulnerable

to attacks.

• Usage of meta-learning techniques to improve the performance of asynchronous fed-

erated learning and PC-SSL. Meta-learning algorithms can be used to select the best

machine-learning models and hyperparameters adaptively.
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