25,546 research outputs found

    Comparison of Data Transfer Alternatives in Asynchronous Circuits

    Get PDF
    Digital integrated circuits (ICs) have become progressively complex in their functionality. This has sped up the demand for asynchronous architectures, which operate without any clocking scheme, considering new challenges in the timing of synchronous systems. Asynchronous ICs have less stringent environmental constraints and are capable of maintaining reliable operation in extreme environments, while also enjoying potential benefits such as low power consumption, high modularity, and improved performance. However, when the traditional bus architecture of synchronous systems is applied to asynchronous designs, handshaking protocols required for asynchronous circuit operation result in significantly increased power consumption, offsetting the low power benefit of asynchronous designs. In this thesis, NULL Convention Logic is used to implement two data transfer alternatives to the bus, and their performance is compared to that of the prevailing bus architecture. According to the results, both of these proposed architectures demonstrate power-saving qualities while sacrificing area, indicating potential utilization in power-constrained applications where speed is not a prioritized design constraint, as in Internet of Things (IoT) devices

    Ultra-Low Power and Radiation Hardened Asynchronous Circuit Design

    Get PDF
    This dissertation proposes an ultra-low power design methodology called bit-wise MTNCL for bit-wise pipelined asynchronous circuits, which combines multi-threshold CMOS (MTCMOS) with bit-wise pipelined NULL Convention Logic (NCL) systems. It provides the leakage power advantages of an all high-Vt implementation with a reasonable speed penalty compared to the all low-Vt implementation, and has negligible area overhead. It was enhanced to handle indeterminate standby states. The original MTNCL concept was enhanced significantly by sleeping Registers and Completion Logic as well as Combinational circuits to reduce area, leakage power, and energy per operation. This dissertation also develops an architecture that allows NCL circuits to recover from a Single Event Upset (SEU) or Single Event Latchup (SEL) fault without any data loss. Finally, an accurate throughput derivation formula for pipelined NCL circuits was developed, which can be used for static timing analysis

    Realization and Formal Analysis of Asynchronous Pulse Communication Circuits

    Get PDF
    This work presents an approach to constructing asynchronous pulsed communication circuits. These circuits use small delay elements to introduce a gate level sense of time, removing the need for either a clock or handshaking signal to be part of a high-speed communication link. This construction method allows the creation of links with better than normal jitter tolerance, allowing for simple circuit architectures that can easily be made robust to radiation induced soft error. A 5Gbps radiation-hardened link, targeted at use in detector modules at the LHC, will be presented. This application presents a special challenge due to both very high radiation levels (1+MGy life time dose) and the demand for minimum resource (area, power, cable cost) use. The presented link, realized in 130nm technology, is unique in that it has low power (~50mW end to end) and very low area 0.12mm^2 including electrostatic discharge protection, and I/O amplifiers. Due to its asynchronous construction and the gate design style, the link has essentially zero power dissipation when idle, and enters and exits its idle state with no delay. In addition to the construction of the link, this presentation covers the design and analysis methodology that can be used to create other asynchronous communication circuits. The methodology achieves higher performance than conventional static technology but needs only a reasonable design effort using tools and strategies that are only mildly extended versions of those familiar to digital static designers. It is used to construct the serializer, deserializer, and self-test circuitry for the presented link. In this case, a 5Gbps SER/DES and a 2GHz parallel pseudo-random number generator are implemented in 130nm CMOS technology using a gate design style that does not dissipate static power

    A 100-MIPS GaAs asynchronous microprocessor

    Get PDF
    The authors describe how they ported an asynchronous microprocessor previously implemented in CMOS to gallium arsenide, using a technology-independent asynchronous design technique. They introduce new circuits including a sense-amplifier, a completion detection circuit, and a general circuit structure for operators specified by production rules. The authors used and tested these circuits in a variety of designs

    Testing asynchronous logic circuits from transistor networks to gate-level designs.

    Get PDF
    This dissertation is concerned with testing of asynchronous circuits. Asynchronous circuits are attracting increasing interest for future generations of high-speed low-power logic circuits because they facilitate concurrent computation, offer average-case performance and better technology migration potential, and eliminate clock skew. The research reported in this dissertation is a comprehensive study of testing asynchronous circuits using design-for-testability (DFT) techniques and test generation algorithms. In the first part of the study we propose an on-line DFT technique for detecting short defects (or IDDQ faults), which create a low-resistance path between the supply lines. It is shown that I DDQ testing, delay testing, and stuck-open testing are necessary in order to achieve a high defect coverage. The second DFT technique presented in this part is a novel circuit for concurrently detecting delay faults and stuck-open faults. In the proposed DFT techniques, in particular, fault detection in CMOS logic family is investigated. The second half of this study attempts to derive test sequences for sequential circuits. First, initialization phase is studied. Initialization is the process of driving the state signals in the circuit to known states. This dissertation presents an initialization technique for non-initializable asynchronous sequential circuits. Finally, we proceed by generating test sequences for asynchronous sequential circuits. We assume the presence of all multiple faults of all multiplicities. No faulty machines are generated during these procedures and we do not resort to their explicit enumeration.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1999 .R33. Source: Dissertation Abstracts International, Volume: 61-09, Section: B, page: 4897. Adviser: Majid Ahmadi. Thesis (Ph.D.)--University of Windsor (Canada), 1999

    Asynchronous Circuit Stacking for Simplified Power Management

    Get PDF
    As digital integrated circuits (ICs) continue to increase in complexity, new challenges arise for designers. Complex ICs are often designed by incorporating multiple power domains therefore requiring multiple voltage converters to produce the corresponding supply voltages. These converters not only take substantial on-chip layout area and/or off-chip space, but also aggregate the power loss during the voltage conversions that must occur fast enough to maintain the necessary power supplies. This dissertation work presents an asynchronous Multi-Threshold NULL Convention Logic (MTNCL) “stacked” circuit architecture that alleviates this problem by reducing the number of voltage converters needed to supply the voltage the ICs operate at. By stacking multiple MTNCL circuits between power and ground, supplying a multiple of VDD to the entire stack and incorporating simple control mechanisms, the dynamic range fluctuation problem can be mitigated. A 130nm Bulk CMOS process and a 32nm Silicon-on-Insulator (SOI) CMOS process are used to evaluate the theoretical effect of stacking different circuitry while running different workloads. Post parasitic physical implementations are then carried out in the 32nm SOI process for demonstrating the feasibility and analyzing the advantages of the proposed MTNCL stacking architecture

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER
    • …
    corecore