216 research outputs found

    Fundamental Limits in Correlated Fading MIMO Broadcast Channels: Benefits of Transmit Correlation Diversity

    Full text link
    We investigate asymptotic capacity limits of the Gaussian MIMO broadcast channel (BC) with spatially correlated fading to understand when and how much transmit correlation helps the capacity. By imposing a structure on channel covariances (equivalently, transmit correlations at the transmitter side) of users, also referred to as \emph{transmit correlation diversity}, the impact of transmit correlation on the power gain of MIMO BCs is characterized in several regimes of system parameters, with a particular interest in the large-scale array (or massive MIMO) regime. Taking the cost for downlink training into account, we provide asymptotic capacity bounds of multiuser MIMO downlink systems to see how transmit correlation diversity affects the system multiplexing gain. We make use of the notion of joint spatial division and multiplexing (JSDM) to derive the capacity bounds. It is advocated in this paper that transmit correlation diversity may be of use to significantly increase multiplexing gain as well as power gain in multiuser MIMO systems. In particular, the new type of diversity in wireless communications is shown to improve the system multiplexing gain up to by a factor of the number of degrees of such diversity. Finally, performance limits of conventional large-scale MIMO systems not exploiting transmit correlation are also characterized.Comment: 29 pages, 8 figure

    On the Throughput of Large-but-Finite MIMO Networks using Schedulers

    Full text link
    This paper studies the sum throughput of the {multi-user} multiple-input-single-output (MISO) networks in the cases with large but finite number of transmit antennas and users. Considering continuous and bursty communication scenarios with different users' data request probabilities, we derive quasi-closed-form expressions for the maximum achievable throughput of the networks using optimal schedulers. The results are obtained in various cases with different levels of interference cancellation. Also, we develop an efficient scheduling scheme using genetic algorithms (GAs), and evaluate the effect of different parameters, such as channel/precoding models, number of antennas/users, scheduling costs and power amplifiers' efficiency, on the system performance. Finally, we use the recent results on the achievable rates of finite block-length codes to analyze the system performance in the cases with short packets. As demonstrated, the proposed GA-based scheduler reaches (almost) the same throughput as in the exhaustive search-based optimal scheduler, with substantially less implementation complexity. Moreover, the power amplifiers' inefficiency and the scheduling delay affect the performance of the scheduling-based systems significantly

    A Light Signalling Approach to Node Grouping for Massive MIMO IoT Networks

    Full text link
    Massive MIMO is a promising technology to connect very large numbers of energy constrained nodes, as it offers both extensive spatial multiplexing and large array gain. A challenge resides in partitioning the many nodes in groups that can communicate simultaneously such that the mutual interference is minimized. We here propose node partitioning strategies that do not require full channel state information, but rather are based on nodes' respective directional channel properties. In our considered scenarios, these typically have a time constant that is far larger than the coherence time of the channel. We developed both an optimal and an approximation algorithm to partition users based on directional channel properties, and evaluated them numerically. Our results show that both algorithms, despite using only these directional channel properties, achieve similar performance in terms of the minimum signal-to-interference-plus-noise ratio for any user, compared with a reference method using full channel knowledge. In particular, we demonstrate that grouping nodes with related directional properties is to be avoided. We hence realise a simple partitioning method requiring minimal information to be collected from the nodes, and where this information typically remains stable over a long term, thus promoting their autonomy and energy efficiency

    Coordinated Multi-cell Beamforming for Massive MIMO: A Random Matrix Approach

    Get PDF
    We consider the problem of coordinated multi- cell downlink beamforming in massive multiple input multiple output (MIMO) systems consisting of N cells, Nt antennas per base station (BS) and K user terminals (UTs) per cell. Specifically, we formulate a multi-cell beamforming algorithm for massive MIMO systems which requires limited amount of information exchange between the BSs. The design objective is to minimize the aggregate transmit power across all the BSs subject to satisfying the user signal to interference noise ratio (SINR) constraints. The algorithm requires the BSs to exchange parameters which can be computed solely based on the channel statistics rather than the instantaneous CSI. We make use of tools from random matrix theory to formulate the decentralized algorithm. We also characterize a lower bound on the set of target SINR values for which the decentralized multi-cell beamforming algorithm is feasible. We further show that the performance of our algorithm asymptotically matches the performance of the centralized algorithm with full CSI sharing. While the original result focuses on minimizing the aggregate transmit power across all the BSs, we formulate a heuristic extension of this algorithm to incorporate a practical constraint in multi-cell systems, namely the individual BS transmit power constraints. Finally, we investigate the impact of imperfect CSI and pilot contamination effect on the performance of the decentralized algorithm, and propose a heuristic extension of the algorithm to accommodate these issues. Simulation results illustrate that our algorithm closely satisfies the target SINR constraints and achieves minimum power in the regime of massive MIMO systems. In addition, it also provides substantial power savings as compared to zero-forcing beamforming when the number of antennas per BS is of the same orders of magnitude as the number of UTs per cell
    corecore