Massive MIMO is a promising technology to connect very large numbers of
energy constrained nodes, as it offers both extensive spatial multiplexing and
large array gain. A challenge resides in partitioning the many nodes in groups
that can communicate simultaneously such that the mutual interference is
minimized. We here propose node partitioning strategies that do not require
full channel state information, but rather are based on nodes' respective
directional channel properties. In our considered scenarios, these typically
have a time constant that is far larger than the coherence time of the channel.
We developed both an optimal and an approximation algorithm to partition users
based on directional channel properties, and evaluated them numerically. Our
results show that both algorithms, despite using only these directional channel
properties, achieve similar performance in terms of the minimum
signal-to-interference-plus-noise ratio for any user, compared with a reference
method using full channel knowledge. In particular, we demonstrate that
grouping nodes with related directional properties is to be avoided. We hence
realise a simple partitioning method requiring minimal information to be
collected from the nodes, and where this information typically remains stable
over a long term, thus promoting their autonomy and energy efficiency