7,527 research outputs found

    Tight Bounds for Asymptotic and Approximate Consensus

    Get PDF
    We study the performance of asymptotic and approximate consensus algorithms under harsh environmental conditions. The asymptotic consensus problem requires a set of agents to repeatedly set their outputs such that the outputs converge to a common value within the convex hull of initial values. This problem, and the related approximate consensus problem, are fundamental building blocks in distributed systems where exact consensus among agents is not required or possible, e.g., man-made distributed control systems, and have applications in the analysis of natural distributed systems, such as flocking and opinion dynamics. We prove tight lower bounds on the contraction rates of asymptotic consensus algorithms in dynamic networks, from which we deduce bounds on the time complexity of approximate consensus algorithms. In particular, the obtained bounds show optimality of asymptotic and approximate consensus algorithms presented in [Charron-Bost et al., ICALP'16] for certain dynamic networks, including the weakest dynamic network model in which asymptotic and approximate consensus are solvable. As a corollary we also obtain asymptotically tight bounds for asymptotic consensus in the classical asynchronous model with crashes. Central to our lower bound proofs is an extended notion of valency, the set of reachable limits of an asymptotic consensus algorithm starting from a given configuration. We further relate topological properties of valencies to the solvability of exact consensus, shedding some light on the relation of these three fundamental problems in dynamic networks

    Distributed Optimization: Convergence Conditions from a Dynamical System Perspective

    Full text link
    This paper explores the fundamental properties of distributed minimization of a sum of functions with each function only known to one node, and a pre-specified level of node knowledge and computational capacity. We define the optimization information each node receives from its objective function, the neighboring information each node receives from its neighbors, and the computational capacity each node can take advantage of in controlling its state. It is proven that there exist a neighboring information way and a control law that guarantee global optimal consensus if and only if the solution sets of the local objective functions admit a nonempty intersection set for fixed strongly connected graphs. Then we show that for any tolerated error, we can find a control law that guarantees global optimal consensus within this error for fixed, bidirectional, and connected graphs under mild conditions. For time-varying graphs, we show that optimal consensus can always be achieved as long as the graph is uniformly jointly strongly connected and the nonempty intersection condition holds. The results illustrate that nonempty intersection for the local optimal solution sets is a critical condition for successful distributed optimization for a large class of algorithms

    Distributed Frequency Control in Power Grids Under Limited Communication

    Full text link
    In this paper, we analyze the impact of communication failures on the performance of optimal distributed frequency control. We consider a consensus-based control scheme, and show that it does not converge to the optimal solution when the communication network is disconnected. We propose a new control scheme that uses the dynamics of power grid to replicate the information not received from the communication network, and prove that it achieves the optimal solution under any single communication link failure. In addition, we show that this control improves cost under multiple communication link failures. Next, we analyze the impact of discrete-time communication on the performance of distributed frequency control. In particular, we will show that the convergence time increases as the time interval between two messages increases. We propose a new algorithm that uses the dynamics of the power grid, and show through simulation that it improves the convergence time of the control scheme significantly.Comment: 8 pages, 7 figure

    Distributed Decision Through Self-Synchronizing Sensor Networks in the Presence of Propagation Delays and Asymmetric Channels

    Full text link
    In this paper we propose and analyze a distributed algorithm for achieving globally optimal decisions, either estimation or detection, through a self-synchronization mechanism among linearly coupled integrators initialized with local measurements. We model the interaction among the nodes as a directed graph with weights (possibly) dependent on the radio channels and we pose special attention to the effect of the propagation delay occurring in the exchange of data among sensors, as a function of the network geometry. We derive necessary and sufficient conditions for the proposed system to reach a consensus on globally optimal decision statistics. One of the major results proved in this work is that a consensus is reached with exponential convergence speed for any bounded delay condition if and only if the directed graph is quasi-strongly connected. We provide a closed form expression for the global consensus, showing that the effect of delays is, in general, the introduction of a bias in the final decision. Finally, we exploit our closed form expression to devise a double-step consensus mechanism able to provide an unbiased estimate with minimum extra complexity, without the need to know or estimate the channel parameters.Comment: To be published on IEEE Transactions on Signal Processin
    • …
    corecore