84 research outputs found

    Multivariate Subresultants in Roots

    Get PDF
    We give rational expressions for the subresultants of n+1 generic polynomials f_1,..., f_{n+1} in n variables as a function of the coordinates of the common roots of f_1,..., f_n and their evaluation in f_{n+1}. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots.Comment: 22 pages, no figures, elsart style, revised version of the paper presented in MEGA 2005, accepted for publication in Journal of Algebr

    Symmetric Subresultants and Applications

    Get PDF
    Schur's transforms of a polynomial are used to count its roots in the unit disk. These are generalized them by introducing the sequence of symmetric sub-resultants of two polynomials. Although they do have a determinantal definition, we show that they satisfy a structure theorem which allows us to compute them with a type of Euclidean division. As a consequence, a fast algorithm based on a dichotomic process and FFT is designed. We prove also that these symmetric sub-resultants have a deep link with Toeplitz matrices. Finally, we propose a new algorithm of inversion for such matrices. It has the same cost as those already known, however it is fraction-free and consequently well adapted to computer algebra

    Improved algorithm for computing separating linear forms for bivariate systems

    Get PDF
    We address the problem of computing a linear separating form of a system of two bivariate polynomials with integer coefficients, that is a linear combination of the variables that takes different values when evaluated at the distinct solutions of the system. The computation of such linear forms is at the core of most algorithms that solve algebraic systems by computing rational parameterizations of the solutions and this is the bottleneck of these algorithms in terms of worst-case bit complexity. We present for this problem a new algorithm of worst-case bit complexity \sOB(d^7+d^6\tau) where dd and Ï„\tau denote respectively the maximum degree and bitsize of the input (and where \sO refers to the complexity where polylogarithmic factors are omitted and OBO_B refers to the bit complexity). This algorithm simplifies and decreases by a factor dd the worst-case bit complexity presented for this problem by Bouzidi et al. \cite{bouzidiJSC2014a}. This algorithm also yields, for this problem, a probabilistic Las-Vegas algorithm of expected bit complexity \sOB(d^5+d^4\tau).Comment: ISSAC - 39th International Symposium on Symbolic and Algebraic Computation (2014

    On the asymptotic and practical complexity of solving bivariate systems over the reals

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate polynomial systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two subresultant-based methods: this notation ignores polylogarithmic factors, where NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences. We exploit recent advances on the complexity of univariate root isolation, and extend them to sign evaluation of bivariate polynomials over two algebraic numbers, and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB(N^{12}), whereas the previous bound was \sOB(N^{14}). All algorithms have been implemented in MAPLE, in conjunction with numeric filtering. We compare them against FGB/RS, system solvers from SYNAPS, and MAPLE libraries INSULATE and TOP, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries. Key words: real solving, polynomial systems, complexity, MAPLE softwareComment: 17 pages, 4 algorithms, 1 table, and 1 figure with 2 sub-figure

    Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper we consider disjoint decomposition of algebraic and non-linear partial differential systems of equations and inequations into so-called simple subsystems. We exploit Thomas decomposition ideas and develop them into a new algorithm. For algebraic systems simplicity means triangularity, squarefreeness and non-vanishing initials. For differential systems the algorithm provides not only algebraic simplicity but also involutivity. The algorithm has been implemented in Maple

    Cache-Friendly, Modular and Parallel Schemes For Computing Subresultant Chains

    Get PDF
    The RegularChains library in Maple offers a collection of commands for solving polynomial systems symbolically with taking advantage of the theory of regular chains. The primary goal of this thesis is algorithmic contributions, in particular, to high-performance computational schemes for subresultant chains and underlying routines to extend that of RegularChains in a C/C++ open-source library. Subresultants are one of the most fundamental tools in computer algebra. They are at the core of numerous algorithms including, but not limited to, polynomial GCD computations, polynomial system solving, and symbolic integration. When the subresultant chain of two polynomials is involved in a client procedure, not all polynomials of the chain, or not all coefficients of a given subresultant, may be needed. Based on that observation, we design so-called speculative and caching strategies which yield great performance improvements within our polynomial system solver. Our implementation of these techniques has been highly optimized. We have implemented optimized core arithmetic routines and multithreaded subresultant algorithms for univariate, bivariate and multivariate polynomials. We further examine memory access patterns and data locality for computing subresultants of multivariate polynomials, and study different optimization techniques for the fraction-free LU decomposition algorithm to compute subresultants based on determinant of Bezout matrices. Our code is publicly available at www.bpaslib.org as part of the Basic Polynomial Algebra Subprograms (BPAS) library that is mainly written in C, with concurrency support and user interfaces written in C++

    Algorithmic Contributions to the Theory of Regular Chains

    Get PDF
    Regular chains, introduced about twenty years ago, have emerged as one of the major tools for solving polynomial systems symbolically. In this thesis, we focus on different algorithmic aspects of the theory of regular chains, from theoretical questions to high- performance implementation issues. The inclusion test for saturated ideals is a fundamental problem in this theory. By studying the primitivity of regular chains, we show that a regular chain generates its saturated ideal if and only if it is primitive. As a result, a family of inclusion tests can be detected very efficiently. The algorithm to compute the regular GCDs of two polynomials modulo a regular chain is one of the key routines in the various triangular decomposition algorithms. By revisiting relations between subresultants and GCDs, we proposed a novel bottom-up algorithm for this task, which improves the previous algorithm in a significant manner and creates opportunities for parallel execution. This thesis also discusses the accelerations towards fast Fourier transform (FFT) over finite fields and FFT based subresultant chain constructions in the context of massively parallel GPU architectures, which speedup our algorithms by several orders of magnitude
    • …
    corecore