4 research outputs found

    Dynamic power allocation and routing for satellite and wireless networks with time varying channels

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.Includes bibliographical references (p. 283-295).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Satellite and wireless networks operate over time varying channels that depend on attenuation conditions, power allocation decisions, and inter-channel interference. In order to reliably integrate these systems into a high speed data network and meet the increasing demand for high throughput and low delay, it is necessary to develop efficient network layer strategies that fully utilize the physical layer capabilities of each network element. In this thesis, we develop the notion of network layer capacity and describe capacity achieving power allocation and routing algorithms for general networks with wireless links and adaptive transmission rates. Fundamental issues of delay, throughput optimality, fairness, implementation complexity, and robustness to time varying channel conditions and changing user demands are discussed. Analysis is performed at the packet level and fully considers the queueing dynamics in systems with arbitrary, potentially bursty, arrival processes. Applications of this research are examined for the specific cases of satellite networks and ad-hoc wireless networks. Indeed, in Chapter 3 we consider a multi-beam satellite downlink and develop a dynamic power allocation algorithm that allocates power to each link in reaction to queue backlog and current channel conditions. The algorithm operates without knowledge of the arriving traffic or channel statistics, and is shown to achieve maximum throughput while maintaining average delay guarantees. At the end of Chapter 4, a crosslinked collection of such satellites is considered and a satellite separation principle is developed, demonstrating that joint optimal control can be implemented with separate algorithms for the downlinks and crosslinks.(cont.) Ad-hoc wireless networks are given special attention in Chapter 6. A simple cell- partitioned model for a mobile ad-hoc network with N users is constructed, and exact expressions for capacity and delay are derived. End-to-end delay is shown to be O(N), and hence grows large as the size of the network is increased. To reduce delay, a transmission protocol which sends redundant packet information over multiple paths is developed and shown to provide O(vN) delay at the cost of reducing throughput. A fundamental rate- delay tradeoff curve is established, and the given protocols for achieving O(N) and O(vN) delay are shown to operate on distinct boundary points of this curve. In Chapters 4 and 5 we consider optimal control for a general time-varying network. A cross-layer strategy is developed that stabilizes the network whenever possible, and makes fair decisions about which data to serve when inputs exceed capacity. The strategy is decoupled into separate algorithms for dynamic flow control, power allocation, and routing, and allows for each user to make greedy decisions independent of the actions of others. The combined strategy is shown to yield data rates that are arbitrarily close to the optimally fair operating point that is achieved when all network controllers are coordinated and have perfect knowledge of future events. The cost of approaching this fair operating point is an end-to-end delay increase for data that is served by the network.by Michael J. Neely.Ph.D

    Analysis of generic discrete-time buffer models with irregular packet arrival patterns

    Get PDF
    De kwaliteit van de multimediadiensten die worden aangeboden over de huidige breedband-communicatienetwerken, wordt in hoge mate bepaald door de performantie van de buffers die zich in de diverse netwerkele-menten (zoals schakelknooppunten, routers, modems, toegangsmultiplexers, netwerkinter- faces, ...) bevinden. In dit proefschrift bestuderen we de performantie van een dergelijke buffer met behulp van een geschikt stochastisch discrete-tijd wachtlijnmodel, waarbij we het geval van meerdere uitgangskanalen en (niet noodzakelijk identieke) pakketbronnen beschouwen, en de pakkettransmissietijden in eerste instantie één slot bedragen. De grillige, of gecorreleerde, aard van een pakketstroom die door een bron wordt gegenereerd, wordt gekarakteriseerd aan de hand van een algemeen D-BMAP (discrete-batch Markovian arrival process), wat een generiek kader creëert voor het beschrijven van een superpositie van dergelijke informatiestromen. In een later stadium breiden we onze studie uit tot het geval van transmissietijden met een algemene verdeling, waarbij we ons beperken tot een buffer met één enkel uitgangskanaal. De analyse van deze wachtlijnmodellen gebeurt hoofdzakelijk aan de hand van een particuliere wiskundig-analytische aanpak waarbij uitvoerig gebruik gemaakt wordt van probabiliteitsgenererende functies, die er toe leidt dat de diverse performantiematen (min of meer expliciet) kunnen worden uitgedrukt als functie van de systeemparameters. Dit resul-teert op zijn beurt in efficiënte en accurate berekeningsalgoritmen voor deze grootheden, die op relatief eenvoudige wijze geïmplementeerd kunnen worden

    Asymptotic optimality of the Round-Robin policy in multipath routing with resequencing

    Get PDF
    We consider a model of a multipath routing system where arriving customers are routed to a set of identical, parallel, single server queues according to balancing policies operating without state information. After completion of service, customers are required to leave the system in their order of arrival, thus incurring an additional resequencing delay. We are interested in minimizing the end-to-end delay (including time at the resequencing buffer) experienced by arriving customers. To that end we establish the optimality of the Round-Robin routing assignment in two asymptotic regimes, namely heavy and light traffic: In heavy traffic, the Round-Robin customer assignment is shown to achieve the smallest (in the increasing convex stochastic ordering) end-to-end delay amongst all routing policies operating without queue state information. In light traffic, and for the special case of Poisson arrivals, we show that Round-Robin is again an optimal (in the strong stochastic ordering) routing policy. We illustrate the stochastic comparison results by several simulation examples
    corecore