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Abstract

We consider a model of a multipath routing system, where arriving customers are

routed to a set of identical, parallel, single server queues, according to balancing poli-

cies operating without state information. After completion of service, customers are

required to leave the system in their order of arrival, thus incurring an additional rese-

quencing delay. We are interested in minimizing the end-to-end delay (including time

at the resequencing buffer) experienced by arriving customers. To that end, we es-

tablish optimality of the Round–Robin routing assignment in two asymptotic regimes,

namely heavy and light traffic: In heavy traffic, Round–Robin customer assignment is

shown to achieve the smallest (in the increasing convex stochastic ordering) end-to-

end delay amongst all routing policies operating without queue state information. In

light traffic, and for the special case of Poisson arrivals, we show that Round–Robin is

again an optimal (in the strong stochastic ordering) routing policy. We illustrate these

and suggest other stochastic comparison results in a number of simulation examples.
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1 Introduction

Many resource sharing systems act as disordering mechanisms in that their customers (e.g.,

packets in a communication network or tasks in a computer system) complete service in

an order different from the order in which they entered the system. In some situations, a

resequencing constraint is enforced by putting out-of-order customers into aresequencing

buffer (after service completion) and delaying them until earlier customers catch up with

them. The impact of such resequencing mechanisms on overall system performance is not

always well understood. This can be attributed in part to the fact that even in the simplest

of cases, the corresponding queueing models are not analytically tractable.

Earlier work on queueing systems with resequencing constraints is reported in [2, 5,

7, 8, 18]. Here we focus on a particular “disordering network” composed ofK identical

servers operating in parallel, each attending to its own infinite capacity buffer and serving

customers in FCFS order. Upon arrival to the system, customers are routed to one of the

servers, with routing decisions being independent of the state of the system. Prominent

among such routing mechanisms is the Round–Robin customer assignment. After service

completion, each customer is required to leave the system in the order in which it arrived,

thereby possibly experiencing an additional delay in the resequencing buffer. Of particular

interest is theend-to-enddelay experienced by customers; this quantity is defined as the sum

of the time spent waiting in buffer for service (i.e., the waiting time), the time in service

and the time spent in the resequencing buffer (i.e., the resequencing delay).

We assume customer arrivals to be modelled by a renewal process, and the service

times to be i.i.d. and independent of the arrival process. We are interested not in evalu-

ating various statistics of the customer end-to-end delay under these routing assignments,

but in identifying the routing mechanism minimizing this quantity in some suitable sense.

Intuitively, owing to its deterministic nature, the Round–Robin customer assignment should

yield a smaller end-to-end delay than any other policy operating without state information,

as yet another instance of the folk theorem that “determinism minimizes delays” [2] (and

references therein). For instance, by the extremal property in [16, Prop. 6.3.1, p. 114],

the steady state waiting time under Round–Robin is known to be smaller in the increas-

ing convex ordering than that under the Bernoulli customer assignment. Thus, in line with

this result, we would expect similar stochastic comparisons to hold in steady state for the

end-to-end delay in the system of parallel queues with resequencing.

This paper is concerned with validating the optimality of the Round – Robin routing

mechanism. For reasons to be explained shortly, we investigate the desired stochastic com-

parisons in twoasymptoticregimes, namely, heavy and light loads. In particular, the heavy
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traffic limit for the end-to-end delay under Round–Robin assignment is shown to be smaller,

in the increasing convex stochastic ordering, than its counterpart under any other routing

policy admitting a certain Functional Central Limit Theorem (in the form of Assumption

(D) of Section 7). In light traffic, with Poisson arrivals, we show that Round–Robin rout-

ing achieves the smallest (in the strong stochastic ordering) end-to-end delay amongst all

routing policies operating without queue state information (as understood in Assumption

(A) of Section 3). These asymptotic comparisons are certainly compatible with the desired

optimality across all traffic intensities, and give a strong indication of its validity; this is

further reinforced by the limited simulation experiments reported in Section 12 for Poisson

arrivals.

The difficulty in providing the desired comparison across the entire traffic range for

stability lies in the fact that the end-to-end delay is a function of the entire workloadvec-

tor. Under the enforced assumptions, the behavior of each queue in isolation is that of a

GI|GI|1 queue under each of the routing mechanisms. This fact was exploited in the proof

of Proposition 6.3.1 [16, p. 114] to compare the customer waiting times in the increasing

convex stochastic ordering. However, in general theK parallel single server queues arenot

independent, thereby precluding the derivation of closed-form expressions for the distribu-

tions of interest, even when such expressions are available for the correspondingGI|GI|1
queue.

This paper is organized as follows: The system model and basic performance metrics

are presented in Section 2. Section 3 contains the basic statistical assumptions, and the

existence of a steady state (or stationary) regime is discussed in Section 4. The heavy traffic

problem is introduced in Section 5. This is followed in Section 6 by a summary of the

heavy traffic methodology via weak convergence in function spaces. The assumptions for

establishing the relevant heavy traffic limits are presented in Section 7, and the heavy traffic

results are then developed in Section 8. These results are used to obtain stochastic compar-

isons in heavy traffic in Section 9. As a preamble to the light traffic results, we summarize

the Reiman-Simon theory in Section 10. The light traffic calculations and subsequent com-

parisons are then discussed in Section 11. Finally, Section 12 discusses numerical examples

that illustrate the results. A number of proofs are given in Appendix A.

A few words on the notation in use here: Throughout, letK denote a given positive

integer. Vectors are denoted in boldface and are always interpreted asrow vectors. More-

over, thekth component of any elementx in IRK is denoted byxk, k = 1, . . . ,K, so

thatx ≡ (x1, . . . , xK). A similar convention is used for random variables (rvs). For any

scalarx in IR, we denote bymodK(x) the modK-equivalent ofx in the interval[0,K).
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We use=⇒r to denote weak convergence (withr going to infinity), and refer the reader to

the monographs [3, 21] for additional information on weak convergence. We use≤st, ≤cx

and≤icx to denote inequality in the strong, convex and increasing convex stochastic order-

ings, respectively. Additional material on these orderings can be found in the monographs

[14, 15, 16]. Equality in distribution between two rvs is denoted simply by=st.

2 The system dynamics

To introduce the system ofK(≥ 2) parallel queues with resequencing, we start with the

sequences ofIR+–valued rvs{τn+1, n = 0, 1, . . .} and {σn, n = 0, 1, . . .}, and with

the sequence of{1, . . . ,K}–valued rvs{νn, n = 0, 1, . . .}. With this last sequence we

associate a new sequence of{0, 1}K–valued rvs{un, n = 0, 1, . . .} by setting

uk
n = δ(νn, k), k = 1, . . . ,K; n = 0, 1, . . . . (1)

Throughout these quantities are given the following interpretation: For eachn = 0, 1, . . .,
the interarrival time between thenth and the(n + 1)rst customers is denoted byτn+1 (with

the convention that the0th customer arrives at timet = 0). Thenth customer brings an

amount of work that requiresσn units of execution time, whileνn = k (or, equivalently,

uk
n = 1) indicates that thenth customer is routed to thekth queue.

We now define the performance measure of interest under the assumption that the sys-

tem is empty at timet = 0. For eachk = 1, . . . ,K, let wk
n represent the work remaining in

thekth queue as seen by thenth customer just before entering the system. TheIR+–valued

rvs {wk
n, n = 0, 1, . . .} evolve according to the Lindley recursion

wk
n+1 =

(
wk

n + uk
nσn − τn+1

)+
, n = 0, 1, . . . . (2)

with wk
0 = 0. Note thatwk

n would be the waiting time of thenth customer, were she in

fact to join thekth queue. Consequently, the timedn that thenth customer spends either in

buffer waiting for service or in service is defined by

dn :=
K∑

k=1

uk
n

(
wk

n + σn

)
=

(
K∑

k=1

uk
nwk

n

)
+ σn, n = 0, 1, . . . . (3)

As a global resequencing constraint is imposed on successive customers, a customer

may spend time in a resequencing buffer after service completion, in order to wait for

earlier customers which have been delayed. With this in mind we introduce the end-to-end

delay of thenth customer as the rvvn, which accounts for the time spent waiting in buffer
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for service, the time in service and the time spent in the resequencing buffer. It is easy to

see that

vn = max
k=1,...,K

(
wk

n + uk
nσn

)
, n = 0, 1, . . . . (4)

3 Statistical assumptions

In this paper, we consider routing policies that balance the load among theK queues by tak-

ing routing decisions which are independent of both the arrival process and the sequence of

service times, but which are possibly dependent on past routing decisions. This is captured

through the following set of assumptions:

Assumption (A) (i) The three sequences{τn+1, n = 0, 1, . . .}, {σn, n = 0, 1, . . .}
and {νn, n = 0, 1, . . .} are mutually independent; (ii) TheIR+–valued rvs{τn+1, n =
0, 1, . . .} form an i.i.d. sequence with finite variancevar [τ ]; (iii) The IR+–valued rvs

{σn, n = 0, 1, . . .} form an i.i.d. sequence with distributionG and finite variancevar [σ];
(iv) The{1, . . . ,K}-valued rvs{νn, n = 0, 1, . . .} form a stationary sequence with

P [νn = k] =
1
K

, k = 1, . . . ,K, n = 0, 1, . . . . (5)

Under (A), letσ andτ denote a pair ofindependentrvs; these are generic representatives

of the i.i.d. sequences{σn, n = 0, 1, . . .} and{τn+1, n = 0, 1, . . .}, respectively. Part

(iv) of Assumption (A) guarantees that the{0, 1}K -valued rvs{un, n = 0, 1, . . .} given

by (1) also form a stationary sequence. Any routing policy{νn, n = 0, 1, . . .} satisfying

Assumption (A) is said to beadmissible.

Of central interest is the Round–Robin customer assignment. This is implemented

through the routing rvs{νR
n , n = 0, 1, . . .} given by

νR
n = modK(ν� + n − 1) + 1, n = 0, 1, . . . (6)

with rv ν� uniform over{1, . . . ,K}, i.e.,

P [ν� = k] =
1
K

, k = 1, . . . ,K. (7)

With this definition, the0th customer is randomly routed to one of theK queues. We also

specialize several results to the Bernoulli customer assignment, which is characterized by

the routing rvs{νB
n , n = 0, 1, . . .} being i.i.d. rvs with common distribution given by

P
[
νB

n = k
]

=
1
K

, k = 1, . . . ,K, n = 0, 1, . . . (8)
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Under either assignment, the routing rvs{νn, n = 0, 1, . . .} form a stationary sequence

of {1, . . . ,K}-valued rvs with common marginal distribution given by (5), hence both

Round–Robin and Bernoulli are admissible routing policies. Following the usage started

in (8) and (6), quantities associated with the system under the Bernoulli and Round–Robin

customer assignments are distinguished by the superscriptB andR, respectively. Omission

of the superscript will reflect the fact that the discussion holds for any admissible policy.

4 Steady state regimes and stochastic comparisons

Under any admissible routing policy, the system is stable if and only if each of theK

queues is stable. It is a simple matter to check that this will happen if and only the(server)

utilization ρ is less than one, namely

ρ :=
E [σ]

KE [τ ]
< 1. (9)

The precise formulation of this stability property is contained in a multi-dimensional analog

of Loynes’ result [10] given below; its proof is straightforward and omitted for the sake of

brevity.

In order to state the result we need to expand the setup of Assumption (A) tobi-infinite

sequences, possibly by enlarging the underlying probability space in the usual manner.

Thus, whenever Assumption (A) holds, we are to understand the following: (i) There

exist three bi-infinite sequences{τn+1, n = 0,±1,±2, . . .}, {σn, n = 0,±1,±2, . . .}
and{νn, n = 0,±1,±2, . . .} which are mutually independent; (ii) TheIR+–valued rvs

{τn+1, n = 0,±1,±2, . . .} form an i.i.d. sequence with finite variancevar [τ ]; (iii) The

IR+–valued rvs{σn, n = 0,±1,±2, . . .} form an i.i.d. sequence with distributionG and

finite variancevar [σ]; (iv) The {1, . . . ,K}-valued rvs{νn, n = 0,±1,±2, . . .} form a

stationary sequence with

P [νn = k] =
1
K

, k = 1, . . . ,K, n = 0,±1,±2, . . . . (10)

Fix k = 1, 2, . . . ,K. We define the sequence of partial sums{skn, n = 0,±1,±2, . . .}
by

sk
0 := 0; sk

n :=



n∑
m=1

ξk
m if n = 1, 2, . . .

0∑
m=n+1

ξk
m if n = −1,−2, . . .

(11)
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where for eachn = 0,±1,±2, . . ., we have set

ξk
n+1 := uk

nσn − τn+1 (12)

with

uk
n = δ(νn, k). (13)

Proposition 4.1 Under Assumption (A), the stability condition (9) ensures thatwn =⇒n

w∞ = (w1
∞, . . . , wK

∞) andvn =⇒n v∞ with

wk
∞ := sup

(
sk
m, m = 0,−1, . . .

)
, k = 1, . . . ,K (14)

and

v∞ := max
k=1,...,K

(
wk
∞ + uk

0σ0

)
. (15)

We refer tow∞ andv∞ as the stationary workload vector and end-to-end delay, re-

spectively. To shed light into their representations (14) and (15), we note the monotone

convergence

wk
∞ = lim

n→∞ w̃k
n, k = 1, . . . ,K (16)

where we have set

w̃k
n := max

(
sk
m, m = 0,−1, . . . ,−n

)
, n = 1, 2, . . . (17)

For eachn = 1, 2, . . ., stationarity implies that

wk
n =st w̃k

n and vn =st ṽn (18)

with

ṽn := max
k=1,...,K

(
w̃k

n + uk
0σ0

)
. (19)

This identification reflects the usual Loynes’s “backward in time” arguments to construct

the stationary regime [10].

Under the enforced assumptions, it holds thatw1
∞ =st . . . =st wK

∞, and we readily

conclude from (3) and (14) that

dn =⇒n d∞ with d∞ :=

(
K∑

k=1

uk
0w

k
∞

)
+ σ0. (20)

It is well known [16, Prop. 6.3.1, p. 114] thatw1,R
∞ ≤icx w1,B

∞ , so thatdR
∞ ≤icx dB

∞
in view of (20). It is therefore natural to wonder whether such a comparison also holds

between the end-to-end delaysvR
∞ and vB

∞, namelyvR
∞ ≤icx vB

∞. It turns out that an

answer to this question is much more elusive, and prompts us instead to seek such stochastic

comparisons in the limiting regimes of heavy and light traffic.
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5 The heavy traffic problem

We seek a characterization of the system of parallel queues with resequencing in the case

where it is almost fully utilized, i.e., the utilization, though less than one, is very close

to unity. This heavy traffic characterization entails model simplifications which allow for

subsequent comparison between of the end-to-end delays under Round–Robin and any other

admissible routing policy.

To do so, we embed the system of parallel queues into a parametric family of like

queueing systems, indexed by an integer (sayr), with the property that the utilizationρr
of the rth system tends to the critical value1 as r goes to infinity. These systems dif-

fer only through their arrival sequences. Specifically, for eachr = 1, 2, . . ., the rth sys-

tem of parallel queues with resequencing is one driven by the sequence of service times

{σn, n = 0,±1,±2, . . .}, the sequence of routing rvs{νn, n = 0,±1,±2, . . .} and the

arrival sequence{τr
n+1, n = 0,±1,±2, . . .} under Assumption (A). Quantities associated

with therth system are superscripted byr.

We takeρr < 1, or equivalently,E [σ] < KE [τr], to ensure stability of therth system,

so thatwr
n =⇒n wr

∞ andvr
n =⇒n vr

∞ by Proposition 4.1. However, we drive the family

of systems toheavy trafficby assuming that

lim
r→∞E [τ r] =

1
K

E [σ] . (21)

Clearly, asr goes to infinity, the components of the stationary workload vectorwr
∞ grow

unbounded. It is therefore appropriate to seek a scaling sequence{αr, r = 1, 2, . . .} with

limr→∞αr = ∞ such that the convergence in distribution

αr
−1wr

∞ =⇒r wHT (22)

takes place to someIRK
+ -valued rvwHT = (w1

HT, . . . , wK
HT). It then follows from (15) that

αr
−1vr

∞ =⇒r vHT (23)

with IR+-valued rvvHT determined through the relation

vHT = max
k=1,...,K

wk
HT. (24)

It is customary to refer towHT andvHT as the heavy traffic limits.
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6 The heavy traffic methodology

In order to identify the scaling sequence and the heavy traffic limits in (22)-(24), we take the

indirect approach based on diffusion limits whereby the quantities of interest are rescaled

both in the time and state space variables [1, 19].

To introduce the basic ideas, fixr = 1, 2, . . . andk = 1, . . . ,K. The identification (18)

leads in the usual manner [19, 21] to considering the rvs

w̃r,k
[rt] = max

(
sr,k
m , m = 0,−1, . . . ,−[rt]

)
= max

(
sr,k
−[ru], 0 ≤ u ≤ t

)
, t ≥ 0 (25)

and

ṽr
[rt] = max

k=1,...,K

(
w̃r,k

[rt] + uk
0σ0

)
, t ≥ 0. (26)

Next, we define theIR–valued processes{Sr,k(t), t ≥ 0} and{W̃ r,k(t), t ≥ 0} by

Sr,k(t) :=
1√
r

(
sr,k
−[rt] −E

[
sr,k
−[rt]

])
and W̃ r,k(t) :=

w̃r,k
[rt]√
r

, t ≥ 0. (27)

The IRK-valued processes with components given by (27) are denoted by{Sr(t), t ≥ 0}
and{W̃ r

(t), t ≥ 0}, respectively.

With the help of (25) we note that

W̃ r,k(t) = sup
0≤u≤t

(
Sr,k(u) − γr,k(u)

)
, t ≥ 0 (28)

where we have defined the functionγr,k : IR+ → IR by

γr,k(t) := − 1√
r

E
[
sr,k
−[rt]

]
, t ≥ 0. (29)

Finally, we define theIR–valued process{Ṽ r(t), t ≥ 0} by

Ṽ r(t) := max
k=1,...,K

(
W̃ r,k(t) + uk

0

σ0√
r

)
, t ≥ 0. (30)

The next step consists in lettingr go to infinity in these definitions, with limits un-

derstood in the sense of weak convergence on function spaces [3]: For eachT > 0, let

D[0, T ]K denote the space of mappings[0, T ] → IRK which are right continuous with left

limits; as usual the vector spaceD[0, T ]K is equipped with the Skorokhod topology. Con-

sider the sequence ofIRK–valued processes{Xr(t), t ≥ 0} (r = 1, 2, . . .) with sample

paths inD[0,∞)K . Whenever, for eachT > 0, the weak convergence

{Xr(t), 0 ≤ t ≤ T}=⇒r{X(t), 0 ≤ t ≤ T} in D[0, T ]K
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takes place (under the Skorokhod topology) for someIRK-valued process{X(t), t ≥ 0}
with sample paths inD[0,∞]K , we simply write

{Xr(t), t ≥ 0} =⇒r {X(t), t ≥ 0}.
It is plain from (28) and (30) that the processes{W̃ r

(t), t ≥ 0} and{Ṽ r(t), t ≥ 0} are

obtained through non-linear functionals on the process{Sr(t), t ≥ 0}. This observation

suggests that the limit properties of the latter process will determine those of the former

group. To emphasize this point further, for eachT > 0 we introduce thesupremum mapping

MT : D[0, T ] → D[0, T ] defined by

MT (x)(t) := sup
0≤u≤t

x(u), 0 ≤ t ≤ T (31)

at elementx of D[0, T ]. In particular, relation (28) now becomes

W̃ r,k(t) = MT ({Sr,k(u) − γr,k(u), 0 ≤ u ≤ T})(t), 0 ≤ t ≤ T. (32)

It is well known that the supremum mappingMT : D[0, T ] → D[0, T ] is continuous under

the Skorokhod topology [20, Thm 6.4, p. 81].

7 The heavy traffic assumptions

A number of additional assumptions are needed to carry out the discussion. Assumption

(B) below complements (21); it is enforced thereafter and ensures that the system described

by (28)–(30) is driven to heavy traffic at the appropriate speed.

Assumption (B) The sequence of generic interarrival times{τr, r = 1, 2, . . .} satisfies

lim
r→∞

√
r

(
1
K

E [σ] − E [τ r]
)

= −γ

for someγ > 0.

Under Assumption (A), for eachk = 1, . . . ,K, we have

E
[
sr,k
[rt]

]
= E [σ]

[rt]−1∑
n=0

E
[
uk

n

]
− [rt]E [τ r] , t ≥ 0.

Hence, Assumption (B) readily leads via (29) to

lim
r→∞γr,k(t) = γt, t ≥ 0 (33)

under any admissible routing policy.

We follow up with a technical assumption on the arrival sequence:
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Assumption (C) The rvs{|τr|2, r = 1, 2, . . .} are uniformly integrable rvs withζ2 :=
lim

r→∞var [τ r] > 0.

Assumption (C) ensures the validity of a version of Donsker’s Theorem [3, Thm. 16.1,

p. 137] in the form of the following Functional Central Limit Theorem (FCLT), namely 1√
r

[rt]−1∑
n=0

(τ r
n+1 − E [τ r]), t ≥ 0

 =⇒r {ζB(t), t ≥ 0}. (34)

with {B(t), t ≥ 0} a standard one-dimensional Brownian motion. The uniform integra-

bility in Assumption (C) is used to validate the appropriate Lindeberg’s condition [3, Eqn.

(7.3), p. 42].

The heavy traffic results will be established only for those admissible routing policies

which admit a FCLT in a sense which we now describe: Here, and throughout, let1 denote

the element(1, . . . , 1) in IRK . Next, consider an admissible routing policy{νn, n =
0, 1, . . .} with corresponding sequence{un, n = 0, 1, . . .}. For eachr = 1, 2, . . ., we

define theIRK-valued process{Ur(t), t ≥ 0} by

U r(t) :=
1√
r

[rt]−1∑
n=0

(
unσn − E [σ]

K
1
)

, t ≥ 0. (35)

Assumption (D) Consider an admissible routing policy{νn, n = 0, 1, . . .}. The corre-

sponding sequence{un, n = 0, 1, . . .} satisfies the FCLT in the form

{U r(t), t ≥ 0} =⇒r {Γ1/2A(t), t ≥ 0} (36)

where{A(t), t ≥ 0} is aK–dimensional standard Brownian motion, andΓ is theK × K

covariance matrix determined by

Γk� = lim
r→∞

1
r
cov

[
r−1∑
n=0

uk
nσn,

r−1∑
m=0

u�
mσm

]
, k, 
 = 1, . . . ,K. (37)

An admissible routing policy is said to beHT–admissibleif Assumption (D) holds. The

role of the matrixΓ in (36) can be made more transparent as follows: For eacht > 0, (37)

is equivalent to

var

[rt]−1∑
n=0

unσn

 θT

 ∼ rt · θΓθT , θ ∈ IRK (38)
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for r becoming large. Therefore, with the Cram´er-Wold device [3, p. 48] in mind, we now

see that (36) implies the convergence(∑[rt]−1
n=0

(
unσn − E[σ]

K 1
))

θT√
var
[(∑[rt]−1

n=0 unσn

)
θT
] =⇒r U, θ ∈ IRK (39)

whereU denotes the standard zero-mean unit variance Gaussian rv. This last convergence

is in the form of a Central Limit Theorem for identically distributed rvs which are not

necessarily independent; this is an extensively studied problem for which results abound in

the literature. As HT–admissibility represents the functional form of such CLT results, it is

expected to be satisfied by a large class of admissible routing policies. The reader is refered

to Section 4.4 of the monograph by Whitt [21] for an overview of some of the possibilities.

The next result determines the impact of the routing policy on the covariance matrixΓ.

Its proof is available in Appendix A.1.

Lemma 7.1 TheK ×K covariance matrixΓ given by (37) exists if and only if theK ×K

covariance matrix̃Γ determined by

Γ̃k� = lim
r→∞

1
r
cov

[
r−1∑
n=0

uk
n,

r−1∑
m=0

u�
m

]
, k, 
 = 1, . . . ,K (40)

exists, in which case

Γk� = Γ̃k� · E [σ]2 + δ(k, 
)
var [σ]

K
, k, 
 = 1, . . . ,K. (41)

8 The heavy traffic limits

We begin by discussing the HT–admissibility of Round–Robin and Bernoulli routing. Proofs

are available in Appendix A.2.

Proposition 8.1 Both Bernoulli and Round–Robin routing policies satisfy Assumption (D)

with covariance matrices (40) given by

Γ̃B
k� = δ(k, 
)

1
K

(
1 − 1

K

)
, k, 
 = 1, . . . ,K, (42)

and

Γ̃R
k� = 0, k, 
 = 1, . . . ,K, (43)

respectively.
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We are now ready to develop the requisite heavy traffic limits under an arbitrary HT–

admissible routing policy.

Proposition 8.2 Consider an HT-admissible routing policy{νn, n = 0, 1, . . .} under the

Assumptions (A)–(D). The convergence

{Sr(t), t ≥ 0} =⇒r {S(t), t ≥ 0} (44)

holds with

S(t) := B(t)Σ1/2, t ≥ 0 (45)

where{B(t), t ≥ 0} denotes aK–dimensional standard Brownian motion and theK ×K

covariance matrixΣ is given by

Σk� = Γk� + ζ2, k, 
 = 1, . . . ,K. (46)

With the help of (41), we can rewrite (46) more compactly in matrix form as

Σ = Γ + ζ2E = Γ̃ ·E [σ]2 +
var [σ]

K
I + ζ2E (47)

whereE is theK × K covariance matrix1T1, andI denotes the identity matrix onIRK .

Proof. Under Assumption (C), (34) can be given a multi-dimensional version in the form 1√
r

[rt]−1∑
n=0

(τ r
n+1 − E [τ r])1, t ≥ 0

 =⇒r {ζB(t)1, t ≥ 0}. (48)

Given the enforced independence assumptions, the Brownian motions{B(t), t ≥ 0} above

and{A(t), t ≥ 0} of (36) can be taken to be mutually independent. Hence, for eacht > 0,

we have1

cov
[
A(t)Γ1/2 + ζB(t)1

]
= cov

[
A(t)Γ1/2

]
+ ζ2cov [B(t)1]

= Γ1/2cov [A(t)] Γ1/2 + ζ21T var [B(t)]1

=
(
Γ + ζ21T1

)
t (49)

sincevar [B(t)] = t andcov [A(t)] = I · t. In short,cov
[
A(t)Γ1/2 + ζB(t)1

]
= Σ · t,

and the identification

{A(t)Γ1/2 + ζB(t)1, t ≥ 0} =st {B(t)Σ1/2, t ≥ 0} (50)
1Recall thatΓ andΓ1/2 are symmetric matrices.
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follows by the usual characterization of Brownian motion.

To conclude, recall the definition (27) and (35) (together with (11) and (12)). Making

use of (36), (33) and (48), we find thatU r(t) +
1√
r

[rt]−1∑
n=0

(τ r
n+1 − E [τ r])1, t ≥ 0

 =⇒r {B(t)Σ1/2, t ≥ 0}.

This an easy consequence of the Continuous Mapping Theorem [3, p. 29] [19, p. 320]

when coupled with Theorem 3.2 in [3, p. 21]. This completes the proof of (44) as we note

the stochastic equivalencce

{Sr(t), t ≥ 0} =st

U r(t) +
1√
r

[rt]−1∑
n=0

(τ r
n+1 − E [τ r])1, t ≥ 0


which is easily validated under the enforced assumptions (A).

Whenever convergence (44) holds, we conclude that

{W̃ r
(t), t ≥ 0} =⇒r {W̃ (t), t ≥ 0} (51)

with

W̃ k(t) := sup
0≤u≤t

(
Sk(u) − γu

)
, k = 1, . . . ,K, t ≥ 0. (52)

This convergence is a direct consequence of the Continuous Mapping Theorem [3, p. 29]

[19, p. 320] (via (32) and (33)) given the aforementioned continuity of the supremum

mapping (31) in the Skorokhod topology; details for the multi-dimensional extension are

standard and left to the interested reader.

Now, going back to (30) we see that

0 ≤ Ṽ r(t) − max
k=1,...,K

W̃ r,k(t) ≤ σ0√
r
, t ≥ 0 (53)

for eachr = 1, 2, . . .. Applying the Continuous Mapping Theorem [3, p. 29], in conjunc-

tion with (51), yields{ max
k=1,...,K

W̃ r,k(t), t ≥ 0} =⇒r {Ṽ (t), t ≥ 0} where

Ṽ (t) := max
k=1,...,K

W̃ k(t), t ≥ 0. (54)

The conclusion

{Ṽ r(t), t ≥ 0} =⇒r {Ṽ (t), t ≥ 0}

14



is now a straightforward consequence of the inequality (53) and of the Convergence To-

gether Theorem [3, Thm. 4.1, p. 25].

Let t go to infinity in (52) and (54). Standard monotonicity arguments yield the station-

ary heavy traffic workload vector̃W and end-to-end delaỹV as the limiting rvslim
t→∞W̃ (t) =

W̃ and lim
t→∞ Ṽ (t) = Ṽ with

W̃ k := sup
t≥0

(
Sk(t) − γt

)
, k = 1, . . . ,K (55)

and

Ṽ := max
k=1,...,K

W̃ k. (56)

The finiteness of these rvs is discussed in the course of proving Proposition 9.3.

Going back to (22)-(24), we see that we can selectαr =
√

r, and the arguments in the

one-dimensional case [1] readily extend to yield the identification

W̃ =st wHT and Ṽ =st vHT, (57)

thereby validating the use of diffusion limits to secure heavy traffic results.

9 Heavy traffic optimality of Round – Robin routing

We are interested in a stochastic comparison in heavy traffic between the end-to-end delay

under Round–Robin and that of any other HT–admissible routing policy. Our first step in

this direction is a characterization of the convex ordering for Gaussian rvs due to M¨uller

[11, Thm. 3.3].

Proposition 9.1 LetX andX′ denote two normally distributedIRd-valued rvs, sayX =st

N (µ,Σ) andX′ =st N (µ′,Σ′), respectively. ThenX ≤cx X ′ if and only ifµ = µ′ and

thed × d matrix Σ′ − Σ is positive semi-definite.

Consider now an HT-admissible routing policy{νn, n = 0, 1, . . .} under the Assump-

tions (A)–(D). To apply Proposition 9.1 we fix somen = 1, 2, . . ., and with any ordered

n-tuplet1 < . . . < tn in IR+, we associate thenK–dimensional rvS(t1, . . . , tn) given by

S(t1, . . . , tn) := (S(t1), . . . ,S(tn))

where{S(t), t ≥ 0} is theIRK-valued limiting process (45) identified in Proposition 8.2.

The comparison result that follows is established in Appendix A.3. As usual, the superscript

R indicates that the corresponding quantity is evaluated under the Round–Robin policy.
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Proposition 9.2 Consider an HT-admissible routing policy under the Assumptions (A)–(D).

For all n = 1, 2, . . ., and0 ≤ t1 < . . . < tn, it holds that

SR(t1, . . . , tn) ≤cx S(t1, . . . , tn). (58)

Comparison (58) leads to the desired stochastic comparison between the stationary

heavy traffic end-to-end delays under Round–Robin and any other HT–admissible routing

policy.

Proposition 9.3 For any HT-admissible routing policy under Assumptions (A)–(D), it holds

that

W̃
R ≤icx W̃ and Ṽ R ≤icx Ṽ . (59)

In particular, making use of the identification (57), we obtain the heavy traffic com-

parisonvR
HT ≤icx vHT, which suggests the validity of the comparisonvr,R∞ ≤icx vr

∞ for

sufficiently larger.

Proof. Fix n = 1, 2, . . .. In the notation of Proposition 9.2, for any orderedn-tuple

0 ≤ t1 < . . . < tn (with the conventiont0 = 0), let M(t1, . . . , tn) denote theIRK-valued

rv with components

Mk(t1, . . . , tn) := max
(
Sk(ti) − γti, i = 0, 1, . . . , n

)
, k = 1, . . . ,K.

We conclude from (58) that

MR(t1, . . . , tn) ≤icx M(t1, . . . , tn) (60)

owing to the fact that comparisons in the convex increasing ordering are preserved under

increasing convex mappings [15].

Before we can make use of these comparisons, we need some preparatory work: Fix

k = 1, . . . ,K and note from the definitions (52) and (55) that

0 ≤ W̃ k(t) ≤ W̃ k, t ≥ 0. (61)

The process{Sk(t),≥ t ≥ 0} is statistically indistinguishable from{σkB
k(t),≥ t ≥ 0}

whereσk =
√

Σkk, and it is a simple matter to check from (47) thatσk > 0. Thus, by

standard results on the supremum of Brownian motion [1, 3, 19], the rvW̃ k is exponentially
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distributed, and the rvs{W̃ k(t), t ≥ 0} are therefore uniformly integrable by virtue of (61).

The uniform integrability of theIRK-valued rvs{W̃ (t), t ≥ 0} follows with lim
t→∞ W̃ (t) =

W̃ .

Next, fix t > 0. For eachp = 1, 2, . . ., taketp,j = j2−pt with j = 0, . . . , 2p, and write

Mk(t; p) := Mk(tp,0, tp,1, . . . , tp,2p).

In this notation, comparison (60) yields

MR(t; p) ≤icx M(t; p), p = 1, 2, . . . . (62)

Note thatM(t; p) ≤ M(t; p + 1) ≤ W̃ (t) componentwise for allp = 0, 1, . . . and that

for eachk = 1, . . . ,K, we have lim
p→∞Mk(t; p) = W̃ k(t) monotonically from below by a

simple continuity argument. Lettingp go to infinity in (62) yields

W̃
R
(t) ≤icx W̃ (t) (63)

by the uniform integrability of the rvs{W̃ (t), t ≥ 0} [16, Prop. 1.3.2, p. 10]. As we let

t go to infinity in (63), we get the first convergence in (59) [16, Prop. 1.3.2, p. 10] upon

invoking again the aforementioned uniform integrability.

The second convergence is now immediate from the fact the convex increasing mapping

IRK → IR : x → max
k=1,...,K

xk preserves comparisons in the convex increasing ordering.

10 Light traffic via the Reiman-Simon theory

We now shift attention to the light traffic regime. This refers to the limiting situation where

the system traffic intensity approaches zero. Throughout this section we assume that the

customer arrival process isPoisson. In that case the Reiman–Simon theory [12, 13] applies,

and enables us to calculate derivatives of system quantities of interest with respect to the

intensity of the Poisson arrival process, when this intensity tends to zero. Here, the quantity

of interest isPλ [v∞ > x] (x ≥ 0), the complementary cumulative distribution function of

the stationary end-to-end delay. Our objective is to compute its derivatives of order zero

and one, with a view towards establishing asymptotic optimality of Round–Robin routing

in light traffic. To that end we next highlight the key points of the Reiman–Simon method,

as it applies in our context.

As in Section 4, we start by introducing bi–infinite counterparts to the sequences of

IR+–valued rvs representing customer arrival epochs and their service durations. That
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is, we consider the sample space(Ω,F) whereΩ is the set of all finite and infinite se-

quences{(tn, σn), n = 0,±1,±2, . . .} with σn in IR+ and . . . < t−1 < 0 = t0 <

t1 < . . .. For λ > 0, we introduce a probability measurePλ on (Ω,F) such that un-

derPλ, the bi–infinite sequence of interrarival times{τn, n = 0,±1,±2, . . .}, given by

τn = tn − tn−1, is independent, exponentially distributed with parameterλ, and the marks

{σn, n = 0,±1,±2, . . .} are i.i.d. with common distributionG which are independent of

{τn, n = 0,±1,±2, . . .}. We also introduce the bi–infinite sequences of routing vectors

{un, n = 0,±1,±2, . . .}, workload vectors{wn, n = 0,±1,±2, . . .}, and end-to-end

delays{vn, n = 0,±1,±2, . . .}. In this setup, the system has been operating from time

t = −∞, i.e., for eachn = 0,±1,±2, . . .,

wk
n+1 = [wk

n + uk
nσn − τn+1]+, k = 1, . . . ,K (64)

and

vn := max
k=1,...,K

(
wk

n + uk
nσn

)
. (65)

Under the stability conditionλE [σ] < K, convergence to the stationary rvv∞ has taken

place by timet = 0, i.e.,

v0 =st v∞. (66)

Let the generic system performance metricφ(λ) be expressed as

φ(λ) =
∫

Φ dPλ (67)

for a suitably chosen rvΦ : Ω → IR. For example,Φ(ω) can be chosen as the system time

v0 of the tagged customer arriving at timet = 0, corresponding to a sample pathω in Ω, in

which case, from (66) and (67), the performance metricφ(λ) is the expected valueEλ [v∞]
of the stationary end-to-end delayv∞. Application of the Reiman–Simon method entails

conditioning on the number of arriving customers and their corresponding service times. To

do so, we denote by∅ the event where no customer arrives on the entire real line(−∞,∞),
exceptfor a tagged customer who arrives at timet = 0 with service timeσ0. For eacht in

IR, let {t} denote the event where in addition to the tagged customer, there is exactly one

more arrival occuring at timet; its service time is denoted byσ.

Next, we associate withΦ several auxiliary functions, namely the expected values ofΦ,

conditionally on the arrival events∅ and{t}, given by

Φ̂(∅) := Eλ [Φ | ∅] and Φ̂({t}) := Eλ [Φ | {t}] , t ∈ IR . (68)

These quantities donot depend onλ.
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The following result is essentially a version of Theorem 2 given in [13, p. 30]. It pro-

vides formulas for the derivatives of order zero and one ofφ(λ) atλ = 0+, by considering

scenarios where, in addition to the tagged customer, at most one more customer ever joins

the system.

Proposition 10.1 If there existsθ� > 0 such thatE
[
eθσ
]

< ∞ for θ < θ�, then

lim
λ↓0

φ(λ) = Φ̂(∅) (69)

and
d

dλ
φ(0+) := lim

λ↓0
d

dλ
φ(λ) =

∫
IR

(
Φ̂({t}) − Φ̂(∅)

)
dt. (70)

11 Light traffic optimality of Round–Robin routing

We rely on Proposition 10.1 to calculate light traffic derivatives of the distribution of the

end-to-end delay. Using these derivatives we write a Taylor expansion of the end-to-end

delay distribution aroundλ = 0 given in the next proposition. This expansion is valid for all

admissible routing policies (prescribed by Assumption (A)), i.e., it is not limited to Round–

Robin or Bernoulli routing. It depends critically on the event that the routing policy assigns

two successive customer to the same queue. Throughout, we writeḠ(x) := 1 − G(x)
(x ≥ 0) for the complementary cumulative service time distribution.

Proposition 11.1 Assume Poisson arrivals of rateλ and finite exponential moments for the

service time distribution as in Proposition 10.1. IfG(0) = 0, then the distribution of the

end-to-end delay under any admissible routing policy is given by

Pλ,α [v∞ > x] = Ḡ(x) + αλ

(
E [σ]G(x) −

∫ x

0
G(x − y)Ḡ(y) dy

)
+(1 − α)λG(x)

∫ ∞

x
Ḡ(y) dy + o(λ), x ≥ 0, (71)

where

α := P [ν−1 = ν0] (72)

denotes the probability that the routing policy assigns two consecutive arrivals to the same

queue.

The proof of Proposition 11.1 is given in Appendix A.4. The expansions under Round–

Robin and Bernoulli routing can be obtained as easy special cases:
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Corollary 11.1 In the setup of Proposition 11.1, under any admissible routing policy it

holds that

Pλ

[
vB
∞ > x

]
= Pλ,1/K [v∞ > x] and Pλ

[
vR
∞ > x

]
= Pλ,0 [v∞ > x] . (73)

Proof. Conclusion (73) follows immediately from (71) by noting thatP
[
νR
−1 = νR

0

]
= 0

andP
[
νB
−1 = νB

0

]
= 1/K.

Observe that (71) can be explained by considering the light traffic situation where at

most one more customer and the tagged customer join the system. These two customers

are assigned to different queues with probability1 − α, in which case, from the tagged

customer’s perspective, any routing policy is tantamount to Round–Robin routing. On the

other hand, with probabilityα, both customers are assigned to the same queue, in which

case the system behaves like anM |G|1 queue. Thus, up to first order inλ, the end-to-end

delay performance under any routing policy is a mixture of these two components. Such an

interpretation is confirmed upon comparing the corresponding terms in (71) with the known

expansion for theM |G|1 queue [9, p. 201] and the expression in (73) for Round–Robin

routing. The details are given in Appendix A.4.

Proposition 11.1 leads to the conclusion that in light traffic the Round–Robin policy

is an optimal routing policy, although this optimality is shared by a number of policies,

namely all the admissible policies for whichα = 0.

Corollary 11.2 In the setup of Proposition 11.1, it holds that

lim
λ↓0

1
λ

(Pλ,α [v∞ > x] − Pλ,0 [v∞ > x]) ≥ 0, x ≥ 0. (74)

In other words, Round - Robin is optimal among all admissible routing policies in the sense

that vR
∞ ≤st v∞ asymptotically in light traffic.

Proof. Fix x ≥ 0. Inequality (74) follows from (71) as we get

lim
λ↓0

1
λ

(Pλ,α [v∞ > x] − Pλ,0 [v∞ > x])

= α

(
E [σ]G(x) − G(x)

∫ ∞

x
Ḡ(y) dy −

∫ x

0
G(x − y)Ḡ(y) dy

)
≥ α

(
E [σ]G(x) − G(x)

∫ ∞

x
Ḡ(y) dy − G(x)

∫ x

0
Ḡ(y) dy

)
= 0
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Figure 1: Expected end-to-end delay; Bernoulli vs Round–Robin routing;K = 10

by the monotonicity ofG. The ensuing stochastic comparison is a consequence of identifi-

cation (73).

12 Simulation results

To illustrate the asymptotic optimality of Round – Robin policy we present numerical ex-

amples comparing a system of parallel queues with Round–Robin routing to a system with

Bernoulli routing. In all the examples shown below customers arrive to the parallel queue-

ing system according to a Poisson process. We perform simulation experiments using three

different distributions for the service time rvσ. In particular, we consider, in order of

increasing variability, the deterministic distributionD(x) = 1 (x ≥ 1), the exponential

distribution E(x) = 1 − e−x (x ≥ 0), and the hyperexponential distribution (mixture of

three exponentials) given by

H(x) =
3∑

i=1

pi(1 − e−x/fi), x ≥ 0

with p1 = 0.3, p2 = 0.6, p3 = 0.1, andf1 = 0.2, f2 = 0.5, f3 = 6.4, yielding a squared

coefficient of variationc2H = 7.516. In all three cases the expected service time is equal to

one.

In Figure 1 we vary the Poisson arrival rateλ and plot the expected end-to-end delay,

times (1 − ρ), against the system utilizationρ, for a system ofK = 10 parallel queues

with resequencing. We see that the expected end-to-end delay under Round–Robin rout-

ing is smaller than its counterpart under Bernoulli routing: This conclusion holds for all
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three service distributions and across all traffic intensities, not just in heavy or light traffic.

Tables 1 and 2 show that such a comparison remains true when we vary the number of par-

allel queues fromK = 2 to K = 10. We conjecture that, for the case of Poisson arrivals,

a comparison in the increasing convex stochastic ordering between the end-to-end delays

under Round–Robin and Bernoulli routing, holds true across all traffic intensities. Figure

1, together with Tables 1 and 2, provide evidence, though circumstantial, in support of this

conjecture. It is also worthwhile to note, from Table 2, that in the case of deterministic

service times the end-to-end delay under Round–Robin routing is a decreasing function of

the numberK of parallel queues (while it is eventually increasing in the limit asK grows

unboundedly for all other distributions). This is due to the fact that, in the case of deter-

ministic service times, customers experience no resequencing delay under Round–Robin

routing. Furthermore, their Erlang interarrival times to each queue tend to deterministic of

durationE [σ] /ρ asK increases to infinity.

Expected end-to-end delayE
[
vB
∞
]

ρ Service d.f. K = 2 K = 4 K = 6 K = 8 K = 10

D 1.26 1.30 1.33 1.37 1.40

0.3 E 1.67 2.00 2.31 2.59 2.79

H 4.27 6.78 8.69 10.5 12.1

D 2.58 3.14 3.52 3.91 4.16

0.7 E 4.84 6.10 7.22 8.11 8.66

H 17.6 25.9 31.6 36.2 39.1

Table 1: End-to-end delay under Bernoulli routing.

A Appendix

A.1 A proof of Lemma 7.1

Fix r = 1, 2, . . . andk, 
 = 1, . . . ,K. We start with the obvious decomposition

cov

[
r−1∑
n=0

uk
nσn,

r−1∑
m=0

u�
mσm

]
=

r−1∑
n=0

r−1∑
m=0

cov
[
uk

nσn, u�
mσm

]
. (A.1)

Fixing n,m = 0, 1, . . ., we note under the independence in Assumption (A) that

cov
[
uk

nσn, u�
mσm

]
= E

[
uk

nu�
mσnσm

]
− E
[
uk

nσn

]
E
[
u�

mσm

]
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Expected end-to-end delayE
[
vR
∞
]

ρ Service d.f. K = 2 K = 4 K = 6 K = 8 K = 10

D 1.06 1.01 1.00 1.00 1.00

0.3 E 1.45 1.64 1.83 2.00 2.13

H 4.05 6.29 8.12 9.66 10.9

D 1.51 1.19 1.10 1.06 1.04

0.7 E 3.47 4.01 4.43 4.85 5.19

H 16.7 24.4 29.1 32.8 35.8

Table 2: End-to-end delay under Round–Robin routing.

= E
[
uk

nu�
m

]
E [σnσm] − E

[
uk

n

]
E
[
u�

m

]
E [σn]E [σm]

= E
[
uk

nu�
m

] (
δ(n,m)E

[
σ2
]
+ (1 − δ(n,m))E [σ]2

)
−E
[
uk

n

]
E
[
u�

m

]
E [σ]2

= δ(n,m)E
[
uk

nu�
m

]
var [σ] + cov

[
uk

n, u�
m

]
· E [σ]2 .

Moreover, it is also the case that

δ(n,m)E
[
uk

nu�
m

]
= δ(n,m)E

[
uk

nu�
n

]
= δ(n,m)δ(k, 
)E

[
uk

n

]
= δ(n,m)δ(k, 
)

1
K

, (A.2)

so that

cov
[
uk

nσn, u�
mσm

]
= δ(n,m)δ(k, 
)

var [σ]
K

+ cov
[
uk

n, u�
m

]
·E [σ]2 . (A.3)

Substituting (A.3) into (A.1) yields

cov

[
r−1∑
n=0

uk
nσn,

r−1∑
m=0

u�
mσm

]

= δ(k, 
)r · var [σ]
K

+ E [σ]2 ·
r−1∑
n=0

r−1∑
m=0

cov
[
uk

n, u�
m

]
= δ(k, 
)r · var [σ]

K
+ E [σ]2 · cov

[
r−1∑
n=0

uk
n,

r−1∑
m=0

u�
m

]
. (A.4)
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It is now plain that theK × K covariance matrixΓ at (37) exists if and only if theK × K

covariance matrix̃Γ at (40) exists, in which case the relation (41) is immediate. This con-

cludes the proof of Lemma 7.1.

A.2 A proof of Proposition 8.1

Bernoulli routing: Under Bernoulli routing, the FCLT (36) is essentially theK–dimensional

version of Donsker’s Theorem [3, Thm. 16.1, p. 137] when applied to the i.i.d. rvs

{unσn, n = 0, 1, . . .}. In order to determine the form of̃ΓB , fix k, 
 = 1, . . . ,K. For

arbitraryn,m = 0, 1, . . ., by independence we note that

cov
[
uB,k

n , uB,�
m

]
= δ(n,m)cov

[
uB,k

n , uB,�
n

]
= δ(n,m)δ(k, 
) · 1

K

(
1 − 1

K

)
. (A.5)

Expression (42) readily follows upon using (A.5) in the right-hand side of relation2

1
r
cov

[
r−1∑
n=0

uB,k
n ,

r−1∑
m=0

uB,k
m

]
=

1
r

r−1∑
n=0

r−1∑
m=0

cov
[
uB,k

n , uB,�
m

]
, r = 1, 2, . . .

and then lettingr go to infinity.

Round–Robin routing: Fix r = 1, 2, . . . andt > 0. We begin by rewriting (35) as

UR,r(t) = Zr(t) +
1√
r

[rt]−1∑
n=0

(
uR

n − 1
K

1
)
· E [σ] (A.6)

where theIRK-valued process{Zr(t), t ≥ 0} is defined componentwise by

Zr,k(t) :=
1√
r

[rt]−1∑
n=0

1
[
νR

n = k
]
(σn − E [σ]) , t ≥ 0, k = 1, 2, . . . ,K (A.7)

with routing rvs{νR
n , n = 0, 1, . . .} given by (6). The arguments proceed along a number

of steps.

Step 1: Fix r = 1, 2, . . . andt > 0. For eachk = 1, . . . ,K, we note that

[rt]
K

− 1 <

[rt]−1∑
n=0

uR,k
n ≤ [rt]

K
+ 1, (A.8)

2This relation was used already on the way to (A.4).
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whence

− 1√
r

<
1√
r

[rt]−1∑
n=0

(
uR,k

n − 1
K

)
≤ − 1√

r
. (A.9)

It is now immediate that for eachT > 0,

lim
r→∞ sup

0<t≤T
max

k=1,...,K

∣∣∣∣∣∣ 1√
r

[rt]−1∑
n=0

(
uR,k

n − 1
K

)∣∣∣∣∣∣ = 0. (A.10)

Consequently, by Theorem 4.1 in [3, p. 25], the desired convergence (36), with covariance

matrix as in (43), will hold if we show instead the convergence

{Zr(t), t ≥ 0} =⇒r {(ΓR)1/2A(t), t ≥ 0} (A.11)

where{A(t), t ≥ 0} is aK–dimensional standard Brownian motion, andΓR is theK×K

covariance matrix given by

ΓR
k� = δ(k, 
)

var [σ]
K

, k, 
 = 1, . . . ,K, (A.12)

where we have taken into account (41).

Step 2: Fix r = 1, 2, . . . andk, 
 = 1, . . . ,K. We have

1
r
cov

[
r−1∑
n=0

uR,k
n ,

r−1∑
m=0

uR,�
m

]

= E

[
√

r

(
1
r

r−1∑
n=0

uR,k
n − 1

K

)
· √r

(
1
r

r−1∑
m=0

uR,�
m − 1

K

)]
(A.13)

upon using the stationarity assumption on the assignment sequence (with (5)). Letr go to

infinity in (A.13) and observe from (A.9) (witht = 1) that

lim
r→∞

√
r

(
1
r

r−1∑
n=0

uR,k
n − 1

K

)
= 0, k = 1, . . . ,K. (A.14)

We readily conclude from definition (40) thatΓ̃R
k� = 0 by the Bounded Convergence Theo-

rem (with the help of bounds (A.8) witht = 1). This establishes (A.12) via (41).

Step 3: We now turn to showing (A.11). A moment of reflection should convince the

reader that for eachk = 1, 2, . . . ,K, conditionally on ν� = νR
0 = k, the K processes

{Zr,1(t), t ≥ 0}, . . ., {Zr,K(t), t ≥ 0} are mutually independent for eachr = 1, 2, . . ..
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Appealing to the cyclical nature of the Round-Robin policy, we readily conclude to the

convergence

{Zr(t), t ≥ 0} =⇒r

{√
var [σ]

K
A(t), t ≥ 0

}
, (A.15)

conditionally on νR
0 = k. This is an easy consequence of Donsker’s Theorem [3, Thm.

16.1, p. 137]; details are left to the interested reader. As the limit in (A.15) does not depend

on k, it follows that this convergence holdsunconditionallyas well! This last convergence

is essentially (A.11) as we recall the expression (A.12) forΓR.

A.3 A proof of Proposition 9.2

Clearly,{S(t), t ≥ 0} is a zero driftK–dimensional Brownian motions, so thatS(t1, . . . , tn)
arenK–dimensional zero mean Gaussian rvs. TheirnK × nK covariance matrix has a

block structure with the(i, j) block being theK × K matrix given by

min(ti, tj)Σ, i, j = 1, . . . , n, (A.16)

with theK × K matrix Σ as in Proposition 8.2. With Proposition 9.1 in mind, we see that

the extremal property (58) of Round–Robin routing will be established if we show that the

matrix difference

C(t1, . . . , tn) := cov[S(t1, . . . , tn)] − cov[SR(t1, . . . , tn)]

is positive semi-definite. To this end, write an arbitrary elementv in IRnK in block form as

v = (v1, . . . ,vn) with vi a vector ofIRK for eachi = 1, . . . , n. We need to show that

vC(t1, . . . , tn)vT =
n∑

i=1

n∑
j=1

min(ti, tj) · vi(Σ − ΣR)vT
j ≥ 0. (A.17)

Expression (47) immediately yields

Σ − ΣR =
(
Γ̃ − Γ̃R

)
· E [σ]2 = Γ̃ ·E [σ]2

with the help of (43). By virtue of its definition (40), the matrixΓ̃ is itself a covariance

matrix, whence is positive semi-definite. Thus, forn = 1, we have that (A.17) holds as it is

equivalent tõΓ being positive semi-definite.

By standard results from linear algebra [17, p. 339], there exists aK × K orthonormal

matrixP such that the matrixΛ = PΓ̃P T is diagonal with non-negative diagonal elements
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λ1, . . . , λK . Making the change of variableswi = viP
T = (w1

i , . . . , w
K
i ), or equivalently,

vi = wiP , for eachi = 1, . . . , n, we find

1
E [σ]2

vC(t1, . . . , tn)vT =
n∑

i=1

n∑
j=1

min(ti, tj) · wiP Γ̃P T wT
j

=
n∑

i=1

n∑
j=1

min(ti, tj) · wiΛwT
j

=
n∑

i=1

n∑
j=1

min(ti, tj) ·
K∑

k=1

λkw
k
i wk

j

=
K∑

k=1

λk

 n∑
i=1

n∑
j=1

min(ti, tj)wk
i wk

j

 . (A.18)

For eachk = 1, . . . ,K, we introduce the elementw�
k = (wk

1 , . . . , wk
n) of IRn to write

n∑
i=1

n∑
j=1

min(ti, tj)wk
i wk

j = w�
kcov[B(t1, . . . , tn)](w�

k)
T (A.19)

wherecov[B(t1, . . . , tn)] denotes the covariance matrix of the vectorB(t1, . . . , tn) :=
(B(t1), . . . , B(tn)) with {B(t), t ≥ 0} a standard one-dimensional Brownian motion. A

covariance matrix being positive semi-definite, each of the terms at (A.18) is non-negative,

whence (A.17) holds by virtue of the fact thatλk ≥ 0 for all k = 1, . . . ,K.

A.4 A proof of Proposition 11.1

Fix x ≥ 0 and takeΦ = 1 [v0 > x]. The following holds irrespective of the customer

assignments used: First, on the event∅, we havev0 = σ0, so that

Φ̂(∅) = P [σ > x] = Ḡ(x). (A.20)

Next, with t > 0, on the event{t} it is also the case thatv0 = σ0, whencêΦ({t}) = Φ̂(∅),
and we conclude from (70) that

d

dλ
φ(0+) =

∫ 0

−∞

(
Φ̂({t}) − Φ̂(∅)

)
dt. (A.21)

Finally, fix t < 0 and observe that

v0 = max
k=1,...,K

(
[δ(k, ν−1)σ + t]+ + δ(k, ν0)σ0

)
. (A.22)
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The remainder of the proof consists in evaluatingΦ̂({t}) (t < 0) through (A.22). On

the eventν−1 �= ν0 (this is tantamount to Round–Robin routing), (A.22) becomes

v0 = max
(
[σ + t]+, σ0

)
, (A.23)

while on the eventν−1 = ν0 (which corresponds to theM |G|1 queue), it holds that

v0 = [σ + t]+ + σ0. (A.24)

Using this information, by the definition (72) forα and the admissibility of the routing

poilicy, we get

Φ̂({t}) = αP
[
[σ + t]+ + σ0 > x

]
+ (1 − α)P

[
max

(
[σ + t]+, σ0

)
> x
]

(A.25)

with

P
[
max

(
[σ + t]+, σ0

)
> x
]

= 1 −P [σ0 ≤ x]P
[
[σ + t]+ ≤ x

]
= 1 −P [σ0 ≤ x] (1 − P [σ + t > x])

= 1 − G(x)
(
1 − Ḡ(x − t)

)
= Ḡ(x) + G(x)Ḡ(x − t). (A.26)

Next, recalling (A.20), we find

Φ̂({t}) − Φ̂(∅)
= αP

[
[σ + t]+ + σ0 > x

]
+ (1 − α)

(
Ḡ(x) + G(x)Ḡ(x − t)

)− Ḡ(x)

= α
(
P
[
[σ + t]+ + σ0 > x

]− Ḡ(x)
)

+ (1 − α)G(x)Ḡ(x − t) (A.27)

with the help of the calculations leading to (A.26). We further write

P
[
[σ + t]+ + σ0 > x

]− Ḡ(x) = P
[
σ0 ≤ x < [σ + t]+ + σ0

]
= E

[
1 [σ0 ≤ x] Ḡ(x − σ0 − t)

]
, (A.28)

and reporting (A.27) and (A.28) into (A.21), we obtain

d

dλ
φ(0+)

= (1 − α)G(x)
∫ ∞

x
Ḡ(y) dy + α

∫ ∞

0
E
[
1 [σ0 ≤ x] Ḡ(x − σ0 + y)

]
dy.
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Expansion (71) now follows once we observe that∫ ∞

0
E
[
1 [σ0 ≤ x] Ḡ(x − σ0 + y)

]
dy

=
∫ ∞

0
dy

∫ x

0
dG(z)Ḡ(x − z + y)

=
∫ x

0
dG(z)

∫ ∞

x−z
Ḡ(y) dy

=
∫ x

0
dG(z)

∫ ∞

0
Ḡ(y) dy −

∫ x

0
dG(z)

∫ x−z

0
Ḡ(y) dy

= E [σ] G(x) −
∫ x

0
Ḡ(y) dy

∫ x−y

0
dG(z)

sinceG(0) = 0.
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