5,765 research outputs found

    On the Coherence of WMAP and Planck Temperature Maps

    Get PDF
    The recent data release of ESA's Planck mission together with earlier WMAP releases provide the first opportunity to compare high resolution full sky Cosmic Microwave Background temperature anisotropy maps. To quantify the coherence of these maps beyond the power spectrum we introduce Generalized Phases, unit vectors in the (2l+1) dimensional representation spaces. For a Gaussian distribution, Generalized Phases are random and if there is non-Gaussianity, they represent most of the non-Gaussian information. The alignment of these unit vectors from two maps can be characterized by their angle, 0 deg expected for full coherence, and 90 deg for random vectors. We analyze maps from both missions with the same mask and Nside=512 resolution, and compare both power spectra and Generalized Phases. We find excellent agreement of the Generalize Phases of Planck Smica map with that of the WMAP Q,V,W maps, rejecting the null hypothesis of no correlations at 5 sigma for l's l<700, l<900 and l<1100, respectively, except perhaps for l<10. Using foreground reduced maps for WMAP increases the phase coherence. The observed coherence angles can be explained with a simple assumption of Gaussianity and a WMAP noise model neglecting Planck noise, except for low-intermediate l's there is a slight, but significant off-set, depending on WMAP band. On the same scales WMAP power spectrum is about 2.6% higher at a very high significance, while at higher l's there appears to be no significant bias. Using our theoretical tools, we predict the phase alignment of Planck with a hypothetical perfect noiseless CMB experiment, finding decoherence at l > 2900; below this value Planck can be used most efficiently to constrain non-Gaussianity.Comment: 8 pages, 8 figures, accepted for publication in MNRAS; minor modifications and 2 new figures adde

    Coherent frequentism

    Full text link
    By representing the range of fair betting odds according to a pair of confidence set estimators, dual probability measures on parameter space called frequentist posteriors secure the coherence of subjective inference without any prior distribution. The closure of the set of expected losses corresponding to the dual frequentist posteriors constrains decisions without arbitrarily forcing optimization under all circumstances. This decision theory reduces to those that maximize expected utility when the pair of frequentist posteriors is induced by an exact or approximate confidence set estimator or when an automatic reduction rule is applied to the pair. In such cases, the resulting frequentist posterior is coherent in the sense that, as a probability distribution of the parameter of interest, it satisfies the axioms of the decision-theoretic and logic-theoretic systems typically cited in support of the Bayesian posterior. Unlike the p-value, the confidence level of an interval hypothesis derived from such a measure is suitable as an estimator of the indicator of hypothesis truth since it converges in sample-space probability to 1 if the hypothesis is true or to 0 otherwise under general conditions.Comment: The confidence-measure theory of inference and decision is explicitly extended to vector parameters of interest. The derivation of upper and lower confidence levels from valid and nonconservative set estimators is formalize

    Sampling Properties of the Spectrum and Coherency of Sequences of Action Potentials

    Get PDF
    The spectrum and coherency are useful quantities for characterizing the temporal correlations and functional relations within and between point processes. This paper begins with a review of these quantities, their interpretation and how they may be estimated. A discussion of how to assess the statistical significance of features in these measures is included. In addition, new work is presented which builds on the framework established in the review section. This work investigates how the estimates and their error bars are modified by finite sample sizes. Finite sample corrections are derived based on a doubly stochastic inhomogeneous Poisson process model in which the rate functions are drawn from a low variance Gaussian process. It is found that, in contrast to continuous processes, the variance of the estimators cannot be reduced by smoothing beyond a scale which is set by the number of point events in the interval. Alternatively, the degrees of freedom of the estimators can be thought of as bounded from above by the expected number of point events in the interval. Further new work describing and illustrating a method for detecting the presence of a line in a point process spectrum is also presented, corresponding to the detection of a periodic modulation of the underlying rate. This work demonstrates that a known statistical test, applicable to continuous processes, applies, with little modification, to point process spectra, and is of utility in studying a point process driven by a continuous stimulus. While the material discussed is of general applicability to point processes attention will be confined to sequences of neuronal action potentials (spike trains) which were the motivation for this work.Comment: 33 pages, 9 figure

    Sparsity with sign-coherent groups of variables via the cooperative-Lasso

    Full text link
    We consider the problems of estimation and selection of parameters endowed with a known group structure, when the groups are assumed to be sign-coherent, that is, gathering either nonnegative, nonpositive or null parameters. To tackle this problem, we propose the cooperative-Lasso penalty. We derive the optimality conditions defining the cooperative-Lasso estimate for generalized linear models, and propose an efficient active set algorithm suited to high-dimensional problems. We study the asymptotic consistency of the estimator in the linear regression setup and derive its irrepresentable conditions, which are milder than the ones of the group-Lasso regarding the matching of groups with the sparsity pattern of the true parameters. We also address the problem of model selection in linear regression by deriving an approximation of the degrees of freedom of the cooperative-Lasso estimator. Simulations comparing the proposed estimator to the group and sparse group-Lasso comply with our theoretical results, showing consistent improvements in support recovery for sign-coherent groups. We finally propose two examples illustrating the wide applicability of the cooperative-Lasso: first to the processing of ordinal variables, where the penalty acts as a monotonicity prior; second to the processing of genomic data, where the set of differentially expressed probes is enriched by incorporating all the probes of the microarray that are related to the corresponding genes.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS520 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore