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ABSTRACT

The recent data release of ESA's Planck mission togethér egitlier WMAP releases pro-
vide the first opportunity to compare high resolution fuly skosmic Microwave Background
temperature anisotropy maps. To quantify the coherenchesfet maps beyond the power
spectrum we introduce Generalized Phases in the sense 8§,3@it vectors in th&/+ 1 di-
mensional representation spaces. For an isotropic Gaudisitiibution, Generalized Phases
point to random directions and if there is non-Gaussiatligy represent most of the non-
Gaussian information. The alignment of these unit vectannftwo maps can be character-
ized by their angle)° expected for full coherence, afd° for random vectors. We analyze
maps from both missions with the same mask ahg,. = 512 resolution, and compare both
power spectra and Generalized Phases. We find excelleetragnt of the Generalized Phases
of Planck Smica map with that of the WMAP Q,V,W maps, rejegtine null hypothesis of
no correlations abo for £’s ¢ < 700, ¢ < 900 and/ < 1100, respectively, except perhaps
for ¢ < 10. Using foreground reduced maps for WMAP increases the ptatserence. The
observed coherence angles can be explained with a simplmpen of Gaussianity and a
WMAP noise model neglecting Planck noise, except for loviimediate’’s there is a slight,
but significant off-set, depending on WMAP band. On the saca¢es WMAP power spec-
trum is abou®.6% higher at a very high significance, while at higlierthere appears to be
no significant bias. Using our theoretical tools, we pretfietphase alignment of Planck with

arXiv:1307.1111v2 [astro-ph.CO] 3 Se

a hypothetical perfect noiseless CMB experiment, findingptlerence at ~ 2900; below
this value Planck can be used most efficiently to constram@aussianity.
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1 INTRODUCTION

One of the principal goals of modern cosmology is to characte
ize the statistical properties of the primordial densitgtliations,
i.e. the seeds of the present large-scale structure. Asywle-
sumed, the initial perturbations are associated with quangrop-
erties of an inflationary field (Guth 1981). If this model isrco
rect, the primordial fluctuations should be overwhelminGlsus-
sian (Bardeen et &l. 1986; Bond & Efstathiou 1987) along tith
small temperature fluctuations of the Cosmic Microwave Back
ground (CMB) sky.

Gaussianity is the most fundamental prediction of inflation
Randomness of the complex phases of the harmonic coeffaént
small CMB temperature fluctuations provides natural ceiists,
since departures from Gaussian behavior typically caugatitns
from randomness (Coles & Chiahg 2000). There are severdi-met
ods constraining non-Gaussianity from phase informatprase
mapping and uniformity tests (Chiang eflal. 2002, 2004)nba
entropy of phases (Chiang & Cdles 2000), surrogates (Raeth e
[2010), random walks (Stannard & Cdles 2d05; Hansenllet all)201

cently to Planck (Planck Collaboration etflal. 2013c). In sarases,
non-Gaussian residuals have been detedted (ChianbletGs: 20
INaselsky et al. 2005), although no primordial non-Gaustsidras

been found with any certainty.

Other studies, such as_Land & Magukijo_(2005a.b. 2007);
Copi etal. [(2004| 2006) and_Bielewicz ef dl. (2005) defined di
rections on a sphere at eaého construct estimators constrain-
ing unusual alignments and correlations in the harmonieser
representing the CMB maps. Several “anomalies” and aligisne
were identified, and several tests have been performed forexp
their origin (Francis & Peacock 2010; Frommert & Enfilin 2010
3). These marginally significant anomaliee
originally detected in WMAP, and recently confirmed in Planc
(Planck Collaboration et Al 2013c).

Complex phases correspond to a unit vector in the complex
plane, where the U(1) group acts as a rotation. Based onlik&ro
vation we generalize the usual U(1) phases for the group 52(3
evant to the CMB or any full-sky map, as unit vectorg2d+1) di-
mensional representation spaces. These GeneralizedsRhake
sense of SO(3) respond to SO(3) rotations analogously t@lem

etc. These have been applied to WMAP all-sky maps, and meost re phases responding to U(1) rotations. In the rest of this paje
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only deal with the SO(3) group, therefore without ambiguitycan
call them Generalized Phases, or GPs, hereafter. For aopsot
Gaussian field, they correspond to a random direction by ssamm
try, represent most of the information beyond the measuodep
spectrum, and they are independent from it. Neverthelesspb-
servations of the same CMB realization should have exabty t
same phases. The principal aim of this work is to use thisleimp
property to construct a rigorous and concisky? comparison of
WMAP and Planck maps that emphasizes information beyond the
power spectrum. In particular, we will characterize coheesof
two maps by the angle of the unit vectors corresponding to the
GPs, that also corresponds to a correlation coefficient imbaic
space.

We organize this paper as follows. In Section 2 we describe
the data we used, and introduce our methods including ttieake
expectations, simulations and measurements. In Sectiam 8o
sults, and statistical significances of our findings areqteg. Fi-
nally, we briefly summarize our results in Section 4. The appe
contains derivations of formulae used in the main text.

2 DATA AND METHODS

To quantify the coherence of WMAP and Planck we first pre-
pare maps of the same resolution. The WMAP team provides
Nsiqe = 512 CMB temperature maps, therefore we choose this
as our base resolution. The Planck CMB products have higiser r
olution, Ny;qe = 2048, thus we downgraded Planck maps using
HEALPIX (Gorski et al[2005) forN,s. = 512. We also used
the Nsiqe = 512 WMAP9 Temperature Analysis Mask that leaves
78% of the sky for our analysis.

For WMAP, we used the Q,V,W frequency bands down-
loaded from the LAMBDA websitdl, using both original and
foreground reduced versions_(Jarosik etlal, 2011; Bennetf e
@). For Planck, we downloaded the NILC and Smica CMB
maps |(Planck Collaboration et al. 20113b) from the Planckacgg
Archivell. They already have galactic foregrounds and known point
sources removed.

2.1 Generalized Phases

The CMB temperature fluctuations can be expanded into sgaieri
harmonics:

oo £
%(§7¢) = Z Z ale—ém(ﬁvtp)

L=0 m=—¢

@)

Phases are defined by complex, coefficients of CMB multipoles
as follows

@)

These Fourier phases generate rotations arounc:-#nds, cor-
responding to to the U(1) subgroup of the full SO(3) symmetry
of the harmonic coefficients. For Gaussian random fields (GRF
Fourier phases are random and uniformly distributed beatwke

Aym = |a€m| : eXP(iﬁbem)

and2r. Testing the randomness of these phases therefore provides

an interesting diagnostic of the Gaussianity of the fluotuefield
(Coles & Chiand 2000). Note that the power at edcind these
phases do not fully determine the random field.

I http://lambda.gsfc.nasa.gov/
2 http://www.sciops.esa.int/index.php?project=PLANCK
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Figure 1. Distributions of angles between random unit vector§26+ 1)
dimensions. We compare analytic expectations and sironktiand test
properties of galactic masks, as well. We present 2,5, 25, 75 cases.
These illustrate that angles are concentrated aray2dThis concentration
becomes stronger as the dimensiogrows. These results are insensitive to
the galactic mask as long as the unit vectors are truly random

To generalize complex Fourier phases, we first b(2ig+ 1)
dimensional vectors using real and imaginary parta;of coeffi-
cients:

€ = (am/\/i7 Relaei), ....Re[ace], Im[aei], ....Im[aw])  (3)

These vectors contain all the information due to the realitthe
underlying random field. For a Gaussian field, this is a randet
tor, with each elements af, having a variance of’; /2. General-
ized Phases are now defined(a@é + 1) dimensional unit vectors

4)

~ &
Ep = ——

\/ >k 5%,1@

As as, coefficients of different multipoles are independent, GPs
are uncorrelated for a Gaussian distribution. Moreovezy ttol-

low uniform distributions over the sphef&* for each? .
). The statistics of GPs contain information completaign

to the power spectrum, and for mildly non-Gaussian distidins,
they should contain most of the non-Gaussian informatibthd
power and the GPs are given, the realization of a random feld i
fully constrained.

In this work, we compare Generalized Phases to quantify the
(generalized) phase coherence of WMAP and Planck maps, i.e.
the £-by¢ coherence of the maps beyond and independently of the
match of their power spectra.

To quantify the coherence of the two maps, we calculated dot
products of unit vectors defined by individual datasets ahéda
multipole as

©)

~Planck WMAP
cos Oy = Eoke €0k .

k

2.2 Random angle statisticsin n dimensions

Angles between Generalized Phases of two uncorrelatededata
- e.g. CMB realizations - fluctuate around 2, their distributions
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Figure 3. Measured®, angles of GPs of the original andy,, |-shuffled
maps are illustrated. See text for details.
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It is useful to consider the closely related correlationfeoe
ficient cos® = C{*#/,/C{ACF in addition to®. In this case,
Figure 2. We show original (amplitude-shuffled) version of a simuate = = (cos© + 1)/2 follows the Beta distribution orf0, 1], i.e.
CMB map on the top (bottom). These CMB maps have the same phase z® ' (1—z)°~!/B(a, ) with parametersy = 8 = (n—1)/2 =

and pseudo power spectra, but different GPs. £. Thus the exact first two moments @fs © are
(cos ©) =0, <0052 o) = 1 )
are characterized by analytic formulmmom)em/ﬁtne "
dimensionn = 2¢ + 1 is fixed, the distribution of angles has a Finally, we quantified the resolving power of GPs by the fol-
density function given by lowing procedure. We shufflefh,,,| amplitudes of a simulation
1 D(2) R for a given/, keeping both pseudo power spectrum and phases
h(©) = VAT S ©. (6) unchanged. Fig]2 shows the original and the "shuffled” CMB
2 maps. We measure@, angles between GPs of the maps (Fig.
Note that ifn. = 2, h(©) is the uniform density on [@]. Whenn > @), finding values fluctuating around, ~ 38°. We integrated
3, h(©) is a unimodal distribution with peak position éf = 7 /2. the Gaussian distributions of the,,’s to find the average value

The concentration arount/2 becomes stronger asgrows, since (cos ©;) = /4. This corresponds t®, = 38.24°, i.e. 78.5%
sin"~2 @ is driven to zero quickly fo® # /2 (Cai et al 2013). correlation.
This means that uncorrelated vectors in high dimensiond ten
be perpendicular. As expected, in large dimensions, thieiis
tion tends to a Gaussian distribution centeredrg. In Fig.[1 we
show estimates of distributions of angles between unitoredn 23 CMB and noise
higher dimensions. We simulated 500 CMB skies to test [Eq. (6)
Simulations were made by using WMAP9 cosmological param- WMAP and Planck measurements of the CMB sky contain noise.
eters, and WMAP9 noise. We randomly choose 10,000 pairs of This noise induces a rotation of the unit vectéys'™ on the2¢ di-
CMB simulations, and calculate Generalized Phases. Fmmex  mensional sphere. Assuming full sky coverage and isotrGpias-
ples of ¢ = 2,5,25,75 illustrate that individual distributions of ~ sian noise, these rotations will only depend on the resgestiec-
angles between random unit vector§ ¥ 4 1) dimensions follow ~ tra of the CMB and that of the noise. The angles obey
Eqg. (8) closely. We checked that these results hold ujp-t01535,
the maximum we can measure with our maps.

We repeated our measurements on masked CMB skies using
WMAP9 Temperature Analysis Mask. According to Fig. 1, and ) o ) o
perhaps somewnhat surprisingly, no difference was foundiléVh In the case of Gaussian noise, it is possible to obtain ariagxpl

galactic mask strongly affects statistical analysis ofmairphases ~ form for the distribution of the angle, generaliziig (6)trodlucing
7), the distribution 6f is insensitive to the signal to nois& NV as the ratio of the norms of the two vectors,

E([ZMB ) (E([:MB 4 EEOISe)

|€%MB’ |€%MB 4 E20ise| . (8)

cos©®p =

the mask. The CMB mask is centered ®n= 7 /2 in the spheri-

cal coordinate, which causes strong phase correlationamiyng GN = {e‘l?MB{ _ come ©
phases of ~ m. ’ Egoise’ —C?mse’
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Figure 4. We measure®, angles between a Gaussian simulation, and the Figure 5. The measured and theoretically predicted angles betwean Ge

same simulation with WMAP noise added. We show two noiseézaains
of WMAP’s Q, V, and W measurements, and compare them witlirBits
of our noise model. Dashed red line illustrates the expegd ofr /2 for
no correlation, while the solid black curve shows difference from this at
eacht.

one finds (see Appendix]A for details)

hn (©) = % sin" "% ©
r(%5)
(10)
n 2 . 2 in—1 n
- exp (—§SN sin @) i""“erfc <—\/;SN cos @) ,
where the special functions
i"erfc(z / dt (11)
\/_

are the iterated integrals of the complementary error fanct
(Abramowitz & Stegun _1970). These functions satisfy coieen
recursion relations allowing easy generationhaf(©). With the
help of "erfc(0) = 27" /I'(n/2 + 1) we can check that we re-
cover the corresponding distributidd (6) férin the limit of van-
ishing signal to noise, as expected.

Again, the density function is very close to a Gaussian. usef
simple approximations for its mean and variance are

SN C’ZCMB
<COS @> ~ m = OICMB + Clnoise (12)
and
2
<0052 0) — (cos 0)% ~ 11+SN°/2 (13)

n(1+SN2)*

Both of these approximations are already at I&&6taccurate for
any value of SN af = 5. We evaluate Eqs[{12) and {13) using

WMAP Q, V, and W noise realizations, that are white noise to a

good approximation, and represent different variances.céva-
pared our model with simulations on Fig. 4, and found thahéig
variance causes decoherence at lotvddesides, different realiza-
tions of WMAP noise produced almost identical curves, ireagr
ment with our model.

eralized Phases of Planck Smica map, and WMAP products. & Isialid

line defines the & alignment confidence level, while dashed black curves
correspond to 4, 30, 20, and b values. The top inset zooms én< 50,
while bottom inset shows the same without foreground ctegani

3 RESULTS

We obtained Generalized Phases of WMAP and Planck datasets
by applying Equationd{3) anfll(4). We present our resultgHer
Planck Smica map, but repeating all our analysis with theQNIL
map produced virtually identical results. We used EY. (har-
acterize the coherence of the maps. While this angle doesonet

tain all information, indeed there are many ways of consitngca

unit vector that is at angl® with respect to another one, it cor-
responds to a concise way of expressing coherence, and we can
additionally interpretos ©, in terms ofC’s is a of correlation co-
efficient )" MAP Planck /| /CWMAP CPTanck j e, 60° means 50%
correlation between the two maps.

To quantify the coherence, we choose as our null hypothesis
that the two maps areot correlated. In that case the distribution
©, follows analytic distributions of Eq[16), angvalues can be
calculated by integrating Eq.](6) to the measugadWe define the
two maps as significantly correlated if the null hypothesia be
rejected at théo level.

Figure[® shows our results, where we compare Planck Smica
map to WMAP Q, V and W band measurements. In general, the
correlation between the maps decreases Witts qualitatively ex-
pected in the presence of uncorrelated noise. For the |diigetste
null hypothesis cannot be rejected at the level, especially for
the Q band, but using foreground reduced maps improves the co
relation to the point that maybe only the dipole is incoher&his,
however, only reflects the different cleaning proceduresdusy
WMAP and Planck. In particular, the Smica algorithm gets 0, 1
exactly to zero, therefore it contains no information on @B
(Jean-Francois Cardoso, private communication). Thepeittus-
trated on FigurE]6 was also detecte @2013).

For higher/’s, the monotonically increasing-values reach
the limit confidence levels corresponding 6. We define these
{'s corresponding to decoherence fat~ 700, ¢ ~ 900 and
¢ ~ 1100 for Q, V and W maps, respectively. This result is ro-
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Figure 6. Difference map of Planck Smica and WMAP9 Internal Linear
Combination (ILC) maps i/, smoothed a2 deg. See text for details.

bust whether we use foreground removed WMAP maps or not, or
Planck Smica/NILC maps. The observed decoherence canlige ful
explained based on a WMAP noise model, as illustrated in @sr F
ure[, and explained in more detail next. Our interpretaisathat ol
WMAP GPs are dominated by noise above thése < 2 | | i \ TR E
Y e byt i T ARTT Y Tl VLV AL Pt
> L
4

Our theory of Eq[I0 using simple Gaussian assumption for 2 [ IR B 151114 W L A
both the CMB and noise provides a prediction for the expected - ‘ ‘ ‘ ‘ T
herence angle between the maps. The agreement is exceitent w 100 200 300 400 500 600
both simulations and measurements at/al| although there ap- ¢
pears to be small but significant bias in the measurementsvat |
intermediate’’s. Figure[T displays the residuél,, i.e. the differ- . .
ence between our theoretical predictions for the decokerbased Figure 7. We show mea s_ured biases of power spectra forQ, \_/_and W bands,

. while estimate@o deviations are shown by solid lines. In addition, discrep-
on our noise model, and the measured _angle. For each Q,V andancies between modeled and measu@ecare illustrated for Q, V and W,
W, there appears to be an excess angle, i.e. more decoh¢nence where dashed lines correspondig differences in our model.
predicted, for < 500, 400 and300, respectively.

At face value in the framework of our simple assumptions,
this would be a sign of excess noise not taken into account in
our noise model. It needs to be emphasized though that this is
a small, (although) significant effect, and therefore stidaé in-

terpreted cautiously, given the assumption of uncorrél&aus- multipoles .re.sult in a non-detect.ion. of significant biag.iwm
sian noise; noise correlations, foregrounds, and/or lgakam the would be difficult to assess quantitatively whether the piaisists

dipole (e.g. Prunet et Al. (2006): Das & Sourafiéep (2013jipical on larger?’s, at least qualitatively, it appears from Figlte 7 that the

influence the coherence angle in subtle ways. ]E)ias is notdsignificant aPO\I/e thy? the saﬂ;}é 500, 40((1). amdti:()(;)j
For completeness, we measured power spectrum of the Planck or Q,V, and W, respectively, where our theory predicts the

Smica map, cross-power spectra of WMAP9 Q1-Q2, V1-V2, and herence based on the simple Gaussian WMAP noise model. This
an average cross-spectrum of six combinations of W1-Weriff- might be a tantalizing hint, but more investigations aredeeeto

tial assemblies with SplCOOl)' the poyecs establish whether the two small, but significant effectsrelated.

trum is complementary to the GPs, corresponds to the ardplitii V\(lje Irepea(tjeg our méaf?surzmgnt_ls with (\le\_/IAP ! yezr fore-
the vector we defined in EJ.](3), and might give additionaights ground cleaned data, and found simitar ”ef‘ S In term oén-

into the decoherence at low-intermedidts. We used WMAP9 gles. The agreement with WMA_P9 results is less accuratenyvhe
beam transfer function products for Q1, Q2, V1, V2, W1, W2, W3 we analyze maps without cleaning of foregrounds, but thierdif

and W4 maps, and a 5’ Gaussian smoothing for the Smica map Wweehnce is only significant at lows. The most important observation,
emphasize that we used again the same resolution maps haith t however, is that the estimatéd decoherence is at slightly lowér

same mask, and the same method to measure the power spectrurﬁ"v_e use WMAF_) 7 yre]ar products. fThis is consist_ent V;:ith hWMAP7
for all maps, thus our comparison is more immediate thamgpki lzlivmg more n0|s§t an Vr\]/MAP9 urtderlsgpportlng t Ztlsiﬁst
final products from the WMAP and Planck team, respectively. all experiments observe the same underlying CMB, and't f

The power spectra are consistent with each other for the most mental noise causes the observed decoherence.
part, but curiously, in approximately the same rangé'sfwhere
we found less coherence than predicted by our theory, we find . .
that C}YMAY s on average.6% higher thanC'2"°% in the three 31 kl?ie(;]or;erencefrom WMAP noise and impact of mask at
Q,V,W maps. For the sake of consistency, we consider mugigpo g
betweenl 0 and300 for each band, and find that the WMAP spectra So far we established that the decoherence observed orefigur
are2.7%, 2.6% and 2.5% higher than Smica, respectively. While is expected to originate primarily from the noise in WMAP.-As
visual inspection confirms the significance of this bias, s8-e suming that the level of noise in the Smica map is negligihita w

mated it quantitatively in AppendIXIB to be in the rangel 6fs of

o’s. This bias is confined to these scales, the inclusion dfidrig
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respect to that of the Q,V,W maps on these scales, we can tesi

this hypothesis using our density functions in Hg.l (10). We- p
ceeded as follows. Assuming white noisg in each WMAP maps,
the signal to noise iISN = C{™® /0%, where CFM® was gen-
erated with the CAMB package with Planck’s best fit parame-
ters (Planck Collaboration etlal. 2013a), multiplied by taspec-
tive beam window function of the Q,V or W maps. The solid lines
in Figurel® show the mean of the density function, and the&thsh
ones correspond 2o deviations. The decoherence is in excellent
guantitative agreement with this simple model. It makes ifferd
ence to use the exahty (©) in Eq. [10) or the approximations in
Egs. [(12) and(3).

The noise dominates by orders of magnitude at the higtest
therefore an angle ¢f0 degrees is expected naively. The observed
angles, however, deviate slightly from this theoreticajpdice, in-
dicating a few percent residual correlation. As we show imentte-
tail in AppendiX @, this correlation is due to leakage of lbwower
into higher?’s, and essentially white noise. We can obtain accurate
analytic approximations assuming an azimuthally symmetisk
centered on the equator and white noise. The mask is an egliato
band sustaining an anglevith the equator, so thgky = 1 —sinb.
Using the explicit formula relating the spectruth of the masked

field to that of the unmasked fied, (Hivon et all 2002), we derive
in AppendiX @ the asymptotic behavior of the spectrum,

2
Co — 1607 cosb COS:Z 0 — 0 (14)
(2¢+ 1)
wherec? is the variance of the unmasked map
) 2041 AT 2
= = — . 15
or 4 Ce < ( T (15)

On the other hand the white noise spectra are simply mdtiiy

fsky- Since(cos ©;) ~

C1/(Cy + o%), we obtain in the very low
signal to noise regime
4 2 — fsky

W( ) (5 )1/4 (o

Despite the above approximations, these ideas explairhdpesof
measured, curves extremely well, and predict asymptotic prop-
erties at higlY in virtually perfect agreement with simulations and
measurements. Note that these considerations do not affe&t
decoherence limits, as our null hypothesis of no correhati@or-
responding to infinite noise) has no bias.

We used our well calibrated decoherence model to forecast
GP angles of Planck and a hypothetical perfect CMB experimen
without noise (FiglB). Decoherence is predicted at 2900, be-
yond which any non-Gaussian information should be domihiaye
noise.

ar
cos O, — —
ON

4 CONCLUSIONS

We quantified the/-by-¢ coherence of latest WMAP, and Planck
CMB maps. We introduced a new set of statistics, Generalized
Phases, that are complementary to the (pseudo-)powenrspect
and can be used to characterize the phase-coherence of tigo CM
maps. We compared GP’s of the two maps by simply calculating
the angles between the corresponding unit vectors. Thegesan

3 http://camb.info/
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Figure 8. Estimated decoherence properties of a Planck-like simulat
(Nsige = 2048, assuming Smica noise) with a hypothetical perfect CMB
experiment with no noise, and our WMAP results for comparistle show
simulated decoherence using single realizations, togettk theory and
20 errors. Black solid line illustrateSo significance level for our null hy-
pothesis, while dashed red line sha decoherence level.

while do not contain all non-Gaussian information, corlgisem-
marize the coherence properties of two maps at éatlsing the
statistics of random vectors {2¢ + 1) dimensions, we defined the
¢ of decoherence where the null hypothesis of no correlatesn b
tween the maps could not be rejected atibidevel. We controlled
any effect of the masks, typically a problem with statisbased on
phases, with careful simulations and analytical models Hibeit
based on simplifying assumptions, appear to provide anllexte
guantitative framework. To check for systematics, we regzball
our measurements of the Planck Smica map with the NILC maps
finding virtually identical results. According to our detfion, de-
coherence from Planck was found abdve: 700, ¢ ~ 900 and
¢ =~ 1100 for WMAP9 Q, V and W. Our theoretical description is
in excellent agreement with the measured coherence anglds,
a slight bias for low-intermediaté's We also find a small bias
of the WMAP pseud(ﬁ’e at10 < ¢ < 300 at an average.6%
level with very high significance. It appears that for hi¢g) where
our theoretical prediction for the coherence angle is ateurased
on a simple Gaussian WMAP noise model, there is no significant
bias in the power spectra either. Qualitatively, there iggascolor
dependency as well based on Figure 7. From the excess decoher
ence we can calculate the amount of excess noise it corréspon
to. We found that, with the exception of the Q map in the rarfge o
250 < ¢ < 500 the noise corresponding to the excess decoherence
is below what is needed to fully explain the bias in the povpercs
tra. Nevertheless, the qualitative behaviour of the nasénilar to
the observed one, and it is different than our simulationszdn-
clusion, there are tantalizing coincidences hinting that éxcess
decoherence and power spectrum bias are related, but nisteors
picture emerged. Note that our simulations do not contaimeeo
lated noise, we did not check for any effect of foregroundewr/
leakage, especially from the dipole, into higlits; such investiga-
tions are left for future research.

Our analytical and simulation framework can be used to fore-
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cast the coherence of Planck with a noise-free experimeatitie
CMB). We find that below! < 2900 Planck is coherent with the
CMB according to oubo criterion, thus non-Gaussian information
can be best gleaned from below thése
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APPENDIX A: THE DISTRIBUTION OF COHERENCE
ANGLESFOR NOISY DATA

We derive the form of Eq[{10) next. The probability density f
cos Oy is given by

p(cos©) = /dn6z pa (€)

(A1)

- §P (cos 0, — &V (e‘;MB n eg)) ,
with 67 the Dirac delta function ang¢ is the probability den-
sity describingn Gaussian uncorrelated variables with variance
C°¢/2, We can set without loss of generalit§™® to be paral-
lel to the first axis, such that

X X oMB 4 (1
) (6%MB + 6() ¢ ¢

\/(CZCMB €)%+ 2 (65)2
Shifting the variables; — CFM8 + ¢} in Eq. [AT) we simplify

the integral further. The argument of the integrand depem

of the radial coordinate and of the first polar angle defined by
€; = rcos ¢1, which must matct®,, because of the Dirac delta
function. Inn-dimensional space we have

.CMB
€

(A2)

d"z =r""'drsin” % ¢idey - - .

(A3)

The Dirac delta function gives the factdn™ 2 © in Eq. [10), and
the radial integral the second factor.

APPENDIX B: ESTIMATE OF BIASSIGNIFICANCE
We define the bias of WMAP with respect to Planck at a gi¢es

CZVMAP
bl = C?Ianck - (Bl)
We expectC}™A® to coincide on average witd’}*" | in which

case(by) = 0. Our aim is to estimatéb; ). We need to make some
simplifying assumptions on the stochasticity@™". We assume
that this stochasticity comes from the cross-correlatfdwo noisy
tracers,

1
CmMAP _

2041

> (o

m=—

Planck Planck = *
m + 61,[111) (a(m + 62,[111) ’

(B2)
We assume that the harmonic coefficients, of the noise
are Gaussian variables with spectrur{‘si,gme;e,m,>
8001 O 05O, i 1,2, while a}" and Cf'a" are
simple numbers. Within these assumptions it holds that

1 Planck = Planck
by = m Z[ (agm €2 tm + Ao

m=—

*
€1,0m + El,lm€2,€m) .

(B3)
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Averaging over noise gives no bias, and the varianck @fan be
simply evaluated remembering that we tre8f"*“as simple num-
bers and that the average of theéevanishes. We obtain

(bi) = < ) + ( H . (B4

Averaging over multipoles defines the bias= (3, b,) /Al. Ne-
glecting correlations(bf} = (3, (be)?) / (AL)*. We set further
oM = ) =20}, definingC}a*/ ¢} as the signal to noise
SN, of the map. Thus we obtain our final formula

Zmax

- )

with Al = fmax—£min+ 1, with which we estimated the significance
of the bias.
For a roughly constant signal to noise a simple estimate of

®2) is
()

Using the above formula and neglecting correlations betwgés,
we estimate the significance of the bias in the Q,V,W colorseto
330, 300 and260, respectively. While taking into account the true
covariance matrix, potentially impacted by correlatedsaoand
mask, could lower these significances, it is safe to statehibdias
below? < 300 is overwhelmingly significant. At the same time, if
£'s up to1100 - the maximum given bY,,.... of Q1,Q2 beam trans-
fer fuctions - are taken into account, we fihdo, 0.70, and1.20,
i.e. no significant bias is detected over the full range ofptbwer
spectrum. Note, however, that this is mainly due to the ndds®i-
nating at high? and the uniform weighting of our estimator, that is
suboptimal for the bias once the noise is increasing dueetdaih
of the beam correction.

N N:
C[ 1y Cl 2
Planck
C[

Ni ~N2
Cl CK
Planck
CZ

1
2041

14+ SN,
20 + 1 SN[)

(B5)

ap =

2v1+4+ SN
Al SN

(B6)

Op =

APPENDIX C: COHERENCE ANGLE ASYMPTOTICS
WITH AZYMUTHALLY SYMMETRIC MASK

We derive the asymptotic behavior of the coherence anglaen t
presence of an azymuthally symmetric mask (band). Ourirsgart
point is the exact formula relating the spectrum of the oagmap

to that of the masked m @02)
20 +1 A
cpei= Y = e el (p @ G) - (e

Loly

In this equatiori¥;, are the harmonic coefficient of the azimuthally
symmetric mask function. We are interested in the regimeravhe
¢ — oo. In this case, it is possible to rewrite the above equation as
follows,

masked £ — 0o 1
% _—
C 20+ 1 ;
2

where the last term is the average |0F| with a roughly flat
weight function centered drwith width l». The exact weight func-
tion can be obtained from the asymptotics of the WigBiesym-
bols [Hivon et all 2002, e.g.) but they turn out irrelevant dorr
purpose. For a band mask centered on the equator with areyhel
thus fsky = 1 — sin b, we have

4 .
Wio =/ 57— W11 (Pr—1(sinb) — Pyyi(sind)), feven (C3)

205 + 1

CZ2 <|W€20|>[,l27[+l2 ’ (Cz)

where P;(x) are the Legendre polynomials. The coefficientsé#or
odd vanish due to the symmetry with respect to the equata. Th
polynomials have the asymptotic behavior
2cos ((L+1/2)0 — %)

m(2¢ + 1) sin 6
at high#. Using this formula and the addition formula for sines and
cosines, one has after some algebra

Py(cosf) — , (C4)

Wiy — 5 sin 0 sin” ((6—1— 1/2)6 — %) , leven

64
(2¢+1)

(C5)
with @ = 7/2 — b andsind = cosb. We need the mean value
of (CB) with respect to a smooth function centeredéamith size
205, small with respect td. We can replace thein? in (CB) by a
factor1/2, as the average would be the samsiif® was in fact a

s2. Another factorl /2 comes from the fact that only everare
non-zero.

masked {— oo 1 202 + 1 2
< w1 O (Walsy i,
2
16 cosb (202 + 1) < 1 >
~ L2 2
20+ 1 47 (20 +1) oty 04ty

(C6)

If Cy, only for £2 much smaller thar, then the mean value be-
comes independent é%. All in all, we obtain

(=

02

16 cosb
(20 +1)°

(242 —+ 1)
4

Cznasked

ng> (C7)

The last term is the variance of the map. This formula is Vadith
for small or largefsky.
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