312 research outputs found

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding

    Structure and enumeration of (3+1)-free posets

    Full text link
    A poset is (3+1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets play a central role in the (3+1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a finer decomposition into bipartite graphs which applies to all (3+1)-free posets and obtain generating functions which count (3+1)-free posets with labelled or unlabelled vertices. Using this decomposition, we obtain a decomposition of the automorphism group and asymptotics for the number of (3+1)-free posets.Comment: 28 pages, 5 figures. New version includes substantial changes to clarify the construction of skeleta and the enumeration. An extended abstract of this paper appears as arXiv:1212.535

    The birth of the strong components

    Full text link
    Random directed graphs D(n,p)D(n,p) undergo a phase transition around the point p=1/np = 1/n, and the width of the transition window has been known since the works of Luczak and Seierstad. They have established that as n→∞n \to \infty when p=(1+μn−1/3)/np = (1 + \mu n^{-1/3})/n, the asymptotic probability that the strongly connected components of a random directed graph are only cycles and single vertices decreases from 1 to 0 as μ\mu goes from −∞-\infty to ∞\infty. By using techniques from analytic combinatorics, we establish the exact limiting value of this probability as a function of μ\mu and provide more properties of the structure of a random digraph around, below and above its transition point. We obtain the limiting probability that a random digraph is acyclic and the probability that it has one strongly connected complex component with a given difference between the number of edges and vertices (called excess). Our result can be extended to the case of several complex components with given excesses as well in the whole range of sparse digraphs. Our study is based on a general symbolic method which can deal with a great variety of possible digraph families, and a version of the saddle-point method which can be systematically applied to the complex contour integrals appearing from the symbolic method. While the technically easiest model is the model of random multidigraphs, in which multiple edges are allowed, and where edge multiplicities are sampled independently according to a Poisson distribution with a fixed parameter pp, we also show how to systematically approach the family of simple digraphs, where multiple edges are forbidden, and where 2-cycles are either allowed or not. Our theoretical predictions are supported by numerical simulations, and we provide tables of numerical values for the integrals of Airy functions that appear in this study.Comment: 62 pages, 12 figures, 6 tables. Supplementary computer algebra computations available at https://gitlab.com/vit.north/strong-components-au
    • …
    corecore