60 research outputs found

    Improved Constructions of Frameproof Codes

    Full text link
    Frameproof codes are used to preserve the security in the context of coalition when fingerprinting digital data. Let Mc,l(q)M_{c,l}(q) be the largest cardinality of a qq-ary cc-frameproof code of length ll and Rc,l=limqMc,l(q)/ql/cR_{c,l}=\lim_{q\rightarrow \infty}M_{c,l}(q)/q^{\lceil l/c\rceil}. It has been determined by Blackburn that Rc,l=1R_{c,l}=1 when l1 (mod c)l\equiv 1\ (\bmod\ c), Rc,l=2R_{c,l}=2 when c=2c=2 and ll is even, and R3,5=5/3R_{3,5}=5/3. In this paper, we give a recursive construction for cc-frameproof codes of length ll with respect to the alphabet size qq. As applications of this construction, we establish the existence results for qq-ary cc-frameproof codes of length c+2c+2 and size c+2c(q1)2+1\frac{c+2}{c}(q-1)^2+1 for all odd qq when c=2c=2 and for all q4(mod6)q\equiv 4\pmod{6} when c=3c=3. Furthermore, we show that Rc,c+2=(c+2)/cR_{c,c+2}=(c+2)/c meeting the upper bound given by Blackburn, for all integers cc such that c+1c+1 is a prime power.Comment: 6 pages, to appear in Information Theory, IEEE Transactions o

    (2,1)-separating systems beyond the probabilistic bound

    Full text link
    Building on previous results of Xing, we give new lower bounds on the rate of intersecting codes over large alphabets. The proof is constructive, and uses algebraic geometry, although nothing beyond the basic theory of linear systems on curves. Then, using these new bounds within a concatenation argument, we construct binary (2,1)-separating systems of asymptotic rate exceeding the one given by the probabilistic method, which was the best lower bound available up to now. This answers (negatively) the question of whether this probabilistic bound was exact, which has remained open for more than 30 years. (By the way, we also give a formulation of the separation property in terms of metric convexity, which may be an inspirational source for new research problems.)Comment: Version 7 is a shortened version, so that numbering should match with the journal version (to appear soon). Material on convexity and separation in discrete and continuous spaces has been removed. Readers interested in this material should consult version 6 instea

    Almost separating and almost secure frameproof codes over q-ary alphabets

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10623-015-0060-zIn this paper we discuss some variations of the notion of separating code for alphabets of arbitrary size. We show how the original definition can be relaxed in two different ways, namely almost separating and almost secure frameproof codes, yielding two different concepts. The new definitions enable us to obtain codes of higher rate, at the expense of satisfying the separating property partially. These new definitions become useful when complete separation is only required with high probability, rather than unconditionally. We also show how the codes proposed can be used to improve the rate of existing constructions of families of fingerprinting codes.Peer ReviewedPostprint (author's final draft

    Constructions of almost secure frameproof codes with applications to fingerprinting schemes

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10623-017-0359-zThis paper presents explicit constructions of fingerprinting codes. The proposed constructions use a class of codes called almost secure frameproof codes. An almost secure frameproof code is a relaxed version of a secure frameproof code, which in turn is the same as a separating code. This relaxed version is the object of our interest because it gives rise to fingerprinting codes of higher rate than fingerprinting codes derived from separating codes. The construction of almost secure frameproof codes discussed here is based on weakly biased arrays, a class of combinatorial objects tightly related to weakly dependent random variables.Peer ReviewedPostprint (author's final draft

    Torsion Limits and Riemann-Roch Systems for Function Fields and Applications

    Get PDF
    The Ihara limit (or -constant) A(q)A(q) has been a central problem of study in the asymptotic theory of global function fields (or equivalently, algebraic curves over finite fields). It addresses global function fields with many rational points and, so far, most applications of this theory do not require additional properties. Motivated by recent applications, we require global function fields with the additional property that their zero class divisor groups contain at most a small number of dd-torsion points. We capture this by the torsion limit, a new asymptotic quantity for global function fields. It seems that it is even harder to determine values of this new quantity than the Ihara constant. Nevertheless, some non-trivial lower- and upper bounds are derived. Apart from this new asymptotic quantity and bounds on it, we also introduce Riemann-Roch systems of equations. It turns out that this type of equation system plays an important role in the study of several other problems in areas such as coding theory, arithmetic secret sharing and multiplication complexity of finite fields etc. Finally, we show how our new asymptotic quantity, our bounds on it and Riemann-Roch systems can be used to improve results in these areas.Comment: Accepted for publication in IEEE Transactions on Information Theory. This is an extended version of our paper in Proceedings of 31st Annual IACR CRYPTO, Santa Barbara, Ca., USA, 2011. The results in Sections 5 and 6 did not appear in that paper. A first version of this paper has been widely circulated since November 200
    corecore