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Abstract In this paper we discuss some variations of the notion of separating
code for alphabets of arbitrary size. We show how the original definition can
be relaxed in two different ways, namely almost separating and almost secure
frameproof codes, yielding two different concepts. The new definitions enable
us to obtain codes of higher rate, at the expense of satisfying the separating
property partially. These new definitions become useful when complete sepa-
ration is only required with high probability, rather than unconditionally. We
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also show how the codes proposed can be used to improve the rate of existing
constructions of families of fingerprinting codes.
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1 Introduction

In this paper we shall proceed to relax the notion of separating code to derive
two new families of codes, which we will prove to be useful in the field of digital
fingerprinting.

Separating codes have been known for some decades now, being discussed
for the first time by Friedman et al. [12] in the late 1960s. In those days, one
of the original applications that motivated the study of separating codes was
the need of an encoding scheme for the inner stable states of asynchronous
automata. These states can be stored in n binary memory cells, and due to
their asynchronous nature, the content of those cells are allowed to change
nonuniformly in the transition between two stable states. Let a, a’, b and V'
be the binary representations of four different stable states. A critical race
occurs if in the transition from a to o/, and in the transition from b to b’
the same intermediate state appears. Critical races are undesirable, since from
that common intermediate state it is not possible to determine if the final
stable state of the transition is @’ or ¥'. Hence, one would like an encoding for
the stable states so that any pair of “disjoint” transitions (i.e., having different
initial and final stable states) shares a common intermediate state. It has been
shown that separating codes provide an appropriate encoding that avoid the
rise of these common intermediate states.

Codes with the separating property have also proved to be useful in many
other areas, such as technical diagnosis, construction of hash functions, In-
ternet routing, and even in genetics. Such codes have been subsequently in-
vestigated by many authors, obtaining lower and upper bounds on the code
rate, and establishing connections with similar concepts. See for instance the
overviews [18] and [7].

With the advent of digital fingerprinting [3,4], the interest in separating
codes reemerged once again. The concept of a digital fingerprinting scheme is
that of traitor tracing [5,6] applied to the distribution of digital contents. In
this new area of application, separating codes are also known under the names
of frameproof and secure frameproof codes [19,20].

A fingerprinting scheme is a cryptographic technique that enables the iden-
tification of the source of leaked information. In a fingerprinting scheme, a dis-
tributor delivers copies of a given content to a set of authorized users. If there
are dishonest members (traitors) among them, the distributor can deter plain
redistribution of the content by delivering a marked copy to each user. The set
of all user marks is known as a fingerprinting code. There is, however, another
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threat. If several traitors collude to create a combination of their copies, then
the pirated copy that they generate will contain a corrupted mark, which may
obstruct the identification of the traitors.

As stated above, the main result of this paper is the fact that relaxing the
notion of separating code shall lead us to two different families of codes, coined
as almost separating and almost secure frameproof codes. When absolute sep-
aration is not strictly necessary, then these two relaxations of a separating
code allows us to construct codes with better rate. We will derive existence
bounds for such new codes in the case of g-ary alphabets. Moreover, we will
prove them to be useful to construct families of binary fingerprinting codes
with efficient identification algorithms and exponentially small identification
error.

The structure of the paper is as follows. In Section 2 we introduce the topic
and present some previous results. In Section 3 and Section 4, we obtain ex-
istence bounds on the rate of the relaxed versions of separating codes that we
are introducing. Next, in Section 5 we compare the obtained results with the
current known state of the art. Our motivation for studying almost separat-
ing and almost secure frameproof codes is their application to fingerprinting
schemes. In Section 6, we construct a family of fingerprinting codes with small
error using almost separating and almost secure frameproof codes. Finally, the
conclusions are drawn in Section 7.

2 Definitions and previous results

We begin our discussion by recalling some coding-theoretic definitions and
some useful bounds from probability theory.

Let @ be an alphabet of size ¢, i.e., a nonempty set of size q. When Q
is the finite field of ¢ elements, we denote it by F,. Also, let Q™ be the set
of all possible n-tuples over an alphabet Q. We denote the elements of Q"
in boldface, e.g., u = (u1,...,u,). The (Hamming) distance between two
elements u, v € Q" is denoted d(u,v).

A g-ary (n, M)-code is a subset C' C Q" of size M, where |Q| = ¢. A code C
is a g-ary linear [n, k]-code if C' is a vector subspace of [y of dimension k. The
elements of a code C are called codewords. A code C has minimum distance d
if d is the smallest distance between any two of its codewords. The rate of a
g-ary (n, M)-code C, denoted R(C), is defined as R(C) = n~'log, M.

Informally in our discussion, we refer to a random (n,M)-code C over
a g-ary alphabet ) as the result of the experiment consisting in choosing
M vectors uniformly and independently from Q™. That is, we generate M
codewords (ug,...,u,) C Q™ where each w; is chosen from @ independently
with probability 1/gq.

Remark 1 A clarification is probably in order at this point. Observe that in
the definition of a random code that we have just introduced, the codewords
are chosen with replacement, i.e., the resulting code should be regarded as a
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multiset, rather than a set. Apparently, this may seem unsuitable, since the
repeated codewords of a multiset should not be taken into account in the
computation of the code rate. However, in our standard probabilistic analysis
below, we will be interested in the occurrence of certain significant events
in a random code. Namely, we will use the probability of occurrence of such
significant events to show that, if they are subject to certain restrictions, then
a code with some desired properties exists.

By convention in probability theory, we shall use the abbreviations “r.v.”
and “pmf” to denote random wvariable and probability mass function, respec-
tively. Moreover, we will have several occasions to use the following well-known
results. Let X1,..., X, be n independent indicator r.v.’s, i.e., taking on val-
ues in {0,1}. Also, let X = Y | X;, and p = EX/n, where EX denotes the
expected value of X. In other words, X counts the number of successes in n
trials with average probability of success p. Then, the probabilities of the tails
can be bounded as

(a) (b)
Pr{X/n > p+0} < 2 PwHlp) L =208 gor 550, (1)
and
@ npsly) P ans?
Pr{X/n<p—4} < 27"PW=0le) L em200"  for0<s<p. (2)

Here, D(z||y) denotes the Kullback-Leibler divergence between two Bernoulli
distributed r.v.’s of parameters x and y, respectively,

D(z|ly) € logy(x/y) + (1 — ) logy((1 — 2)/(1 — y)).

Inequalities (a) in (1) and (2) are known as the Chernoff bounds, and in-
equalities (b) are a special case of the Hoeffding bounds [14]. Observe that
D(z|ly) > 0, and D(z|ly) = 0 if and only if x = y. Moreover,

9~nD(p+dllp") < 9-nD(P+dlp) for p’ < p, (3)

since D(z||y) is strictly decreasing in the interval 0 < y < z. Finally, note that
bounds (1) and (2) hold when X is a binomial r.v. of parameters n and p.

2.1 Separating and secure frameproof codes

Let C be a code over a g-ary alphabet (). We call a subset of ¢ codewords
U={u',...,u’} C C a c-subset or a c-coalition. For a c-subset U, denote by
P;(U) the projection of U on the ith position, i.e., the set of elements of the
code alphabet at the ith position,
def

Bi(U) = {uj, .. uf}. (4)
For a pair of (disjoint) subsets U,V C C, a position 1 < i < n is separating
if P;(U) and P;(V) have empty intersection. The pair of subsets U,V are
separated if there exists a separating position for them.
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Definition 1 A code C is (¢, c')-separating if every pair of disjoint subsets
U,V CC, with [U| = cand |V| = ¢, are separated.

After its introduction in the work by Friedman et al. in [12], the separating
property has been investigated by many authors, e.g. in [7,8,15,16,17,18].

In connection with digital fingerprinting, we say that a position i is unde-
tectable for a c-coalition U if the codewords of U match in their ith position,
that is, u} = --- = ¢, or equivalently, |P;(U)| = 1. A position that does not
satisfy this property is called detectable.

In the field of digital fingerprinting, the marking assumption [3,4] states
that when a c-coalition U generates a forged copy of the content, the unde-
tectable positions remain unchanged in the pirated word. For the detectable
positions, the traitors are allowed to alter them in some way, possibly making
them unreadable.

We will restrict our study to the so-called narrow-sense envelope model [1].
That is, we consider that the set of pirated words that a c-coalition U can
generate, denoted desc(U), is

desc(U) def {(z1,...,2n) €Q" : z; € P;(U),1 <i<n}.

For the binary case, and from the distributor’s perspective, the study of finger-
printing codes under the narrow-sense envelope model yields the same results
as the study under other envelope models, as it was shown in [1].

A pirated word z € desc(U) is also known as a descendant, and the code-
words from U are also called the parents of z. Additionally, for a code C, we
define the c-descendant code under the narrow-sense envelope model, denoted

desc.(C), as

desc.(C) def U desc(U).

UCC,|U|=c

Thus, desc.(C) contains all vectors that can be generated by any c-coalition.

Definition 2 A code C is c-secure frameproof if for any U,V C C with
Ul <¢, |[V|<cand UNV =), we have desc(U) Ndesc(V) = 0.

The concept of frameproof code was introduced in [19,20]. It is easy to see
that a c-secure frameproof code is the same as a (¢, ¢)-separating code. Also,
a code C' such that for any c-subset U C C satisfies desc(U) NC' = U is called
a c-frameproof code, which is the same as a (¢, 1)-separating code.

Let R;*P(n,c,c’) denote the rate of a maximal g-ary (¢, ¢)-separating code
of length n, i.e.,

RP(n,c,c) e ax R(C), where |Q] = ¢.

m
CCQ"st. Cis
(¢, c’)-separating

Also, consider the corresponding asymptotical rates

Ry (e, ) L Yim inf Ry(n,c,c), Rzep(c, ) “ lim sup Ry(n,c,c).
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Lower bounds on the rate of (2, 2)-separating codes were studied in [12,16].
Some important, well-known results for binary separating codes are worth
mentioning. For example, from [16,18], we have R57"(2,2) > 1 — log,(7/8) =
0.0642, which also holds for linear codes [16]. Also, for the general case, it was
shown in [1] that

logy (1 — 27¢=<'+1)
c+c —1

Ry (c,) >

()

Regarding the upper bounds, it is known that R, ©(2,2) < 0.2835 for arbitrary
codes [15,18], and Ry *(2,2) < 0.108 for linear codes [18].

3 Separating and almost separating codes over g-ary alphabets

We start the study of separating and almost separating codes by obtaining
lower bounds for separating codes over arbitrary alphabets. This will allow us
to compare these results with the concepts of almost separating and almost
secure frameproof codes that we will introduce below. We will use a standard
probabilistic argument to obtain a generalization of (5).

3.1 Lower bounds on the rate of separating codes
Let us begin our discussion with the following two lemmas.

Lemma 1 Let v(j;q,c) be the pmf at j of an r.v. that counts the number of
different symbols of a q-ary vector of length ¢ chosen uniformly at random.
Then,

J

g @ L 1< <minga.e) (©
q- \J

where ¢L def q(g—1)---(¢g—j+1) denotes the falling factorial and {JC} denotes

the Stirling number of the second kind.

Proof A set of size ¢ can be partitioned into j nonempty subsets in {7} different

ways. For each such partition there are exactly ¢(¢ —1)---(¢—j+ 1) = ¢
possible assignments using j different elements from a g-ary alphabet. The
product of these two terms gives the number of g-ary vectors of length ¢ that
contain exactly j different symbols. The proof follows after dividing by the
total number of vectors of length c. O

For convenience, we shall say that two g-ary vectors are disjoint if they
have no common element.
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Lemma 2 Let pg,izj;;/ be the probability that two q-ary vectors of lengths ¢ and
c, respectively, chosen uniformly and independently at random are disjoint.

Then, we have

min{g,c}
Py, = Y (1-4/9 v(iig o).
j=1
Proof Let a = (ai,...,a.) and b = (by,...,b) be two random vectors, of

length ¢ and ¢/, respectively, and let X be the r.v. that counts the num-
ber of different symbols in a. The probability that a and b are disjoint, i.e.,
{ai,...,a.} N {b1,..., b} =0, can be computed as

pii?;'c, = ZPr{a and b disjoint | X = j} Pr{X = j}.

J

Clearly, Pr{X = j} = v(j; ¢, c). Also, since b has ¢’ elements, independently
chosen from a, we have Pr{a and b disjoint | X = j} = (1 —j/q)°. |

Now, consider two disjoint subsets U,V of a random (n, M)-code C over
a g-ary alphabet @, with |U| = ¢ and |V| = ¢. According to our definition
of a random code, these subsets can be regarded as choosing uniformly and
independently (with replacement) ¢ and ¢’ codewords from Q™. Hence, the
probability that a position 1 < i < n is separating, i.e., P, (U) N P(V) = 0
is precisely p;ﬁij'c,. Using this fact, combined with the probabilistic argument
borrowed from 7[1, Proposition 3.4], it is easy to see the following result. We
provide the proof below for completeness.

Corollary 1 There exist q-ary (c,c)-separating codes of asymptotical rate
satisfying

10g (1 _ pdisj. /)
se / q q,6,C
Bted) 2 == o1

Proof Let C be arandom g-ary (n, M)-code, and let E be the expected number
of “bad” pairs U,V of subsets with |U| = ¢ and |V| = ¢, i.e., pairs that
are not separated. If E < M/2, then a g-ary (n, M/2)-code with the (c,c)-
separating property exists, since by removing one codeword from each bad
pair, the remaining codewords yield a (¢, ¢’)-separating code. The probability

that a pair U,V of such subsets is not separated is (1 — pjiij;:,)”. Hence, we
have
M\ (M —c dis;j. Mete disj.

Observe that taking M = (C!C/!(l — plisi )™™) 1/(C+C,71), we have E < M/2.

2 q,c,c’
clc’!

Finally, since (££4)Y/ (e+e'=1) > 1 we can disregard the logarithm of this term

in the lower bound on the code rate. O
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3.2 Lower bounds on the rate of almost separating codes

The separating property imposes a very strict combinatorial restriction to the
code, namely that every pair of c-subsets is separated. One could obtain codes
with better rates by relaxing this condition, and asking for codes where it
is satisfied with high probability, rather than in all cases. In this section we
elaborate our first proposal to relax the separating condition.

Let us introduce some useful definitions. For a code C, we say that a c-
subset U C C is separated if U is separated from any other disjoint c-subset
vV CcC.

Definition 3 A code C C Q" is e-almost (¢, ¢)-separating if the proportion
of c-subsets that are separated is at least 1 — e.

A sequence of codes C = (C;);>1 of growing length n; is an asymptotically
almost (¢, c)-separating family if every code C; is g;-almost (e, ¢)-separating
and lim;_,o g; = 0.

We also define the asymptotical rate of a sequence C = (C;);>1 as

R(C) = liminf R(C)). (7)

We are interested in estimating the maximal possible asymptotical rate, de-
noted Rffp* (¢), among all asymptotically almost (¢, ¢)-separating families of
codes.

To derive lower bounds, we make use of a restricted version of strongly
typical subsets of codewords [9]. That is, subsets of codewords that appear
with high probability in a random code.

Let C be a g-ary (n, M)-code, and let U C C be a c-subset. We say that a
position i is j-valued if its projection P;(U) contains exactly j different symbols
from the code alphabet. We denote N (j;U), for 1 < j < min{q, ¢}, the number
of positions 1 < 4 < n that are j-valued. For example, if @ = {0,1,2} and

Uv=1{(210,0,20,0,1,0,0,0,2,1,0,2),
(1,1,1,1,1,0,0,2,1,0,0,0,0,0,2),
(1,2,2,0,1,0,1,0,0,0,1,1,0,2,0),
(2,1,1,1,1,1,0,2,0,0,2,1,1,1,2) },

then N(1;U) =1, N(2;U) =9, N(3;U) =5 and N(j;U) = 0 otherwise. Note
that for a c-subset U, uniformly chosen from a random g-ary (n, M)-code, the
empirical distribution N(j;U)/n satisfies

EN(j;U)/n=v(j;q,¢), 1 < j < min{q,c}.

Definition 4 Let 0 < § < 1. For a g-ary (n, M)-code C, we say that a given
c-subset U C C is d-typical if the empirical distribution of the number of
j-valued positions, i.e., N(j;U)/n, is “close” to the expected value v(j; g, c) of
a c-subset in a random code. Namely,

ING:U)/n—v(jiq,¢)f <6, 1<j<min{g,c}. (8)
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The set of all o-typical c-subsets of a random code is denoted by A((;")(q7 c),

A (g, ) LU CC:|U| =cand U is 5-typical}.

Note that if U is a uniformly chosen c-subset from a random code, each
N(j;U) can be regarded as a binomial r.v. of parameters n and v(j) =
v(J; g, ¢). Then, combining the union bound with (1) and (2), it is not dif-
ficult to see that the probability that U is not contained in the typical set
satisfies

Pr{U ¢ 45" (q,0)}
min{q,c}

< Z 2~ D) =dlv(7) 4 o=nP()+olv() < 24 e—2n8° (9)

j=1
With these results in mind, we are ready to derive a lower bound for almost
separating g-ary codes. The key idea in our probabilistic approach below is
to bound the probability that a given c-subset is separated (from any other
disjoint c-subset) in a random code, and derive the conditions on the code rate

for which this probability vanishes as the code length increases.

Theorem 1 For the mazimal possible asymptotical rate Rzep*(c) among all
asymptotically almost (c, c)-separating families of g-ary codes we have

min{q,c}

RyP(c) = == > log,(1— (1= j/a)) v(jig,).

j=1

Proof Consider a random (n, M)-code C over a g-ary alphabet. For a given
c-subset U C C there are exactly N(j;U) j-valued positions. For each such
position ¢, the probability that another random disjoint c-subset V' satisfies
P,(U)N P;(V) = 0 equals (1 — j/q)¢. Thus,

Pr{U and V are not separated} = H(l — (1 —j/q))NUV,
J
Now, using (8) and (9), the probability e that U is not separated can be
upper bounded as follows:

¢ = Pr{U is not separated | U is typical} Pr{U is typical}+
Pr{U is not separated | U is not typical} Pr{U is not typical}
< Pr{U is not separated | U is typical} + Pr{U is not typical}
< M — c) 1— (1 — j/q)°)"wiia:0)=08) 4 9 o—2n8”
(M, 10 - =3/a) ”
Observe that taking § = 6(n) = Inn/y/n, then lim, ¢ < ¢"4, where

A=cR(C) + Zlogq(l —(1=3/9)) v(j;g;¢)-
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Now take a sequence of codes C = (C;);>1 of growing length, such that each
(n;, M;)-code C; is a random code. The probabilistic argument above shows
that, taking an appropriate value for §;, for example &§; = 0;(n;) = Inn;/\/n;,
there exists a sequence of codes with lim; ., &; = 0 for any rate

R <=2 3 log,(1 = (1 = §/0)) (i 0.0),

which completes the proof. O

4 Almost secure frameproof codes

In this section we relax the definition of secure frameproof (i.e., separating)
code, again, in order to obtain codes with better rates. The notion that we
introduce here allows us to separate the concepts of almost separating and
almost secure frameproof codes.

Let us call a vector z € desc.(C) c-uniquely decodable if z € desc(U) for
some c-subset U C C and z ¢ desc(V) for any c-subset V' C C such that
U NV = (). Note that the c-secure frameproof codes from Definition 2 can be
regarded as codes where all vectors z € desc.(C) are c-uniquely decodable.
This alternate definition allows us to introduce the following concept.

Definition 5 A code C' C Q" is e-almost c-secure frameproof if the propor-
tion of c-uniquely decodable vectors among all z € desc.(C) is at least 1 — e.

A sequence of codes C = (C;);>1 of growing length n; is an asymptoti-
cally almost c-secure frameproof family if every code C; is €;-almost c-secure
frameproof and lim; .., &; = 0.

Consider again the asymptotical rate of a sequence of codes (7). As above,
we are interested in estimating the maximal possible asymptotical rate, de-
noted Rf’lf* (¢), among all asymptotically almost c-secure frameproof families.
Similarly, as in Theorem 1, our approach will be to bound the probability
that a given descendant is c-uniquely decodable in a random code, and derive
conditions on the code rate for which this probability goes to 0 as the code
length goes to infinity.

Theorem 2 For the maximal possible asymptotical rate Rf]f*(c) among all
asymptotically almost c-secure frameproof families of q-ary codes we have

R (€) 2 —~log, (1~ (1= 1/q)").

Proof Consider a random (n, M)-code C over a g-ary alphabet. Also, consider
a vector z = (z1,...,2,) which is generated by a c-coalition U C C. For a
random c-coalition V' C C such that U NV = ), using Lemma 2, we have

Pr{z € desc(V)} = (1 - pj¥))" = (1 — (1 —1/¢))".
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Certainly, there are n positions, and the probability that each position i sat-
isfies y; & P;(V) equals pgjif'l, because V is a random, independent coalition
from U. Therefore, the probability that a given vector z € desc.(C) is not

c-uniquely decodable is at most

M—c disj. \n c disj. \n
e< (MY < -y
Hence, there is a sequence C = (C;);>1 of growing length n; such that for
each (n;, M;)-code C; the proportion of c-uniquely decodable vectors among
all z € desc.(C;) is at least 1 —g; > 1 — ME(1 — p9)mi | Taking M; =

g,¢,1
disj. \—n,; .
0((1 - pq,lzj,l) nt/c)? Le.,

1
we have lim; .., &; = 0, and the proof follows. O

Remark 2 If C C Q™ is an e-almost c-secure frameproof code, then for the
family of codes p(C'), where ¢ runs over the group G of all isometries of the
Hamming space Q™, the probability that any given vector z can be generated
by two disjoint coalitions is at most € (since the group G is twice transitive).
This property allows us to replace the (c,c)-separating codes in the main
construction of fingerprinting codes from [1] with asymptotically almost c-
secure frameproof families, what will result in larger code rate with the same
polynomial complexity identification algorithm. See Section 6 below.

Remark 3 For the case of a family of codes (instead of a single code) we can
say “probability” instead of “proportion.” Namely, for every “received” vector
z the probability (i.e., the “proportion” of codes) that there exist at least two
different c-coalitions U,V of codewords which can generate z, is at most €.
Then, of course, for ¢ = 2 the lower bound on the code rate is the same and it
also follows from [2].

4.1 Geometric interpretation

For an (n, M)-code C over a g-ary alphabet @, consider the set of convex
combinations between two vectors u,v € C' as

{z € Q" :d(u,z)+d(z,v) =d(u,v)}. (10)

Note that for a c-subset U C C, its convez hull [U] C Q", i.e., the smallest
set containing all convex combinations between any two of its elements, is
precisely the envelope under the narrow-sense model, desc(U). Therefore, for
the case ¢ = 2 and U = {u,v} C C, equation (10) suggests calling the set
[{u,v}] a segment of C with vertices u and v. For ¢ = 3 and a 3-coalition
U C C, the set [U] could be called a (convex) polygon, and so on. For arbitrary
¢, let us call [U] a (convex) c-polytope with vertices in C.
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Hence, a c-secure frameproof code, or, what is the same, a (¢, ¢)-separating
code, can be regarded as a set of points C in the g-ary Hamming space Q"
with the property that any two c-polytopes [U], [V] with vertices in C' do not
intersect, provided that they do not share a common vertex from C.

For a random g-ary code C, consider the union C!¢ of all points generated
from c-polytopes [U] such that U C C, as in the proof of Theorem 2. In other
words, Cl¢ = desc.(C). For a given z € Q™ and a random c-subset V C C, let
us call

g(n) =Pr{z € [V]} =Pr{z € desc(V)} = (1 —pgj?;'l)",

which follows from the proof of Theorem 2 above. Hence, the size of C!9 can
be estimated as

0¥ = Y Pr{ze O} = ¢"Pr{z e C1} = ¢"(1 - (1 — g(n)(¥)). (11)

zeQn

Now, let us define the volume of C!l by counting every point z € Cl9 with
its multiplicity, i.e., the number of c-polytopes that contain z. Using (6), and
calling v(j) = v(j; ¢, ¢), we have

o <o) = () (Tivw)" = (V)araw. a2

This result can be obtained in two different but equivalent ways. Indeed, there
are (Af ) c-polytopes, and the probability that each z € Q™ is generated by
a given c-polytope [U] is g(n). Alternatively, the average number of points
generated by every c-polytope [U] can be computed as

DD g dn P{IPUU) = 1y [ Pa(U)] = i}

_ Z...Zjl...jnv(jl)...v(jn) = (Zjv(j))" _ (qCquj{;})n

9 (e Sata - - 0){*])" Y @ - - 0 =gl

J

Here, (a) is obtained by routine algebraic manipulation, and (b) follows from
the well-known identity z¢ =}, xl {;}

Hence, from (11) and (12) two nontrivial observations can be drawn. First,
for M = o(g(n)=%/¢), i.e., M = o((1 — pg’izf‘l)_”/CL as we took in Theorem 2,
we have lim,,_, . vol(C!9)/|Q"| = 0, i.e., the volume of C! is relatively small
compared to the volume of the whole Hamming space. Second, consider the
average asymptotical multiplicity of the points from Cl,

vol(C') ) Meg(n) ) Me g(n)
m ———— = lim = lim ———————.
n— o0 |C[C]| n—oo | — (]_ — g(n))Mc n—oo 1 —e—Mcg(n)
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The last equality follows from the fact that lim, . g(n) = 0. Taking again
M = o(g(n)~1/¢), it is easy to see that the main part of points from C!¢ have
multiplicity 1, i.e., covered only once by code polytopes, which is a stronger
statement than Theorem 2.

5 Comparison of results

In Table 1 we give some figures for the lower bounds on the asymptotical rate
of g-ary separating, almost separating and almost secure frameproof codes.

It can be seen that for binary codes and ¢ = 2 the ratio RZEP* (e)/ B (e,c)
is about 1.6, and it approaches to 2 for ¢ growing. That is, the lower bound on
the asymptotical rate of almost separating codes roughly doubles the currently
known lower bound on the asymptotical rate of ordinary separating codes.
This ratio suffers from minor fluctuations, with a slight decay, for ¢ fixed and
q growing.

On the other hand, for the case of almost secure frameproof codes, the
ratio sz*(c)/ﬂzep(c, ¢) starts at about 3.2 for binary codes and ¢ = 2. This
ratio increases significantly for ¢ growing, and it decreases, at a much slower
speed, for ¢ growing. For example, for ¢ = 5 and ¢ = 3 the lower bound on
the asymptotical rate of almost secure frameproof codes is about 80 times the
value of the lower bound for the case of ordinary separating codes.

q| Code c=2 3 4 5 10 15
Separating 6.422E—2 9.161E—3 1.616E—3 3.134E—4 1.448E—7 9.266E—11
2| Almost sep. 1.038E—1 1.605E—2 2.910E—3 5.725E—4 2.753E—7 1.792E—10
Almost s.f. 2.075E—1 6.422E—2 2.328E—2 9.161E—3 1.410E—4 2.935E—6

Separating 7.625E—2 1.080E—2 1.796E—3 3.191E—4 8.433E—8 2.997E—11
3| Almost sep. 1.249E—1 1.948E—2 3.320E—3 5.954E—4 1.609E—7 5.798E—11
Almost s.f. 2.675E—1 1.066E—1 5.008E—2 2.571E—2 1.592E—3 1.387E—4

Separating 9.562E—2 1.561E—2 2.889E—-3 5.624E—4 2.327E—7 1.415E—10
4| Almost sep. 1.524E—1 2.772E—2 5.288E—3 1.040E—3 4.428E—7 2.735E—10
Almost s.f. 2.982E—1 1.318E—1 6.860E—2 3.908E—2 4.181E—3 6.470E—4

Separating 1.114E—1 2.091E—2 4.307TE—3 9.053E—4 4.067E—7 2.158E—10
5| Almost sep. 1.744E—1 3.671E—2 7.853E—3 1.674E—3 7.741E-7 4.173E—10
Almost s.f. 3.174E—1 1.486E—1 8.185E—2 4.934E—2 7.058E—3 1.484E-3

Separating 1.549E—1 4.329E—2 1.350E—2 4.201E—3 6.568E—6 5.615E—9
10| Almost sep. 2.357TE—1 7.372E—2 2.419E—-2 7.728E—3 1.251E—5 1.086E—8
Almost s.f. 3.606E—1 1.890E—1 1.159E—1 7.755E—2 1.862E—2 6.675E—3

Separating 1.752E—1 5.723E—2 2.162E—2 8.418E—3 4.303E—5 7.895E—8
15| Almost sep. 2.649E—1 9.653E—2 3.840E—2 1.539E—2 8.202E—5 1.527E—7
Almost s.f. 3.783E—1 2.064E—1 1.313E—1 9.098E—2 2.572E—2 1.081E—2

Table 1 Lower bounds on the rate of some families of g-ary codes



14 José Moreira et al.

6 Application to fingerprinting codes

In this section we show how almost separating and almost secure frameproof
codes can be used to construct a family of binary fingerprinting codes.

The contents of this section are inspired by the work presented in [1], where
the authors present a construction of a family of binary fingerprinting codes us-
ing code concatenation [11]. Their construction uses ordinary separating codes
as inner codes, and the authors propose an efficient identification algorithm
when the outer code is a Reed-Solomon or an algebraic-geometric code.

Our main goal is to show that replacing the inner codes used in [1] by almost
separating or almost secure frameproof codes can yield a family of binary
fingerprinting codes of higher rate, with a small probability of error and with
an efficient identification algorithm. We will outline the family construction
and derive existence conditions. Of course, in our analysis below, we will also
show how to deal with the issues implied by the fact that the inner codes are
relaxed versions of ordinary separating codes.

6.1 Fingerprinting codes

A collusion attack, described in Section 1, is modeled by the generation of a
descendant. In this case the descendant is the word in the pirated copy and
the parents are the codewords belonging to the colluders.

As it is shown in [1,3,4], for a fingerprinting scheme to achieve an er-
ror probability as small as desired a single code is not sufficient, but a fam-
ily of codes is needed. Below we denote a family of fingerprinting codes as
C = {C,}jer, where T is a finite set, and each C; is an (m, M)-code. A fin-
gerprinting scheme also has the need for randomness in the following sense.
The family C = {C;};er is publicly known, however, the specific code C; used
by the distributor is chosen at random with probability 7(j), and it is kept
secret.

For the family of fingerprinting codes C = {C};};er we also need an identi-
fication algorithm, which is a collection of functions A = {A;};er, where each
A;j is a map from the set of descendants of C; to the subsets of codewords of
C; of size at most c,

Aj:desc.(C;) = {UCC;:|U| <c}.

Definition 6 Let T be a finite set and let 7 be a pmf on T'. For ¢ > 2, a family
of fingerprinting codes C = {C;}jer, is c-secure with e-error if there exists an
identification algorithm A = {A;};cr that satisfies the following condition: if
a coalition U of size at most ¢ creates a descendant z, then A;(z) is not empty,
and

Pr(Aj(z) CU) > 1 —c¢,

where the probability is taken over the random choices made by the coalition
when creating the descendant, and over the pmf .
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6.2 Family construction and existence conditions

Let Cout be an (n, M)-code over a g-ary alphabet @, and let Cj, be a binary
(1, q)-code. Consider a vector mapping (¢1,...,¢,), where ¢;,1 < i < n are
bijections between @ and Ci,. It is clear that there are (g!)" different such
vector mappings. If the mappings are arbitrarily numbered from 1 to (¢!)",
then

def

P = (dr1,- -, Dun) (13)

denotes the mapping indexed by t. Now, for w = (wy,...,w,) € Cout, We
denote by &;(w) the following binary vector of length m = n/l:

def

D (wW) = (de1(wr)y ..., den(wn)).

Construction 1 (Family of binary concatenated codes) Let Coyt be an
(n, M)-code over a q-ary alphabet Q (the outer code), and let Cy, be a binary
(I,q)-code (the inner code). Also, let @ denote the mapping indexed by t as
in (13). Denote by Cy the binary (m, M)-code, with m = nl, constructed in
the following way:
Cy (B, (w) : w € Coue}-

The set C = {Cyi}rer, with T = {1,...,(¢g")"}, constitutes the family of binary
concatenated codes.

Taking into account Definition 6, to use the family from Construction 1,
C = {Ci}ier, first we have to choose a value ¢t € T according to a pmf 7(¢).
This value ¢ must be kept secret. Each user is then assigned a codeword from
Ct, and the copies of the content are delivered correspondingly marked.

Let U = {ul,...,u’} C C,; be a c-coalition, and W = {w!, ..., w¢} C Cout
be the subset of the corresponding codewords of the outer code. In other words,
w = &, (w’) for 1 < j < e Also, let

Z=1(21,.-,2n) = (211, -+, Z1ls «-+» Znly---,2n1) € desc(U)
—— —_———

zy Zn

be a descendant created by coalition U.

In the discussion of the identification algorithm, we will consider that the
identification process of each inner block z; returns a set V; C Cj, of at most
¢ codewords, such that z; € desc(V;). Observe that if the inner code Cj, is
an eip-almost (¢, ¢)-separating or an ej,-almost c-secure frameproof code, then
with probability > 1 — ¢;,, there is a v € V; such that v agrees with the ith
block of a traitor codeword, i.e., v = ¢;(w;) for some w = (wq,...,w,) € W.

We now state, in the form of a theorem, the precise parameters of the
family of codes from Construction 1 so that it can achieve exponentially small
error probability when used in conjunction with Algorithm 1.
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Algorithm 1

Input: A concatenated code C¢ from Construction 1, satisfying the conditions from Theo-
rem 3, and a descendant z € desc.(Ct),

Z= (2115, 211, -5 Znls---»2nl)-
— ———

z1 Zn

Output: A subset of codewords of Ct.

1. For 1 < i < n, decode each block z; = (2;1,...,24) of the the descendant z as follows:
(a) Find all c-subsets V' C Cjy such that z; € desc(V).
(b) If the intersection of all c-subsets V found in Step la) is empty, set Z; = (.
(c) Otherwise, pick an arbitrary c-subset V' from Step 1a) and use the inverse mapping

65" Cin = Q

to obtain a set Z; of ¢ symbols from Q.
2. Construct the vector of sets
Z:=(21,...,2n).

3. For each w € Cous, define the similitude s(w, Z), as

s(u, 2) € {iu; € 2,1 <i < n}l.

4. Output the set L := {ul,... , u®}, consisting of all codewords u = ®;(w) € C¢, such

that 1
s(w,Z) >n—272,
C

for some codeword w € Coyt. If L = ), declare identification error.

Theorem 3 Let Coyt be an (n, M)-code over a q-ary alphabet Q, with min-
imum distance d, and let Cy, be a binary ei,-almost (c, c)-separating or ey, -
almost c-secure frameproof (1, q)-code. Let C = {Cy}ier be the family of codes
from Construction 1 with outer code Cyyt, inner code Ciy, the mappings Py,
the set of keys T, and w(t) = |T|~*. For q¢ > c2, if

1- -1 —c?
! 20)+n(c ), wz’thein<a<q C, (14)

d>n—
c(q —c) q—c

C

the family of codes C = {Cy}ier together with Algorithm 1 is a c-secure with
e-error family of codes, with exponentially small error,

c—1
—nD(pll $=5)

e < M2 +27PClE) = exp(—2(n)), (15)
where p = 1=% — ¢(1 — d/n).

Proof Let U C C} be a c-coalition, and let W C C, ¢ be the subset of their
corresponding outer codewords, as stated above. Also, let z be
Z = (211, s 21y ++y Znls---yZnl)
—_——— —_——
Z1 Zn

a descendant created by coalition U.
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First, note that in Step 1b) of Algorithm 1 we are discarding all blocks
z; that violate the separating property by setting Z; = ), an event that oc-
curs with probability < e;,, due to the properties of the inner code. Hence,
Z; N P(W) # 0, i.e., Z; contains at least one element w; for some w =
(wi,...,w,) € W, with probability > 1 — &;,.

Let X be the number of discarded blocks, which can be upper bounded
using a binomial r.v. of parameters n and p’ < &y,. Since €, < o, we can
use (1) and (3) to see that

PI'{X 2 na} S 2_nD(UHEin)7 (16)

which decreases exponentially with n.
That is, with high probability, there is a coalition codeword &t = &;(W) € U
for some w € W, such that

1—
S(W, 2) > n—=, (17)

hence, the output of the algorithm is not empty and a traitor is identified.

On the other hand, if u = @;(w) is a codeword of an innocent user, i.e.,
w ¢ W, the element w; could appear in a nondiscarded set Z; when some
codeword from W matches this position, i.e., when w; € P;(W). Since any two
codewords of Cyyy can agree in < n — d positions, this event can happen in
at most ¢(n — d) positions. Also, whenever w; ¢ P;(W) the probability that
w; € Z; can be bounded as

—1
pi = Pr{w; € Zijw; & P(W)} < <.
q—=c¢

(18)

For 1 <i < mn,let Y; be an r.v. that takes the value 1 with probability p; and
0 with probability 1 — p;. Therefore, for w & W,

1—
Pr{s(w,Z) >n
c

(@) N
< Pr{Y > np} < 9-nD0lED).

Inequality (a) above follows from (18), by comparing the summation -, Y;
with an appropriate binomial r.v. Y of parameters n and (¢ —1)/(¢ — ¢). Also,
since (¢ — 1)/(¢ — ¢) < p, which is implied by the condition in the minimum
distance of the outer code (14), applying (1) and (3) again gives the last
inequality above.
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Since there are M codewords, the probability of accusing an innocent user
as guilty is upper bounded as

Pr{maxs(w,Z) > nl _U}

wgw Cc
l1—-0o
< MPr{s(W,Z) >n ‘W ¢ W}
c
< MQ*TLD(PH;:D. (19)

Recall that the probability of not accusing a real traitor is (16). Putting this
together with (19), we have

e < M2—1’LD()0”%) + 27nD(UH€in)'

Moreover, this shows that with error probability € no codeword w ¢ W will
lie within the decoding radius (17). O

The existence of a family of fingerprinting codes with error probability
decreasing exponentially in the outer code length is guaranteed using similar
arguments to those from [1]. Using Reed-Solomon as outer codes we have the
following result, which assumes c fixed and g growing.

Corollary 2 Let Coyy be an extended [n, k]-Reed-Solomon code over F, of rate
Rout = R(Couy), and let Cy, be a binary ein-almost (c, ¢)-separating or iy -
almost c-secure frameproof (1, q)-code of rate Ry, = R(Ciy). Let C = {Ci}rer
be the family of codes from Construction 1 with outer code Cyyy, inner code
Cin, the mappings @, the set of keys T, and ©(t) = |T|~t. For ¢ > ¢, and
any

1-0 q-—c?

_ ith ein < 0 < ,
et D) with eijp < 0 o

the family of codes C = {Ci}ier together with Algorithm 1 is a c-secure with
e-error family of codes, of length m = nl, rate

Rout <

(20)

R= Rout Rin,

and error probability € decreasing exponentially as

l1—0o

€ < Q—HI(TRin—(C“Fl)R"FO(l)) + Q*HD(UHEin).

Proof If Coyt is an extended Reed-Solomon code with minimum distance d,
we have n = ¢ and 1 —d/n = Roy; — 1/n. Hence, from Theorem 3,

- C(Rout - %) (21)

1—0
p:

Cc

Now, since Cyy has size M = ¢, the error probability from (15) can be
rewritten as

(T DT D= ~Row) | g-nD(olew)
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The proof follows after substituting (21) into the previous equation, and taking
into account that
)=+

for ¢ fixed and g growing. O

c

—1
i s,
Jm (log, a) " D p|| - —

Besides Reed-Solomon codes, algebraic-geometric codes are also proposed
as outer codes in [1]. As noted in Section 5, replacing ordinary separating
codes by almost separating or almost secure frameproof codes enables us to
increase the asymptotical rate of the family of fingerprinting codes proposed
in [1], while maintaining an exponentially small identification error.

Considering the assumptions of Corollary 2, the decoding process of a sin-
gle inner code made in Step 1a) of Algorithm 1 takes time O(In°) in the worst
case. That is, the overall decoding time for the whole set of inner codes is
O(Inct1). Moreover, we would like to stress that the main reason for Con-
struction 1, Theorem 3 and Corollary 2 is to mimic the following strategy
from [1]. If the outer code Cyyt is a Reed-Solomon or an algebraic-geometric
code, then Steps 3) and 4) can be efficiently done in O(poly(n)) by using
the list decoding algorithms from [13]. Therefore, traitor identification can be
efficiently achieved in polynomial time in the code length.

7 Conclusions

In this paper we have presented two different relaxed versions of separating
codes, namely almost separating and almost secure frameproof codes. The
notions introduced allows us to separate two concepts that coincide in the
case of absolute separation.

To show existence bounds for almost separating codes we have used the
concept of typicality. Our analysis is based in the fact that a typical set of
at most ¢ codewords is separated, with very high probability, with all other
disjoint sets also of at most ¢ codewords. This analysis shows that there ex-
ists almost separating codes that double the asymptotical rate of ordinary
separating codes.

For almost secure frameproof codes the probabilistic analysis shows that
there exist almost secure frameproof codes with asymptotical rate even higher,
with relative difference to the rate of both separating and almost separating
codes increasing with the coalition size.

We believe that these two notions are essentially different, in particular,
we conjecture that for asymptotical rates

sf* sep*
Ry (¢) > Ry (o),

but it could be a rather difficult question since even for the simplest case ¢ =
¢ = 2 the best upper bound for the rate of (2, 2)-separating codes Rzep(Q, 2) <
0.2835 is very far from being “useful.”
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Finally, we have presented a construction of a family of fingerprinting codes.

The use of almost separating or almost secure frameproof codes as inner codes
allows us to obtain better code rates, preserving the exponential decline of the
error probability on the outer code length, and it also enables us to obtain a
polynomial-time identification algorithm.
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