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Abstract This paper presents explicit constructions of fingerprinting codes. The
proposed constructions use a class of codes called almost secure frameproof codes.
An almost secure frameproof code is a relaxed version of a secure frameproof code,
which in turn is the same as a separating code. This relaxed version is the object
of our interest because it gives rise to fingerprinting codes of higher rate than
fingerprinting codes derived from separating codes. The construction of almost
secure frameproof codes discussed here is based on weakly biased arrays, a class
of combinatorial objects tightly related to weakly dependent random variables.
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tracing
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1 Introduction

Copyright protection schemes are used to deter illegal distribution of digital ob-
jects. In order to offer copyright protection to content distributors, a different
set of marks is embedded in each copy of a digital object. This makes each copy
unique, and clearly rules out plain redistribution. Weakness of such schemes comes
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in the form of collusion attacks. In this case, by comparing their copies, attackers
detect the positions where their copies differ. With this knowledge at hand, they
can create a pirated copy, where they might modify the symbols in the detected
positions. This pirated copy, which masks the attackers’ identities, is the one being
redistributed. The attackers are usually referred to as traitors, a term coined in [7,
8].

The goal in constructing codes for copyright protection is to come up with a
set of codewords (embedded marks) that are resilient against collusion attacks. For
instance, in a c-secure frameproof code two disjoint coalitions of traitors of size
at most c, cannot create the same pirated copy. Stronger protection is given by
c-secure families of fingerprinting codes. In this case, given a pirated copy created
by a coalition of size at most c, it is possible to trace, with high probability, at
least one of the traitors in the coalition.

A way to approach the fingerprinting problem is to try to “separate” all disjoint
sets codewords of at most a given size. The notion of separation in coding theory
has been studied for decades; see [22] and the references therein. In [3] it was
shown that fingerprinting codes can be obtained by “amplifying” such separation.

While the separating property and the secure frameproof property are exactly
the same thing, relaxing both definitions in the sense of not requiring neither
strict separation nor strict frameproofness, leads to two different notions: almost
separating codes and almost secure frameproof codes [13,18]. Since almost secure
frameproof codes offer better rates [13,18], we will focus on obtaining explicit
constructions of such codes over almost separating codes. This will allow us to
obtain fingerprinting codes of higher rate.

1.1 Our contribution

As we have just said, in this paper we discuss an explicit construction of a family
of (binary) fingerprinting codes. In order to do this, we depart from an earlier work
on weakly biased arrays [19], and develop a new concept called almost universal
sets, which might be of independent interest. We then link weakly biased arrays
and almost universal sets with almost secure frameproof codes, and present explicit
constructions of such codes. With these constructions at hand, we use standard
code concatenation techniques [14,3,5,6] to obtain the family of fingerprinting
codes.

One thing that is worth noting from the beginning is that our goal in this paper
is to give explicit constructions of codes. While there are several elegant approaches
to fingerprinting codes in the literature, they are probabilistic in nature [5,6,25],
and therefore not comparable to our constructions here. Closer to our work are the
results in [3], which we improve in two directions. One is to note that for their inner
codes, absolute separation can be replaced by almost secure frameproofness, and
this leads to codes with higher rate. The other is that we give explicit constructions
for those inner codes.

We are now in position to underline the structure of the paper. In Section 2 we
give some useful definitions and an overview of previous results. Our work begins
in Section 3, where by adjusting the bias in weakly biased arrays we present
explicit constructions for sets of vectors that we call almost universal. The main
contribution is discussed in Section 4, where explicit constructions of almost secure
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frameproof codes are given. Although these constructions might be of independent
interest, we make of use them in Section 5 to obtain a secure family of fingerprinting
codes with exponentially small error probability and an efficient identification
algorithm.

2 Background and definitions

We begin by introducing some coding theory concepts.
Let q ≥ 2 be an integer. A q-ary alphabet Q is a nonempty set of size q. If Q

is the finite field of q elements, we denote it by Fq. For any integer n ≥ 1, let Qn

denote the set of all possible n-tuples over Q. We denote the elements of Qn in
boldface, e.g., u = (u1, . . . , un) ∈ Qn.

An (n,M)-code C over Q is a subset of Qn of size M . The parameter n is
called the length of the code. A code C is a linear [n, k]-code over Fq if C ⊆ Fnq
is a vector subspace of dimension k. The elements of a code are called codewords,
and the minimum distance of a code is the smallest Hamming distance between
any two of its codewords. Also, we say that an (n,M)-code over a q-ary alphabet
has rate R, where

R = n−1 logqM.

2.1 Secure frameproof and almost secure frameproof codes

Let U = {u1, . . . ,uc} be a subset of size |U | = c of a code C. We denote by Pi(U)
the projection of U on the ith position, that is, the set of elements of the code
alphabet at the ith position,

Pi(U)
def
= {u1i, . . . , uci}.

Definition 1 A code C is (c, c′)-separating if for every pair of disjoint subsets
U, V ⊆ C, where |U | = c and |V | = c′, there is a position 1 ≤ i ≤ n such that
their projections on this position have empty intersection, i.e.,

Pi(U) ∩ Pi(V ) = ∅.

We call such a position a separating position.

Clearly, a code that is (c, c′)-separating is also (t, t′)-separating, for t ≤ c
and t′ ≤ c′. The separating property was first discussed in [15], and has been
subsequently investigated by many authors [22,20,21,16,10,11,12].

Recently, more attention has been paid to separating codes, in connection with
digital fingerprinting schemes. In this context, we define a c-coalition as a subset
U ⊆ C of size |U | ≤ c, where C is a code over an alphabet Q. A position i
is undetectable for U if all the codewords in U match at this position, that is,
|Pi(U)| = 1. A position that fails to satisfy this property is called detectable.

In a collusion attack, the marking assumption [5,6] states that for a c-coalition
U all the undetectable positions i must remain unchanged in the pirated word
that the traitors generate z = (z1, . . . , zn). Moreover, the narrow-sense envelope
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model [3], states that zi ∈ Pi(U), for every position i. Hence, the set of all pirated
words that the c-coalition U can generate under this model, denoted desc(U), is

desc(U)
def
= {z = (z1, . . . , zn) ∈ Qn : zi ∈ Pi(U), 1 ≤ i ≤ n}.

Often, the codewords in U are called parents and the words in desc(U) are called
descendants. Also, the c-descendant code of C, denoted descc(C), is defined as

descc(C)
def
=

⋃
U⊆C,|U|≤c

desc(U).

A descendant z ∈ descc(C) is called c-uniquely decodable if z ∈ desc(U) for some
c-coalition U ⊆ C and z /∈ desc(V ) for any c-coalition V ⊆ C such that U ∩V = ∅.

Definition 2 A code C is c-secure frameproof if for any pair of c-coalitions U, V ⊆
C such that U ∩ V = ∅, then we have desc(U) ∩ desc(V ) = ∅. Equivalently, if all
z ∈ descc(C) are c-uniquely decodable.

The concept of secure frameproof code was introduced in [5,6,24,23]. It is not
difficult to see that the definition of a c-secure frameproof code coincides with that
of a (c, c)-separating code, as it was noticed, e.g., in [3]. Moreover, in the crypto
literature, (c, 1)-separating codes are also called c-frameproof codes.

Lower bounds on the asymptotic rate of (2, 2)-separating codes were first stud-
ied in [15,20]. For the case of binary alphabets, it is known that a lower bound
is ≥ 1 − log2(7/8) ≈ 0.0642 for arbitrary (2, 2)-separating codes [20,22], and this
bound also holds for linear (2, 2)-separating codes [20]. Moreover, for arbitrary
(c, c)-separating codes, it was shown in [3] that the lower bound is at least

− 1

2c− 1
log2(1− 2−2c+1).

On the other hand, an upper bound on the asymptotic rate is< 0.2835 for arbitrary
(2, 2)-separating codes [22,16], and it was shown in [22] that it is < 0.108 for linear
(2, 2)-separating codes. We also refer the reader to [12], where further results are
presented.

Note that the existence bounds for separating codes shown above give codes of
low rate. In order to obtain codes with better rates, two relaxed versions of sepa-
rating codes were presented in [13,18]: almost separating codes and almost secure
frameproof codes. In this paper our focus is on almost secure frameproof codes,
since it was shown in [13,18] that they have better rates than almost separating
codes.

Definition 3 A code C is ε-almost c-secure frameproof if the ratio of c-uniquely
decodable descendants in descc(C) is at least 1− ε.

The fact that the secure frameproof property is required with high probability,
rather that in all the cases, is the main reason that allows us to obtain an improve-
ment on the code rate, compared to ordinary secure frameproof (i.e., separating)
codes. It was shown in [13,18] that the lower bound on the asymptotic rate of
binary almost secure frameproof codes is at least

−1

c
log2(1− 2−c).



Constructions of almost SFP codes with applications to fingerprinting schemes 5

2.2 Weakly biased arrays, weakly dependent arrays, and universal sets

Now we turn our focus to weakly biased and weakly dependent arrays, which are
the combinatorial objects that will serve us to construct almost secure frameproof
codes. We will focus on the binary case, since our final goal is to use these construc-
tions to obtain families of binary fingerprinting codes. Also, we recall that weakly
biased and weakly dependent arrays are strongly related to small-bias probability
spaces. For a more detailed exposition, we refer the reader to [1,19,4].

A binary (n,M)-array is an n-by-M matrix whose entries are elements from
F2. For a binary vector u of length n, u ∈ Fn2 , let us denote µ(0; u) and µ(1; u)
the number of zeros and ones in u, respectively. The bias of u is defined as

1

n
|µ(0; u)− µ(1; u)|.

That is, the vector u has low bias if it has roughly the same number of zeros and
ones.

Definition 4 Let 0 ≤ ε < 1. A binary (n,M)-array A is ε-biased if every non-
trivial linear combination of its columns has bias ≤ ε.

In other words, the bias of a binary array A is the bias of the vector subspace
spanned by the columns of A. By definition, the bias of A is low if and only if the
bias of every nonzero vector of this subspace is low. Also, the above definition can
be restricted by allowing a maximum number of columns in the linear combination.

Definition 5 Let 0 ≤ ε < 1. A binary (n,M)-array A is t-wise ε-biased if every
nontrivial linear combination of at most t columns has bias ≤ ε.

Throughout our discussion we refer to (t-wise) ε-biased arrays simply as weakly
biased arrays when there is no need to make explicit its parameters.

Next, we will also draw our attention to binary arrays that exhibit “almost
uniformity” in the following sense. Let A be a binary (n,M)-array, and let S ⊆
{1, . . . ,M} be a subset of column indices of size s. Now, take a vector a ∈ Fs2. The
number of rows of A whose projection onto the indices of S equal a is denoted
νS(a;A). We are interested in the fact that every vector a ∈ Fs2 appears “almost
evenly” in the projection, for every possible choice of S. In other words, we want
νS(a;A)/n ≈ 2−s. These kinds of binary arrays are referred to as weakly dependent
arrays.

We consider two variants of weakly dependent arrays, by using the L∞- and
L1-norms, as follows in the definitions below.

Definition 6 Let 0 ≤ ε < 1. A binary (n,M)-array A is t-wise ε-dependent (in
L∞-norm) if, for every subset S ⊆ {1, . . . ,M} of s ≤ t columns, satisfies

max
a∈Fs

2

∣∣∣∣νS(a;A)

n
− 2−s

∣∣∣∣ ≤ ε.
Definition 7 Let 0 ≤ ε < 1. A binary (n,M)-array A is ε-away from t-wise
independence (in L1-norm) if, for every subset S ⊆ {1, . . . ,M} of s ≤ t columns,
satisfies ∑

a∈Fs
2

∣∣∣∣νS(a;A)

n
− 2−s

∣∣∣∣ ≤ ε.



6 José Moreira et al.

As commented above, weakly dependent arrays have an interpretation as a
small-bias probability space [19,1]. If M random variables X1, . . . , XM take uni-
formly at random the corresponding values of a row of a binary (n,M)-array A
which is ε-away from t-wise independence, then any s ≤ t of such random vari-
ables behave like “almost independent” random variables, provided that ε is small.
Hence, one would like to obtain such an array A with n (the size of the sample
space) as small as possible.

For our purposes, we will also be interested in a certain kind of combinatorial
objects known as universal sets. We will extend this notion to what we call almost
universal sets in Section 3 below.

Definition 8 An (M, t)-universal set B is a subset of FM2 such that for every
subset S ⊆ {1, . . . ,M} of t positions the set of projections of the elements of B
onto the indices of S contains every vector a ∈ Ft2.

Let A be a binary (n,M)-array. If for every subset S ⊆ {1, . . .M} of t columns
and every vector a ∈ Ft2 we have νS(a;A) > 0, then the rows of A yield an (M, t)-
universal set. Observe trivially, that an (M, t)-universal set is also an (M, t′)-
universal set for any t′ ≤ t.

2.3 Relationships

The combinatorial objects presented in the previous sections can be related to
each other through several important results.

It is clear, as remarked in [1], that if a binary (n,M)-array A is ε-away from
t-wise independence, then it is t-wise ε-dependent, and if A is t-wise ε-dependent,
then it is 2tε-away from t-wise independence. The following results relate weakly
biased arrays, weakly dependent arrays, universal sets and secure frameproof codes.

Lemma 1 ([26]) Let A be a binary (n,M)-array. If A is t-wise ε-biased, then A
is 2t/2ε-away from t-wise independence.

The above result is attributed to Vazirani [26], but we also refer the reader
to [27,9,1,19]. An obvious consequence of this lemma is that an ε-biased array is
also 2t/2ε-away from t-wise independence.

Proposition 1 ([19]) Let A be a binary (n,M)-array. If A is 2−t-away from
t-wise independence, then the rows of A yield an (M, t)-universal set of size n.

It is not difficult to see how universal sets can be used to construct separating
(i.e., secure frameproof) codes. This result was clearly shown in [2]. We provide
here a proof sketch for completeness.

Corollary 1 ([2]) Let c ≥ 2 be an integer. Then, an (M, 2c)-universal set B of
size n yields a binary (c, c)-separating (n,M)-code.

Proof (Sketch) Let A be a binary (n,M)-array whose rows are the n vectors of B.
We claim that the columns of A form a (c, c)-separating (n,M)-code C. To see
this, consider any two disjoint subsets of codewords U, V ⊆ C of size c, and call
SU , SV ⊆ {1, . . . ,M} the corresponding disjoint subsets of column indices from A.
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The (M, 2c)-universal property of B implies that, in particular, there is a row i
in A for which all the c columns in SU contain a 0 and all the c columns in SV
contain a 1, at this row index i. In terms of the code C, this means that at position
i we have Pi(U) ∩ Pi(V ) = ∅, and the proof follows. ut

By virtue of Lemma 1, an explicit construction of weakly biased arrays will
provide an explicit construction of weakly dependent arrays immediately. This
construction, will in turn provide an explicit construction of universal sets by
Proposition 1, which automatically leads to secure frameproof codes, by Corol-
lary 1.

2.4 Existing explicit constructions

As it has been shown, in order to construct secure frameproof codes of good rate
the problem can be reduced to the construction of weakly biased arrays with the
smallest number of rows possible. We will deal with such explicit constructions in
this section. We will follow a convention similar to [4] to present the results.

An important, well-known explicit construction of ε-biased arrays is presented
in [19].

Theorem 1 ([19]) There is an explicit construction of a binary (n,M)-array that
is ε-biased, with

n ≤ 22(log2M+log2
1
ε
). (1)

The arrays from the previous theorem can be used to construct ε-away from

t-wise independence arrays with n = 2O(t+logM+log 1
ε
), which, in turn, lead to

(M, t)-universal sets of size n = 2O(t+logM). That is, following this procedure we
obtain c-secure frameproof codes of length

n = M · 2O(c). (2)

In order to obtain codes with shorter lengths, it is also noted in [19] that it
suffices to consider t-wise ε-biased arrays (instead of ε-biased arrays). This is a less
restrictive condition. The next result enables us to obtain t-wise ε-biased arrays
from ε-biased arrays.

Theorem 2 ([19]) Let A be an ε-biased binary (n,M ′)-array, and let H be the
parity-check matrix of a binary [M,M −M ′]-code with minimum distance t + 1.
Then, the matrix product A×H is a t-wise ε-biased binary (n,M)-array.

Usually, the matrix H employed in Theorem 2 above is the parity-check matrix
of a binary [M,M−M ′]-BCH code with minimum distance t+1. In this case, H has
M columns and M ′ = t log2M rows. Therefore, by using Theorem 2 together with
Lemma 1, the number of rows of an ε-away from t-wise independence (n,M)-array

can be reduced from n = 2O(t+logM+log 1
ε
) to n = 2O(t+log logM+log 1

ε
). Finally, the

explicit construction of (M, t)-universal sets from [19] has size n = 2O(t+log logM),
which for t = 2c, generate c-secure frameproof codes of length

n = log2M · 2O(c), (3)
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and rate R = 2−O(c) [19], a clear improvement compared to (2).
We conclude this section by noting that better explicit constructions of ε-biased

arrays are presented in [4], compared to Theorem 2, when the parameters satisfy
some conditions. The best construction shown there is based on Suzuki codes.

Theorem 3 ([4]) If log2M > 3 log2
1
ε , then there is an explicit construction of a

binary (n,M)-array that is ε-biased, with

n ≤ 23/2 (log2M+log2
1
ε
)+2.

However, we will show below that the condition imposed by Theorem 3 will
prevent us from using this improved construction in practical scenarios.

3 Almost universal sets

In this section we relax the concept of universal set presented in Section 2, and
obtain what we call almost universal sets. We note that the results obtained in
this section are of independent interest, and they will also be useful to analyze the
properties of the codes that we construct in Section 4.

Lemma 2 Let A be a binary (n,M)-array. Suppose that there is a subset S ⊆
{1, . . . ,M} of t columns for which there are m vectors a1, . . . ,am ⊆ Ft2 such that

νS(a1;A)

n
= · · · = νS(am;A)

n
= p,

with 0 ≤ p ≤ 1/m. Then, A is not ε-away from t-wise independence for any

ε < 2m|p− 2−t|.

Proof Consider the subset S of t columns and the vectors a1, . . . ,am stated above.
For this particular subset of columns, we have∑

a∈Ft
2

∣∣∣∣νS(a;A)

n
− 2−t

∣∣∣∣
=

∑
a∈{a1,...,am}

∣∣∣∣νS(a;A)

n
− 2−t

∣∣∣∣+
∑

a6∈{a1,...,am}

∣∣∣∣νS(a;A)

n
− 2−t

∣∣∣∣
≥ m|p− 2−t|+ (2t −m)

∣∣∣∣1−mp

2t −m − 2−t
∣∣∣∣

= 2m|p− 2−t|.

The above inequality is derived as follows. On one hand, the sum over the
vectors a ∈ {a1, . . . ,am} is readily seen to equal m|p − 2−t|. On the other hand,
the sum over the vectors a 6∈ {a1, . . . ,am} can be viewed as the objective of a
resource allocation problem, and we are interested in finding the minimum of this
objective. A solution to this minimization problem is achieved when each such a
appears the same number of times. These a account for n−nmp rows of A, which
implies that each νS(a;A) should equal n(1 −mp)/(2t −m), and the inequality
follows.

Finally, we conclude that A cannot be ε-away from t-wise independence for
any ε < 2m|p− 2−t|. ut
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Recall from Section 2.3 that if A is ε-away from t-wise independence, then it
is t-wise ε-dependent. However, this result can be somewhat improved as follows.

Corollary 2 Let 0 ≤ ε < 1, and let A be a binary (n,M)-array. If A is ε-away
from t-wise independence, then A is t-wise ε/2-dependent.

Proof Let A be ε-away from t-wise independence, and assume by contradiction
thatA is not t-wise ε/2-dependent. In other words, there is a subset S ⊆ {1, . . . ,M}
of size t for which there is a vector a′ ∈ Ft2, with p = νS(a′;A)/n, such that

|p− 2−t| > ε

2
.

Substituting m = 1 and |p − 2−t| in Lemma 2 shows that A is not ε-away from
t-wise independence, which contradicts the starting premise. ut

In an (M, t)-universal set B ⊆ FM2 we have that every possible vector a ∈
Ft2 appears in the set of projections of the elements of B onto any subset of t
positions. Nevertheless, for our purposes in the construction of a secure family of
fingerprinting codes, strict universality will not be completely necessary. That is, it
will not be required that every possible vector a ∈ Ft2 appears in such projections.
More concretely, we will be interested in the fact that, at least, one of the following
two vectors from Ft2 appears:

(0, . . . , 0︸ ︷︷ ︸
c

, 1, . . . , 1︸ ︷︷ ︸
c

) or (1, . . . , 1︸ ︷︷ ︸
c

, 0, . . . , 0︸ ︷︷ ︸
c

), (4)

being t = 2c for some integer c ≥ 2. This suggests replacing the original definition
of universal set, and consider the case where it suffices to obtain a set of vectors
B ⊆ FM2 where the universal property is guaranteed in a sufficiently high number
of cases. Namely, the main idea is to require that a high number of vectors from Ft2
appear in each set of projections. To this end we consider the following definition.

Definition 9 An ε-almost (M, t)-universal set B is a subset of FM2 such that for
every subset S ⊆ {1, . . . ,M} of t positions the set of projections of the elements
of B onto the indices of S contains, at least, a fraction of 1− ε vectors a ∈ Ft2.

Of course, the idea of relaxing the constraint imposed by the universal property
is to obtain a smaller set of vectors, which will enable us to improve the rate of the
codes that we will construct below. However, substituting an universal set by an
almost universal set implies that there could be some subset of t positions S such
that the set of projections of the elements of B onto S does not contain any of the
desired vectors from Ft2 mentioned above. In our analysis below, we will have to
handle this situation, ensuring that this undesired event occurs with sufficiently
small probability.

Also, note again that if A is a binary (n,M)-array, the rows of A generate an
ε-almost (M, t)-universal set provided that there is a fraction of, at least, 1 − ε
vectors a ∈ Ft2 such that νS(a;A) > 0, for every subset S ⊆ {1, . . . ,M} of t
columns.

In the following proposition, we show the relationship between almost universal
sets and weakly dependent arrays.
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Proposition 2 Let A be a binary (n,M)-array. If A is (2−t+ε)-away from t-wise
independence, then the rows of A yield an ε-almost (M, t)-universal set of size n.

Proof Let A be (2−t + ε)-away from t-wise independence, and assume by contra-
diction that the rows of A do not yield an ε-almost (M, t)-universal set. In other
words, there is a subset S ⊆ {1, . . . ,M} of t columns for which there are strictly
more than 2tε vectors a ∈ Ft2 with νS(a;A) = 0. Substituting m = b2tεc+ 1 and
p = 0 in Lemma 2, we obtain

∑
a∈Ft

2

∣∣∣∣νS(a;A)

n
− 2−t

∣∣∣∣ ≥ (b2tεc+ 1)2−t+1.

It is routine to check that (b2tεc+ 1)2−t+1 > 2−t + ε. Hence, it follows that A is
not (2−t + ε)-away from t-wise independence, a contradiction. ut

Therefore, Proposition 2 shows that the construction of almost universal sets
is reduced, again, to the construction of weakly dependent arrays, and by virtue
of Lemma 1 it is reduced to the construction of weakly biased arrays.

We conclude this section by showing the connection between universal and
almost universal sets in the following lemma.

Lemma 3 Let B be an ε-almost (M, t)-universal set. Then, B is an (M, t′)-
universal set for any t′ ≤ min{t,

⌈
log2

1
ε

⌉
− 1}.

Proof Let A be a binary (n,M)-array whose rows are the elements of B. Using
our notation, this means that for any given subset S ⊆ {1, . . . ,M} of t columns
there are, at most, 2tε vectors a ∈ Ft2 such that νS(a;A) = 0.

On one hand, if ε < 2−t, then there is no vector a ∈ Ft2 with νS(a;A) = 0, and
B is (M, t)-universal. On the other hand, assume that ε ≥ 2−t and consider any

subset S′ ⊆ S of t′ ≤ t columns. Note that for each vector a′ ∈ Ft
′

2 there are exactly
2t−t

′
vectors from Ft2 that coincide with a′ in the columns with indices in S′. This

implies that if there is a vector a′ ∈ Ft
′

2 such that νS′(a′;A) = 0, then it must be

the case that 2tε ≥ 2t−t
′
. Equivalently, if ε < 2−t

′
, that is, t′ ≤

⌈
log2

1
ε

⌉
− 1, then

no vector a′ ∈ Ft
′

2 has νS′(a′;A) = 0. It follows that B is (M, t′)-universal. ut

4 Construction of almost secure frameproof codes

Now, we aim to explicitly construct almost secure frameproof codes from weakly
biased arrays and almost universal sets. Before dwelling into explicit details, we
give an intuitive reasoning of our motivation to use these combinatorial objects.

Consider a random binary (n,M)-code C such that each codeword is generated
according to a vector of probabilities p = (p1, . . . , pn), where p is a random vector
with pmf fp. That is, we first generate a vector of probabilities p of length n,
distributed according to fp, and then we randomly generate M binary codewords
u = (u1, . . . , un) such that Pr{ui = 1} = pi. Now, let psep be the probability that
two randomly chosen subsets U, V ⊆ C of size c have a separating position. That
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is, psep is a random variable dependent on p. We would like to know which pmf
fp maximizes the expected value of psep,

Efp [psep] = Efp

[
1−

n∏
i=1

(1− 2pci (1− pi)c)
]
.

Observe that this expectation is maximized simply by considering a pmf that
takes 1 on the maximum of the argument of the expectation and 0 otherwise. The
product

∏n
i=1(1 − 2pci (1 − pi)c) attains its minimum value when each one of its

n terms attains individually its minimum value. This occurs when pi = 1/2, for
1 ≤ i ≤ n, that is, for p = (1/2, . . . , 1/2). Therefore,

max{Efp [psep]} = 1− 21−2c.

If each pair of subsets U, V ⊆ C of size c have a separating position, then the
code is (c, c)-separating, or what is the same, c-secure frameproof.

The above argument shows that randomly generated codes using a vector of
probabilities p = (1/2, . . . , 1/2) seem good candidates to have good separating
properties. Also, from Corollary 1 we see that universal sets enable us to con-
struct secure frameproof codes and, in fact, almost universal sets derived from
Proposition 2 exhibit a behavior close to the uniform distribution.

Since we are interested in almost secure frameproof codes, we do not require
absolute separation, and we can tolerate a small bias on the elements of the prob-
ability vector p. This is what motivates our choice of weakly dependent arrays in
our constructions below.

4.1 Using weakly dependent arrays to obtain almost secure frameproof codes

As it has been shown in Corollary 1, an (M, 2c)-universal set of size n generates a
c-secure frameproof (n,M)-code. Now, consider an ε-almost (M, t)-universal set B,
and rearrange its elements as the rows of a binary (n,M)-array A. Also, regard the
columns of A as the codewords of a code C, similarly as in the proof of Corollary 1.
Hence, C is an (n,M)-code of rate R = log2M/n.

Let us focus on the frameproof properties of C. If t < 2c, then C need not
be c-secure frameproof. However, if t ≥ 2c and ε < 2−2c+1, then C is c-secure
frameproof. In fact, to see that C is c-secure frameproof, we can use an argument
similar to that from the proof of Lemma 3. The code C is c-secure frameproof if
in each projection of B onto every possible subset S′ of 2c positions it contains at
least one separating vector like the ones in (4). Assume that there is one such S′

for which both separating vectors from F2c
2 are missing in the projection. Then,

there must be one subset S of t positions, S′ ⊆ S, such that there are at least
2t−2c+1 missing vectors from Ft2 in the projection of B onto the indices of S. This
event would contradict the fact that B is an ε-almost (M, t)-universal set with
ε < 2−2c+1.

From Lemma 3 it follows that for t ≥ 2c an (M, 2c)-universal set can be derived
from an ε-almost (M, t)-universal set, provided that ε < 2−2c. As we have argued
above, the condition for the case of a c-secure frameproof code is less strict on ε, and
only requires an ε-almost (M, t)-universal set with ε < 2−2c+1. Also, we remark
that for ε < 2−2c+1, an ε-almost (M, t)-universal set is an (M, 2c − 1)-universal
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set, again from Lemma 3, in addition to generate a c-secure frameproof code. But
in general, an (M, 2c− 1)-universal set need not yield a c-secure frameproof code.

Again, if t < 2c, or if ε ≥ 2−2c+1, then C need not be c-secure frameproof,
and we have to regard it as an almost secure frameproof code. To this end, we
will extend the use of weakly dependent arrays, leading to almost universal sets,
to the construction of such codes. This is formalized in the following result.

Proposition 3 Let c ≥ 2, t, M be integers such that M ≥ 2c, and let one of the
following conditions be satisfied

Condition 1: c ≤ t < 2c, and 0 ≤ ε′ < 2−c+1, or

Condition 2: t ≥ 2c, and 2−2c+1 + 2−t < ε′ < 2−c+1.

Then, an ε′-away from t-wise independence (n,M)-array generates an ε-almost
c-secure frameproof (n,M)-code, for any

ε ≥Mc(1− 2−c + ε′/2)n. (5)

Proof Let A be a binary (n,M)-array which is ε′-away from t-wise independence,
and regard its columns as the codewords of a code C.

First, observe that under the conditions given in the statement of the propo-
sition, the array A need not yield a c-secure frameproof code. To see this, observe
that for Condition 1 we have t < 2c, and for Condition 2 the code C would be
c-secure frameproof code if A yielded a (2−2c+1)-almost universal set. According
to Proposition 2 this occurs for ε′ ≤ 2−2c+1+2−t, which contradicts the statement
of the proposition.

Now, for a randomly chosen c-coalition V ⊆ C, let us denote p0 (resp. p1)
the probability that all the codewords of V equal 0 (resp. 1) at a given position
1 ≤ i ≤ n. Since the codewords from V correspond to, at most, c ≤ t columns of
A, we have

p0, p1 ≥ 2−|V | − ε′/2 ≥ 2−c − ε′/2,

because A is also t-wise ε′/2-dependent, by virtue of Corollary 2.
Now, let z be a descendant generated by some c-coalition U of the code, i.e.,

z ⊆ desc(U). Then, for a randomly chosen c-coalition V ,

Pr{z ∈ desc(V )} =
n∏
i=1

Pr{zi ∈ Pi(V )} ≤ (1− 2−c + ε′/2)n.

Indeed, the probability that the ith symbol of z is in Pi(V ) satisfies

Pr{zi ∈ Pi(V )} ≤ Pr{zi = 0}(1− p1) + Pr{zi = 1}(1− p0) ≤ 1− 2−c + ε′/2.

We can bound the probability that z is generated by some other c-coalition
disjoint from U . In order to apply the union bound, we argue that it suffices to take
into account only the disjoint coalitions of maximum size. That is, only consider
the subsets V ⊆ C of size exactly c (instead of all c-coalitions, of size ≤ c). To see
this, observe that for a coalition V ′ which is a subset of another coalition V ,

Pr{z ∈ desc(V ′) or z ∈ desc(V )} = Pr{z ∈ desc(V )},
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because desc(V ′) ⊆ desc(V ). There are at most
(
M
c

)
different coalitions of size

c disjoint from U . Therefore, the probability that z is generated by some other
disjoint c-coalition, or equivalently, the ratio of descendants z ∈ descc(C) that are
not c-uniquely decodable is at most Mc(1−2−c+ ε′/2)n. We conclude that C can
be regarded as an ε-almost c-secure frameproof for any ε ≥Mc(1− 2−c + ε′/2)n,
because the ratio of non-uniquely decodable descendants will not exceed ε. ut

In order to ease the analysis, one could assume that for every subset of at most
c indices, each possible vector from Fc2 appears with uniform probability in the
(M, c)-universal sets in the proof above, obtaining ε-almost c-secure frameproof
codes for ε ≥ Mc(1 − 2−c)n. This is a reasonable assumption, since universal
sets generated from weakly biased arrays are indeed “almost uniform” probability
sample spaces. However, the error probability in (5) is already negligible, and this
assumption would not handle the case t = c properly.

4.2 Explicit constructions of almost secure frameproof codes

In this section, we show how to derive an explicit construction of almost secure
frameproof codes. Armed with the machinery we have developed, it follows that a
construction for almost secure frameproof codes can be reduced to the construction
of weakly biased arrays. We have the following construction.

Construction 1 Let M , c, t and ε′ be values satisfying the conditions of Propo-
sition 3.

1. Construct a binary (n,M ′)-array A′ that is 2−t/2ε′-biased, where we take M ′ =
t log2M .

2. Take the parity-check matrix H of a binary [M,M −M ′]-BCH code, of length
M , codimension M ′ = t log2M and minimum distance t+ 1.

3. The matrix product A = A′×H generates a t-wise 2−t/2ε′-biased (n,M)-array.
4. A is also ε′-away from t-wise independence.
5. Hence, the rows of A generate an (ε′ − 2−t)-almost (M, t)-universal set of

size n.
6. Moreover, the rows of A also generate an ε-almost c-secure frameproof code,

for any

ε ≥Mc(1− 2−c + ε′/2)n.

In the above construction, Step 3 follows from Theorem 2, Step 4 from Lemma 1,
Step 5 from Proposition 2, and Step 6 from Proposition 3.

Therefore, it remains to choose an appropriate explicit construction of a weakly
biased array in Step 1, either from Theorem 1 or from Theorem 3. Observe that
the conditions of Theorem 3 apply in Construction 1 when ε′ > 0, and log2M

′ >
−3 log2(2−t/2ε′), i.e., when the size of the desired code satisfies

log2 log2M > 3 t/2− 3 log2 ε
′ − log2 t. (6)

The resulting ε-almost c-secure frameproof code has length

n ≤ 23/2(t/2+log2 t+log2 log2M−log2 ε
′)+2.
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We note that condition (6), even though analytically meaningful, it is only
satisfied for impractically large values of M . That is, it will lead to codes with an
excessively large number of codewords. For example, consider the simple case of
c = 2, t = 4 and ε′ . 2−c+1. Then, the condition states that the construction is
only valid for codes of size M > 2128, in the most optimistic case.

On the other hand, Theorem 1 does not impose any restriction in the design
parametersM, t, ε′. That is, for realistic scenarios, we have to consider this result to
construct weakly biased arrays in Step 1 of Construction 1 above. Hence, plugging
the parameters from Construction 1 into (1), the resulting code has length

n ≤ 22(t/2+log2 t+log2 log2M−log2 ε
′) =

(
t

ε′

)2

2t log2
2M,

and rate

R =

(
ε′

t

)2

· 1

2t log2M
. (7)

In both cases, following the same approach as in [19] to derive (3) for t = O(c),
the length of the construction is

n = log2M · 2O(c−log ε′),

which is an improvement compared to (3), for the case of ordinary secure frame-
proof (i.e., separating) codes.

Given the design parameters M, c, ε of an ε-almost c-secure frameproof code,
it remains to optimize the value of ε′ in (7), for the corresponding weakly depen-
dent array, in order to obtain codes with the highest possible rate. Note that, as
expected, the rate in (7) is an increasing function of ε′. Therefore, we must pick
the maximum value of ε′ such that (5) holds. For practical values of the design pa-
rameters, such value of ε′ occurs at ε′ . 2−c+1. Hence, taking t = c (the minimum
allowable value according to Proposition 3), a good approximation on the rate R
of the best codes derived from Construction 1 leads us to conclude the following
result.

Corollary 3 There is an explicit construction of ε-almost c-secure frameproof
code of rate

R .
(
c223c−2 log2M

)−1
. (8)

In contrast, to obtain secure frameproof codes using the above construction
and Corollary 1 we have to consider t = 2c and ε′ = 2−t, and the resulting code

rate drops to R =
(
4c226c log2M

)−1
.

In Table 1 we show some code rates for ε-secure frameproof codes from Propo-
sition 3, for the case of coalitions of size c = 2 to c = 6, considering the case t = c,
and for code sizes ranging from M = 102 to M = 108. We have taken a design
parameter ε = 10−10, and the code rates are obtained from (7), through obtaining
numerically the maximum allowable parameter ε′ of the associated ε′-away from
t-wise independence array in Construction 1. For comparison, we also present the
rates of ordinary c-secure frameproof codes using the same construction, which
in this particular case are derived from universal sets, as noted in Corollary 1.
Observe that the rates obtained for almost secure frameproof codes are several
orders of magnitude higher than those for secure frameproof codes.
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ε-almost c-secure frameproof codes, with ε = 10−10, from Construction 1

c M = 102 M = 103 M = 104 M = 105 M = 106 M = 107 M = 108

2 2.1598E-3 1.4993E-3 1.1427E-3 9.2161E-4 7.7169E-4 6.6350E-4 5.8180E-4
3 1.2916E-4 8.6575E-5 6.5069E-5 5.2111E-5 4.3454E-5 3.7262E-5 3.2614E-5
4 9.1699E-6 6.1184E-6 4.5903E-6 3.6729E-6 3.0611E-6 2.6239E-6 2.2961E-6
5 7.3470E-7 4.8987E-7 3.6742E-7 2.9395E-7 2.4496E-7 2.0997E-7 1.8372E-7
6 6.3793E-8 4.2530E-8 3.1898E-8 2.5518E-8 2.1265E-8 1.8227E-8 1.5949E-8

c-secure frameproof codes from Corollary 1

c M = 102 M = 103 M = 104 M = 105 M = 106 M = 107 M = 108

2 2.2967E-6 1.5311E-6 1.1483E-6 9.1867E-7 7.6556E-7 6.5619E-7 5.7417E-7
3 1.5949E-8 1.0633E-8 7.9746E-9 6.3797E-9 5.3164E-9 4.5569E-9 3.9873E-9
4 1.4018E-10 9.3452E-11 7.0089E-11 5.6071E-11 4.6726E-11 4.0051E-11 3.5045E-11
5 1.4018E-12 9.3452E-13 7.0089E-13 5.6071E-13 4.6726E-13 4.0051E-13 3.5045E-13
6 1.5210E-14 1.0140E-14 7.6051E-15 6.0841E-15 5.0701E-15 4.3458E-15 3.8026E-15

Table 1 Some attainable code rates for explicit constructions of ε-almost c-secure frameproof
codes and c-secure frameproof codes. The rates of the ε-almost c-secure frameproof codes have
been computed numerically, rather than using the approximation (8).

5 Explicit constructions of fingerprinting codes

Finally, we show how the almost secure frameproof codes derived from Construc-
tion 1 can be used to explicitly construct a family of fingerprinting codes with
small error and an efficient identification algorithm.

The contents of this section are based on the construction of fingerprinting
codes presented in [13,18], which uses almost secure frameproof codes as their
building block. While [13,18] show the existence of such constructions, here we
make these constructions explicit.

Let M be the total number of users to whom the distributor wishes to deliver
his content. For a fingerprinting scheme to achieve a small error probability a single
code is not sufficient, and a family of codes C = {Cj}j∈T is needed [5,6], where T
is some finite set of keys, and each Cj is an (m,M)-code. The family C is publicly
known, but the distributor chooses secretly a code Cj ∈ C with probability π(j).
Moreover, the family C also requires an identification algorithm, which is actually
a set of functions A = {Aj}j∈T , where each Aj is a mapping from the set of
descendants of Cj to the set of c-coalitions of Cj , i.e.,

Aj : descc(Cj)→ {U ⊆ Cj : |U | ≤ c}.

We usually require that the identification algorithm A is efficient, meaning that
each Aj can be executed in O(poly(m)) time.

We say that a family C = {Cj}j∈T is c-secure with ε-error if for any descendant
z ∈ desc(U) of a c-coalition U the set Aj(z) is not empty, and

Pr{Aj(z) ⊆ U} > 1− ε,

where the probability is taken over the random choices made by the coalition when
creating the descendant, and over the pmf π. Moreover, it was noted in [3] that
in order to achieve an exponential decline on the error, i.e., ε = O(− exp(m)),
the size of the family must grow exponentially in the code length. Our focus is on
families of binary fingerprinting codes based on code concatenation [14].
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Construction 2 Consider an outer (n,M)-code Cout over a q-ary alphabet Q,
an inner binary (l, q)-code Cin, and a vector of n mappings Φj = (φj1, . . . , φjn),
where each φji is a bijection φji : Q→ Cin. Note that there are a total of (q!)n of
such vector mappings Φj, and we can index them by j ∈ T = {1, . . . , (q!)n} under
an arbitrary order. The concatenated code Cj is defined as

Cj
def
= {(φj1(w1), . . . , φjn(wn)) : (w1, . . . , wn) ∈ Cout},

which is a binary (m,M)-code, with m = n l. A family of binary concatenated
codes consists of the set of all the codes Cj,

C = {Cj}j∈T .

If Rout and Rin are the rates of the outer and inner codes, respectively, the rate of
the family C is R = RoutRin.

The family of fingerprinting codes proposed in [3] particularizes Construction 2
with Cout being a Reed-Solomon or an algebraic-geometric code, and Cin being
a (c, c)-separating (i.e., c-secure frameproof) code. For instance, for the case of
Reed-Solomon codes they prove the existence of c-secure with ε-error families of
fingerprinting codes, with exponentially small error and an efficient identification
algorithm, for any rate

R <
1

c(c+ 1)

− log2(1− 2−2c+1)

2c− 1
. (9)

In [13,18] it was shown the existence of almost secure frameproof codes of rate
significantly higher than that of ordinary secure frameproof codes. Therefore, by
replacing the inner secure frameproof codes from [3] by almost secure frameproof
codes (and by appropriately modifying the identification algorithm) it was shown
the existence of c-secure with ε-error families of fingerprinting codes with the
same factor of increase in the code rate. The following result is an excerpt of [18,
Corollary 2].

Corollary 4 Let Cout be an extended [n, k]-Reed-Solomon code over Fq of rate
Rout, and let Cin be a binary εin-almost c-secure frameproof (l, q)-code of rate Rin.
Let C = {Cj}j∈T be the family of codes from Construction 2 with outer code Cout,
inner code Cin, the mappings Φj, the set of keys T , and π(j) = |T |−1. For q > c2,
and any Rout, σ satisfying

Rout <
1− σ
c(c+ 1)

, εin < σ <
q − c2

q − c ,

there exists a c-secure with ε-error family of binary codes C = {Cj}j∈T with length
m = n l, rate

R = RoutRin,

error probability ε decreasing exponentially as

ε ≤ 2−m(
1−σ
c Rin−(c+1)R+o(1)) + 2−qD(σ‖εin),

and with a polynomial-time identification algorithm that runs in O(poly(m)).
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Above,D(σ‖εin) denotes the Kullback-Leibler divergence between two Bernoulli
random variables of parameters σ and εin, respectively, which satisfies D(σ‖εin) >
0 for σ 6= εin.

Recall that the rate of the family of codes (9) as well as the rate from Corollary 4
are only existential results, derived from probabilistic arguments in [3] and [13,18],
respectively. Now, combining the novel Construction 1 together with Corollary 4
we can derive an explicit construction of a family of fingerprinting codes, with
exponentially small error and an efficient identification algorithm.

Corollary 5 Let q be a prime power, and c be an integer c2 < q. Moreover, let
εin and σ be such that

εin < σ <
q − c2

q − c .

Then, for any fixed rate R satisfying

R <
1− σ
c(c+ 1)

(
c223c−2 log2 q

)−1
,

there is an explicit construction of a c-secure with ε-error family of binary codes
C = {Cj}j∈T with length m, rate R, error probability ε decreasing exponentially as

ε ≤ 2−m(
1−σ
c Rin−(c+1)R+o(1)) + 2−qD(σ‖εin),

and with a polynomial-time identification algorithm that runs in O(poly(m)).

As noted in [13,18], the use of almost secure frameproof codes instead of secure
frameproof codes introduces an additional error term in the identification process,
compared to the codes presented in [3]. Note again that this error term decreases
exponentially with the outer code length.

6 Conclusion

In this paper, we have presented explicit constructions of almost secure frameproof
codes, which are a relaxed version of secure frameproof (i.e., separating) codes.
Our work has started with the study of the connection between weakly dependent
arrays and universal sets, and the subsequent connection between universal sets
and secure frameproof codes.

Starting with these ideas, we have first introduced a relaxation in the defi-
nition of a universal set, which helped us to transition from secure frameproof
codes to almost secure frameproof codes. We show how almost universal sets and
weakly biased arrays can be used to derive almost secure frameproof codes. This
observation has lead us to explicit constructions of such codes.

As expected, these explicit constructions are somewhat far from the theoretical
existence bounds shown in earlier works. For example, probabilistic arguments
show the existence of asymptotically almost 2-secure frameproof families of codes
of rate R = 0.2075, whereas the constructions that we have discussed provide
codes of rate below this figure. Nevertheless, our work shows the existence of
constructible almost secure frameproof codes of much higher rate than secure
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frameproof codes based on weakly biased arrays. Also, the main point of our work
is to present the first explicit and practical-use constructions for such codes.

Additionally, we have also shown how the proposed constructions can be used
to explicitly construct a secure family of fingerprinting codes. The construction
presented is based on the theoretical existence results of previous works, which
assume the existence of almost secure frameproof codes. Hence, another of the main
contributions of the present work has been to provide a real implementation of such
a theoretical existence result for a fingerprinting scheme. Replacing separating
codes by almost secure frameproof codes introduces an additional error term in
the identification of guilty users that decreases exponentially with the outer code
length.

Finally, we would like to note that even though a universal set is a separating
code, the relationship between an almost universal set and an almost separating
code is by no means evident and will we the subject of future research.
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