639 research outputs found

    Performance study of an underlay cognitive radio network in the presence of co-channel interference

    Get PDF
    PhD ThesisMassive innovation in all aspects of the wireless communication network has been witnessed over the last few decades. The demand for data throughput is continuously growing, as such, the current regulations for allocating frequency spectrum are not able to respond to this exponential growth. Cognitive radio (CR), has been proposed as a solution to this problem. One of the possible scenarios of the implementation of CR is underlay cognitive radio. In this thesis the performance of an underlay cognitive radio network (UCRN) in the presence of the co-channel interference (CCI) is assessed. Firstly, the impact of CCI on the dual-hop cooperative UCRN is investigated over Rayleigh fading channels. In order to do this, the exact outage probability (OP), average error probability (AEP) and the ergodic capacity (EC) are studied. In addition, simple and asymptotic expressions for the OP and AEP are derived. Furthermore, the optimal power allocation is investigated to enhance the network performance. Moreover, the performance of a multi-user scenario is studied by considering the opportunistic SNR-based selection technique. Secondly, the effect of both primary network interference and CCI on the dual-hop UCRN over Rayleigh fading channels are studied. The equivalent signal-to-interference-plus-noise ratio (SINR) for this network scenario is obtained by considering multi-antenna schemes at all receiver nodes. The different signal combinations at the receiver nodes are investigated and compared, such as selection combining (SC) and maximum ratio combining (MRC) techniques. Then, the equivalent probability density function (PDF) and cumulative distribution function (CDF) of the network’s equivalent SINR are derived and discussed. Furthermore, expressions for the exact OP, AEP, and EC are derived and reviewed. In addition, asymptotic OP expressions are obtained for different case scenarios to gain an insight into the network parameters. Thirdly, multiple-input multiple-output (MIMO) UCRN is investigated under the influence of primary transmitter interference and CCI over Rayleigh fading channels. The transmit antenna selection and maximum ratio combining (TAS/MRC) techniques are considered for examining the performance of the secondary network. At first the equivalent SINR for the system is derived, then the exact and approximate expressions for the OP are derived and discussed. Fourthly, considering Nakagami-m fading channels, the performance of the UCRN is thoroughly studied with the consideration of the impact of primary network interference and CCI. The equivalent SINR for the secondary system is derived. Then, the system equivalent PDF and CDF are derived and discussed. Furthermore, the OP and AEP performances are investigated. Finally, for the cases mentioned above, numerical examples in conjunction with MatLab Monte Carlo simulations are provided to validate the derived results. The results show that CCI is one of the factors that severely reduces the UCRN performance. This can be more observable when the CCI power increases linearly with the transmission power of the secondary transmitter nodes. Furthermore, it was found that in a multi-user scenario the opportunistic SNR-based selection technique consideration can improve the performance of the network. Moreover, adaptive power allocation is found to give better results than equal power allocation. In addition, cooperative communication can be considered to be an effective way to combat the impact of transmission power limitation of the secondary network and interference power constraint. The multi-antenna schemes are another important consideration for enhancing the overall performance. In fact, despite the interference from the CCI and primary user sources, the multi-antennas scheme does not lose its advantage in the UCRN performance improvementHigher Committee for Education Development in Iraq (HCED). I am also grateful to the Ministry of Transportation and Communication, Kurdistan Regional Government-Iraq

    Optimization in multi-relay wireless networks

    Get PDF
    The concept of cooperation in communications has drawn a lot of research attention in recent years due to its potential to improve the efficiency of wireless networks. This new form of communications allows some users to act as relays and assist the transmission of other users' information signals. The aim of this thesis is to apply optimization techniques in the design of multi-relay wireless networks employing cooperative communications. In general, the thesis is organized into two parts: ``Distributed space-time coding' (DSTC) and ``Distributed beamforming', which cover two main approaches in cooperative communications over multi-relay networks. In Part I of the thesis, various aspects of distributed implementation of space-time coding in a wireless relay network are treated. First, the thesis proposes a new fully-diverse distributed code which allows noncoherent reception at the destination. Second, the problem of coordinating the power allocation (PA) between source and relays to achieve the optimal performance of DSTC is studied and a novel PA scheme is developed. It is shown that the proposed PA scheme can obtain the maximum diversity order of DSTC and significantly outperform other suboptimal PA schemes. Third, the thesis presents the optimal PA scheme to minimize the mean-square error (MSE) in channel estimation during training phase of DSTC. The effect of imperfect channel estimation to the performance of DSTC is also thoroughly studied. In Part II of the thesis, optimal distributed beamforming designs are developed for a wireless multiuser multi-relay network. Two design criteria for the optimal distributed beamforming at the relays are considered: (i) minimizing the total relay power subject to a guaranteed Quality of Service (QoS) measured in terms of signal-to-noise-ratio (SNR) at the destinations, and (ii) jointly maximizing the SNR margin at the destinations subject to power constraints at the relays. Based on convex optimization techniques, it is shown that these problems can be formulated and solved via second-order conic programming (SOCP). In addition, this part also proposes simple and fast iterative algorithms to directly solve these optimization problems

    Collaborative Distributed Beamforming for Spectrum-Sharing Systems

    Get PDF
    The scarcity of bandwidth has always been the main obstacle for providing reliable high date-rate wireless links, which are in great demand to accommodate nowadays and immediate future wireless applications. In addition, recent reports have showed inefficient usage and under-utilization of the available bandwidth. Cognitive radio (CR) has recently emerged as a promising solution to enhance the spectrum utilization, where it offers the ability for unlicensed users to access the licensed spectrum opportunistically. On one hand, by allowing opportunistic spectrum access, the overall spectrum utilization can be improved. On the other hand, transmission from cognitive nodes can cause severe interference to the licensed users of the spectrum. This requires cognitive radio networks (CRNs) to consider two essential design targets, namely, maximizing the spectrum utilization and minimizing the interference caused to the primary users (PUs). Such interference can be reduced through proper resource allocation, power control or other degrees of freedom techniques such as beamforming. In this thesis, we aim to use joint distributed beamforming and cooperative relaying in spectrum-sharing systems in an effort to enhance the spectrum efficiency and improve the performance of the secondary system. We investigate a one-way cooperative spectrum-sharing system in the presence of one PU and multiple PUs. We study two relaying schemes, namely, decode-and-forward (DF) and amplify-and-forward (AF) relaying in conjunction with distributed optimal beamforming. We employ zero forcing beamforming (ZFB) as a sub-optimal scheme, and compare both approaches through simulations. For both schemes, we derive closed-form expressions and asymptotic expressions for the outage probability and bit error rate (BER) over independent and identically distributed Rayleigh fading channels for binary phase shift keying (BPSK) and M-ary quadrature amplitude modulation (M-QAM) schemes. Numerical results show the effectiveness of the combination of the cooperative diversity and distributed beamforming in compensating for the loss in the secondary system's performance due to the primary user's co-channel interference (CCI). To further improve the spectrum efficiency, we employ distributed beamforming in two-way AF cooperative spectrum-sharing systems in the presence of multiple PUs. For this system, we investigate the transmission protocols over two, three and four time-slots. Our results show that the three time-slot protocol outperforms the two time-slot and four time-slot protocols in certain scenarios where it offers a good compromise between bandwidth efficiency and system performance. We extend the two-way relaying system to the DF scheme, where two practical two-way relaying strategies are investigated, namely, DF-XORing (bit-wise level) and DF-superposition (symbol-wise level). For each relaying strategy, we derive general optimal beamforming vectors and sup-optimal ZFB vectors at the relays. Employing ZFB, we present an analytical framework of the secondary system considering the effect of the primary-secondary mutual CCIs. Our results show that, when the received signals at the relays are weighted equally, the DF-XOR always outperforms both DF-superposition and AF relaying. In the last part of the thesis, we consider a limited feedback system model by assuming partial channel state information (CSI) of the interference channel between the secondary relays and primary receiver. In particular, the CSI feedback is limited only to the quantized channel direction information (CDI). To investigate the effect of the quantized CDI on the secondary system's performance, we derive closed-form expressions for the outage probability and the BER considering the mutual secondary-primary CCI. In the simulation results, we compare the system performance of the limited feedback with the perfect CSI. Our results show that the performance improves as the number of feedback bits increases

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Joint Spatial and Spectrum Cooperation in Wireless Network.

    Get PDF
    PhDThe sky-rocketing growth of multimedia infotainment applications and broadband-hungry mobile devices exacerbate the stringent demand for ultra high data rate and more spectrum resources. Along with it, the unbalanced temporal and geographical variations of spectrum usage further inspires those spectral-efficient networks, namely, cognitive radio and heterogeneous cellular networks (HCNs). This thesis focuses on the system design and performance enhancement of cognitive radio (CR) and HCNs. Three different aspects of performance improvement are considered, including link reliability of cognitive radio networks (CNs), security enhancement of CNs, and energy efficiency improvement of CNs and HCNs. First, generalized selection combining (GSC) is proposed as an effective receiver design for interference reduction and reliability improvement of CNs with outdated CSI. A uni- ed way for deriving the distribution of received signal-to-noise ratio (SNR) is developed in underlay spectrum sharing networks subject to interference from the primary trans- mitter (PU-Tx) to the secondary receiver (SU-Rx), maximum transmit power constraint at the secondary transmitter (SU-Tx), and peak interference power constraint at the PU receiver (PU-Rx), is developed. Second, transmit antenna selection with receive generalized selection combining (TAS/GSC) in multi-antenna relay-aided communica- tion is introduced in CNs under Rayleigh fading and Nakagami-m fading. Based on newly derived complex statistical properties of channel power gain of TAS/GSC, exact ergodic capacity and high SNR ergodic capacity are derived over Nakagami-m fading. Third, beamforming and arti cial noise generation (BF&AN) is introduced as a robust scheme to enhance the secure transmission of large-scale spectrum sharing networks with multiple randomly located eavesdroppers (Eves) modeled as homogeneous Poisson Point Process (PPP). Stochastic geometry is applied to model and analyze the impact of i BF&AN on this complex network. Optimal power allocation factor for BF&AN which maximizes the average secrecy rate is further studied under the outage probability con- straint of primary network. Fourth, a new wireless energy harvesting protocol is proposed for underlay cognitive relay networks with the energy-constrained SU-Txs. Exact and asymptotic outage probability, delay-sensitive throughput, and delay-tolerant through- put are derived to explore the tradeoff between the energy harvested from the PU-Txs and the interference caused by the PU-Txs. Fifth, a harvest-then-transmit protocol is proposed in K-tier HCNs with randomly located multiple-antenna base stations (BSs) and single antenna mobile terminals (MTs) modeled as homogeneous PPP. The average received power at MT, the uplink (UL) outage probability, and the UL average ergodic rate are derived to demonstrate the intrinsic relationship between the energy harvested from BSs in the downlink (DL) and the MT performance in the UL. Throughout the thesis, it is shown that link reliability, secrecy performance, and energy efficiency of CNs and HCNs can be signi cantly leveraged by taking advantage of multiple antennas, relays, and wireless energy harvesting

    Cooperative diversity techniques for future wireless communications systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2013.Multiple-input multiple-output (MIMO) systems have been extensively studied in the past decade. The attractiveness of MIMO systems is due to the fact that they drastically reduce the deleterious e ects of multipath fading leading to high system capacity and low error rates. In situations where wireless devices are restrained by their size and hardware complexity, such as mobile phones, transmit diversity is not achievable. A new paradigm called cooperative communication is a viable solution. In a cooperative scenario, a single-antenna device is assisted by another single-antenna device to relay its message to the destination or base station. This creates a virtual multiple-input multiple-output (MIMO) system. There exist two cooperative strategies: amplify-and-forward (AF) and decode-and-forward (DF). In the former, the relay ampli es the noisy signal received from the source before forwarding it to the destination. No form of demodulation is required. In the latter, the relay rst decodes the source signal before transmitting an estimate to the destination. In this work, focus is on the DF method. A drawback of an uncoded DF cooperative strategy is error propagation at the relay. To avoid error propagation in DF, various relay selection schemes can be used. Coded cooperation can also be used to avoid error propagation at the relay. Various error correcting codes such as convolutional codes or turbo codes can be used in a cooperative scenario. The rst part of this work studies a variation of the turbo codes in cooperative diversity, that further reduces error propagation at the relay, hence lowering the end-to-end error rate. The union bounds on the bit-error rate (BER) of the proposed scheme are derived using the pairwise error probability via the transfer bounds and limit-before-average techniques. In addition, the outage analysis of the proposed scheme is presented. Simulation results of the bit error and outage probabilities are presented to corroborate the analytical work. In the case of outage probability, the computer simulation results are in good agreement with the the analytical framework presented in this chapter. Recently, most studies have focused on cross-layer design of cooperative diversity at the physical layer and truncated automatic-repeat request (ARQ) at the data-link layer using the system throughput as the performance metric. Various throughput optimization strategies have been investigated. In this work, a cross-relay selection approach that maximizes the system throughput is presented. The cooperative network is comprised of a set of relays and the reliable relay(s) that maximize the throughput at the data-link layer are selected to assist the source. It can be shown through simulation that this novel scheme outperforms from a throughput point of view, a system throughput where the all the reliable relays always participate in forwarding the source packet. A power optimization of the best relay uncoded DF cooperative diversity is investigated. This optimization aims at maximizing the system throughput. Because of the non-concavity and non-convexity of the throughput expression, it is intractable to derive a closed-form expression of the optimal power through the system throughput. However, this can be done via the symbol-error rate (SER) optimization, since it is shown that minimizing the SER of the cooperative system is equivalent to maximizing the system throughput. The SER of the retransmission scheme at high signal-to-noise ratio (SNR) was obtained and it was noted that the derived SER is in perfect agreement with the simulated SER at high SNR. Moreover, the optimal power allocation obtained under a general optimization problem, yields a throughput performance that is superior to non-optimized power values from moderate to high SNRs. The last part of the work considers the throughput maximization of the multi-relay adaptive DF over independent and non-identically distributed (i.n.i.d.) Rayleigh fading channels, that integrates ARQ at the link layer. The aim of this chapter is to maximize the system throughput via power optimization and it is shown that this can be done by minimizing the SER of the retransmission. Firstly, the closed-form expressions for the exact SER of the multi-relay adaptive DF are derived as well as their corresponding asymptotic bounds. Results showed that the optimal power distribution yields maximum throughput. Furthermore, the power allocated at a relay is greatly dependent of its location relative to the source and destination
    • …
    corecore