59 research outputs found

    Polytopes, Lattices, and Spherical Codes for the Nearest Neighbor Problem

    Get PDF
    We study locality-sensitive hash methods for the nearest neighbor problem for the angular distance, focusing on the approach of first projecting down onto a random low-dimensional subspace, and then partitioning the projected vectors according to the Voronoi cells induced by a well-chosen spherical code. This approach generalizes and interpolates between the fast but asymptotically suboptimal hyperplane hashing of Charikar [STOC 2002], and asymptotically optimal but practically often slower hash families of e.g. Andoni - Indyk [FOCS 2006], Andoni - Indyk - Nguyen - Razenshteyn [SODA 2014] and Andoni - Indyk - Laarhoven - Razenshteyn - Schmidt [NIPS 2015]. We set up a framework for analyzing the performance of any spherical code in this context, and we provide results for various codes appearing in the literature, such as those related to regular polytopes and root lattices. Similar to hyperplane hashing, and unlike e.g. cross-polytope hashing, our analysis of collision probabilities and query exponents is exact and does not hide any order terms which vanish only for large d, thus facilitating an easier parameter selection in practical applications. For the two-dimensional case, we analytically derive closed-form expressions for arbitrary spherical codes, and we show that the equilateral triangle is optimal, achieving a better performance than the two-dimensional analogues of hyperplane and cross-polytope hashing. In three and four dimensions, we numerically find that the tetrahedron and 5-cell (the 3-simplex and 4-simplex) and the 16-cell (the 4-orthoplex) achieve the best query exponents, while in five or more dimensions orthoplices appear to outperform regular simplices, as well as the root lattice families A_k and D_k in terms of minimizing the query exponent. We provide lower bounds based on spherical caps, and we predict that in higher dimensions, larger spherical codes exist which outperform orthoplices in terms of the query exponent, and we argue why using the D_k root lattices will likely lead to better results in practice as well (compared to using cross-polytopes), due to a better trade-off between the asymptotic query exponent and the concrete costs of hashing

    On metric Ramsey-type phenomena

    Full text link
    The main question studied in this article may be viewed as a nonlinear analogue of Dvoretzky's theorem in Banach space theory or as part of Ramsey theory in combinatorics. Given a finite metric space on n points, we seek its subspace of largest cardinality which can be embedded with a given distortion in Hilbert space. We provide nearly tight upper and lower bounds on the cardinality of this subspace in terms of n and the desired distortion. Our main theorem states that for any epsilon>0, every n point metric space contains a subset of size at least n^{1-\epsilon} which is embeddable in Hilbert space with O(\frac{\log(1/\epsilon)}{\epsilon}) distortion. The bound on the distortion is tight up to the log(1/\epsilon) factor. We further include a comprehensive study of various other aspects of this problem.Comment: 67 pages, published versio

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion

    On the effect of interactions beyond nearest neighbours on non-convex lattice systems

    Get PDF
    We analyse the rigidity of non-convex discrete energies where at least nearest and next-to-nearest neighbour interactions are taken into account. Our purpose is to show that interactions beyond nearest neighbours have the role of penalising changes of orientation and, to some extent, they may replace the positive-determinant constraint that is usually required when only nearest neighbours are accounted for. In a discrete to continuum setting, we prove a compactness result for a family of surface-scaled energies and we give bounds on its possible Gamma-limit in terms of interfacial energies that penalise changes of orientation

    Covering triangular grids with multiplicity

    Full text link
    Motivated by classical work of Alon and F\"uredi, we introduce and address the following problem: determine the minimum number of affine hyperplanes in Rd\mathbb{R}^d needed to cover every point of the triangular grid Td(n):={(x1,,xd)Z0dx1++xdn1}T_d(n) := \{(x_1,\dots,x_d)\in\mathbb{Z}_{\ge 0}^d\mid x_1+\dots+x_d\le n-1\} at least kk times. For d=2d = 2, we solve the problem exactly for k4k \leq 4, and obtain a partial solution for k>4k > 4. We also obtain an asymptotic formula (in nn) for all dk2d \geq k - 2. The proofs rely on combinatorial arguments and linear programming.Comment: 23 pages, 3 figure
    corecore