1,406 research outputs found

    Asymptotic Analysis on Spatial Coupling Coding for Two-Way Relay Channels

    Full text link
    Compute-and-forward relaying is effective to increase bandwidth efficiency of wireless two-way relay channels. In a compute-and-forward scheme, a relay tries to decode a linear combination composed of transmitted messages from other terminals or relays. Design for error correcting codes and its decoding algorithms suitable for compute-and-forward relaying schemes are still important issue to be studied. In this paper, we will present an asymptotic performance analysis on LDPC codes over two-way relay channels based on density evolution (DE). Because of the asymmetric nature of the channel, we employ the population dynamics DE combined with DE formulas for asymmetric channels to obtain BP thresholds. In addition, we also evaluate the asymptotic performance of spatially coupled LDPC codes for two-way relay channels. The results indicate that the spatial coupling codes yield improvements in the BP threshold compared with corresponding uncoupled codes for two-way relay channels.Comment: 5 page

    On the Performance of SR and FR Protocols for OSTBC based AF-MIMO Relay System with Channel and Noise Correlations

    Get PDF
    This paper proposes selection relaying (SR) protocol for a cooperative multiple-input multiple-output (MIMO) relay system that consists of a direct link between a source and a destination. The system has only receive-side channel state information (CSI), spatially correlated MIMO channels, and the receiver nodes observe spatially correlated noise. The transmit nodes employ orthogonal space-time block codes (OSTBC), whereas the receiver nodes employ optimum minimum mean-square-error (MMSE) detection. The SR protocol, which transmits via the relay only when the direct link between the source and destination is in outage, is compared with the fixed relaying (FR) protocol which always uses the relay. By deriving novel asymptotic expressions of the outage probabilities, it is analytically shown that both protocols provide the same diversity gain. However, the coding gain (CG) of the SR protocol can be much better than that of the FR protocol. In particular, when all MIMO links have the same effective rank, irrespective of its value, the SR protocol provides better CG than the FR scheme if the target information rate is greater than ln2(3) bits per channel use. Simulation results support theoretical analysis and show that the SR scheme can significantly outperform FR method, which may justify the increased complexity due to one-bit feedback requirement in the SR protocol

    On the Performance of SR and FR Protocols for OSTBC based AF-MIMO Relay System with Channel and Noise Correlations

    Get PDF
    This paper proposes selection relaying (SR) protocol for a cooperative multiple-input multiple-output (MIMO) relay system that consists of a direct link between a source and a destination. The system has only receive-side channel state information (CSI), spatially correlated MIMO channels, and the receiver nodes observe spatially correlated noise. The transmit nodes employ orthogonal space-time block codes (OSTBC), whereas the receiver nodes employ optimum minimum mean-square-error (MMSE) detection. The SR protocol, which transmits via the relay only when the direct link between the source and destination is in outage, is compared with the fixed relaying (FR) protocol which always uses the relay. By deriving novel asymptotic expressions of the outage probabilities, it is analytically shown that both protocols provide the same diversity gain. However, the coding gain (CG) of the SR protocol can be much better than that of the FR protocol. In particular, when all MIMO links have the same effective rank, irrespective of its value, the SR protocol provides better CG than the FR scheme if the target information rate is greater than ln2(3) bits per channel use. Simulation results support theoretical analysis and show that the SR scheme can significantly outperform FR method, which may justify the increased complexity due to one-bit feedback requirement in the SR protocol

    Spatially Coupled LDPC Codes Constructed from Protographs

    Full text link
    In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor

    Spatially-Coupled LDPC Codes for Decode-and-Forward Relaying of Two Correlated Sources over the BEC

    Get PDF
    We present a decode-and-forward transmission scheme based on spatially-coupled low-density parity-check (SC-LDPC) codes for a network consisting of two (possibly correlated) sources, one relay, and one destination. The links between the nodes are modeled as binary erasure channels. Joint source-channel coding with joint channel decoding is used to exploit the correlation. The relay performs network coding. We derive analytical bounds on the achievable rates for the binary erasure time-division multiple-access relay channel with correlated sources. We then design bilayer SC-LDPC codes and analyze their asymptotic performance for this scenario. We prove analytically that the proposed coding scheme achieves the theoretical limit for symmetric channel conditions and uncorrelated sources. Using density evolution, we furthermore demonstrate that our scheme approaches the theoretical limit also for non-symmetric channel conditions and when the sources are correlated, and we observe the threshold saturation effect that is typical for spatially-coupled systems. Finally, we give simulation results for large block lengths, which validate the DE analysis.Comment: IEEE Transactions on Communications, to appea
    • …
    corecore