399 research outputs found

    A weighted first-order formulation for solving anisotropic diffusion equations with deep neural networks

    Full text link
    In this paper, a new weighted first-order formulation is proposed for solving the anisotropic diffusion equations with deep neural networks. For many numerical schemes, the accurate approximation of anisotropic heat flux is crucial for the overall accuracy. In this work, the heat flux is firstly decomposed into two components along the two eigenvectors of the diffusion tensor, thus the anisotropic heat flux approximation is converted into the approximation of two isotropic components. Moreover, to handle the possible jump of the diffusion tensor across the interface, the weighted first-order formulation is obtained by multiplying this first-order formulation by a weighted function. By the decaying property of the weighted function, the weighted first-order formulation is always well-defined in the pointwise way. Finally, the weighted first-order formulation is solved with deep neural network approximation. Compared to the neural network approximation with the original second-order elliptic formulation, the proposed method can significantly improve the accuracy, especially for the discontinuous anisotropic diffusion problems

    From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and Beyond

    Full text link
    Graph neural networks (GNNs) have demonstrated significant promise in modelling relational data and have been widely applied in various fields of interest. The key mechanism behind GNNs is the so-called message passing where information is being iteratively aggregated to central nodes from their neighbourhood. Such a scheme has been found to be intrinsically linked to a physical process known as heat diffusion, where the propagation of GNNs naturally corresponds to the evolution of heat density. Analogizing the process of message passing to the heat dynamics allows to fundamentally understand the power and pitfalls of GNNs and consequently informs better model design. Recently, there emerges a plethora of works that proposes GNNs inspired from the continuous dynamics formulation, in an attempt to mitigate the known limitations of GNNs, such as oversmoothing and oversquashing. In this survey, we provide the first systematic and comprehensive review of studies that leverage the continuous perspective of GNNs. To this end, we introduce foundational ingredients for adapting continuous dynamics to GNNs, along with a general framework for the design of graph neural dynamics. We then review and categorize existing works based on their driven mechanisms and underlying dynamics. We also summarize how the limitations of classic GNNs can be addressed under the continuous framework. We conclude by identifying multiple open research directions

    Innovative Approaches to the Numerical Approximation of PDEs

    Get PDF
    This workshop was about the numerical solution of PDEs for which classical approaches, such as the finite element method, are not well suited or need further (theoretical) underpinnings. A prominent example of PDEs for which classical methods are not well suited are PDEs posed in high space dimensions. New results on low rank tensor approximation for those problems were presented. Other presentations dealt with regularity of PDEs, the numerical solution of PDEs on surfaces, PDEs of fractional order, numerical solvers for PDEs that converge with exponential rates, and the application of deep neural networks for solving PDEs

    Annual Research Report 2020

    Get PDF

    A deep learning framework for multi-scale models based on physics-informed neural networks

    Full text link
    Physics-informed neural networks (PINN) combine deep neural networks with the solution of partial differential equations (PDEs), creating a new and promising research area for numerically solving PDEs. Faced with a class of multi-scale problems that include loss terms of different orders of magnitude in the loss function, it is challenging for standard PINN methods to obtain an available prediction. In this paper, we propose a new framework for solving multi-scale problems by reconstructing the loss function. The framework is based on the standard PINN method, and it modifies the loss function of the standard PINN method by applying different numbers of power operations to the loss terms of different magnitudes, so that the individual loss terms composing the loss function have approximately the same order of magnitude among themselves. In addition, we give a grouping regularization strategy, and this strategy can deal well with the problem which varies significantly in different subdomains. The proposed method enables loss terms with different magnitudes to be optimized simultaneously, and it advances the application of PINN for multi-scale problems

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells
    corecore