

University of Bath

PHD

Application of Moving Mesh Methods for the Solution of Partial Differential Equations

Appella, Simone

Award date:
2023

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

Copyright of this thesis rests with the author. Access is subject to the above licence, if given. If no licence is specified above,
original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC-ND 4.0) Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Any third-party copyright
material present remains the property of its respective owner(s) and is licensed under its existing terms.

Take down policy
If you consider content within Bath's Research Portal to be in breach of UK law, please contact: openaccess@bath.ac.uk with the details.
Your claim will be investigated and, where appropriate, the item will be removed from public view as soon as possible.

Download date: 01. Aug. 2023

https://researchportal.bath.ac.uk/en/studentTheses/42f103db-00d7-4039-b2be-122e0c524299

Application of Moving Mesh Methods
for the Solution of Partial Differential

Equations
submitted by

Simone Appella
for the degree of Doctor of Philosophy

of the

University of Bath
Department of Mathematical Sciences

September 2022

COPYRIGHT NOTICE

Attention is drawn to the fact that copyright of this thesis rests with the author and copyright of any
previously published materials included may rest with third parties. A copy of this thesis has been
supplied on condition that anyone who consults it understands that they must not copy it or use material
from it except as licensed, permitted by law or with the consent of the author or other copyright owners,
as applicable.

DECLARATION OF ANY PREVIOUS SUBMISSION OF THE WORK

The material presented here for examination for the award of a higher degree by research has not been
incorporated into a submission for another degree.

Signature of Author .

Simone Appella

DECLARATION OF AUTHORSHIP

I am the author of this thesis, and the work described therein was carried out by myself personally in
collaboration with my supervisors.

Chapter 3 is reproduced from a submitted and accepted manuscript.

Chapter 4 and 5 are reproduced from a draft manuscript.

Signature of Author .

Simone Appella

1

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisors, Prof. Chris Budd and Dr. Tristan
Pryer, for their dedicated support and invaluable advice during my PhD study. Their vast knowledge and
experience have continuously provided guidance for my academic research.

I joined alongside my colleagues and friends Tina Yang Zhou, Tosin Babasola and Gianluca Audone
many study groups and group meetings organised by Prof. Budd throughout three years. As a result, I
have developed a genuine interest in applied mathematical problems and more self-confidence by talking
to general audience. I am grateful to them for all those experiences.

This thesis would not have been possible without the inclusive and welcoming environment within the
Department of Mathematical Sciences. I would like to thank all my friends and colleagues for the
cherished time spent together in the office and in social events. I am also thankful to the SAMBa
coordinators, who have offered invaluable moral support and assistance for any concern.

During the COVID-19 pandemic I had to spend most of my time at home. The friendly relationship with
my flatmates Marco Murtinu, Saul Gonzalez Resines, Carlo Scali and Umberto De Ambroggio helped
me overcome that difficult period and I will never forget our mutual support.

Finally, a special thank to my family and to my friends in Italy. Their belief in me has kept spirit and
motivation high during my research journey.

3

4

Abstract

This thesis concerns the application of moving mesh methods for the numerical solution of partial
differential equations (PDEs) on two-dimensional domains. Recent developments in this field have
shown wide applicability for resolving fine scale features such as shocks and singularities in nonlinear
PDEs.

As first contribution, we couple a moving mesh PDE and a finite element (FE) method for the solution
of the linear advection equation. This scheme also includes a mass-conservative projection operator that
avoids any interpolation procedure as used in the standard iterative (rezoning) method. This property
is essential for many simulations in the field of computational fluid dynamics (CFD), and prevents the
approximate solution from being polluted by the addition of numerical diffusion.

The second contribution of this thesis is related to elliptic PDEs in non-convex domains, discretised
with the symmetric interior penalty discontinuous Galerkin (SIP-dG) method. The analytical solution
exhibits a singular behaviour at the re-entrant corners, and standard numerical schemes on regular grids
are not able to accurately resolve the corner singularities. We will show that both an ℎ-adaptive and
A-adaptive approach can be used to increase considerably the accuracy of the solution. For the first
method, we derive a new a-posteriori error estimator using the dual formulation of the original problem.
Different moving mesh methods are tested for A-adaptivity, and that one based on the Optimal Transport
(OT) strategy yields the best accuracy, comparable to the ℎ-refinement method but more computationally
efficient. Furthermore, we prove that the local quality measure of the OT mesh is independent on its
resolution and cell location. Finally, we provide numerical evidence of the link between the two adaptive
methods by showing that the a-posteriori estimator used for ℎ-adaptivity is equidistributed on the OT
mesh near the re-entrant corner.

The third contribution proposes an alternative way to solve a model elliptic PDE via deep learning (DL).
Under this framework the problem is formulated as the minimisation of a loss function, which encodes
desirable properties of the PDE. We show that a neural network with loss defined as the energy functional
of the equation yields accurate solution, provided that the training points are chosen according to the
equidistribution condition. We link to OT meshes obtained earlier in the thesis. The main result of this
work suggests that numerical methods (e.g. used to derive the OT mesh) must be endowed with certain
desirable features to ensure compatibility with DL procedures and improve the training process of the
neural network.

5

6

Contents

Chapter 1
Introduction 17

1.1 Motivation for the thesis . 17

1.2 Achievements of the thesis . 19

1.3 Structure of the thesis . 20

Chapter 2
Background material 21

2.1 Moving meshes in 1D . 22

2.1.1 De Boor’s algorithm . 24

2.1.2 The Boundary Value Problem method . 25

2.1.3 Moving Mesh PDEs . 25

2.2 Higher dimensional Moving Mesh methods . 26

2.2.1 Winslow’s variational-based diffusion method . 28

2.2.2 Optimal Transport based mesh adaptation . 31

2.3 The Finite Element method . 33

2.3.1 Model Problem . 33

2.3.2 Functional setting . 34

2.3.3 The Ritz and Galerkin methods for elliptic problems 37

2.3.4 Finite Element spaces . 38

2.3.5 Mesh and Quality measure . 40

2.3.6 Error analysis for FEM . 43

2.3.7 Non-convex domains . 45

2.4 Background on neural networks . 47

7

2.4.1 Network structure . 47

2.4.2 Training and Loss . 48

2.4.3 Automatic-Differentiation . 50

2.4.4 Approximation theorems . 51

Chapter 3
An adaptive conservative moving mesh method 55

3.1 Introduction . 55

3.2 Problem setup and discretisation . 57

3.3 Moving mesh methods . 60

3.3.1 Winslow’s variational-based diffusion method . 61

3.4 Data transfer over timesteps . 65

3.4.1 Local Galerkin Projection . 65

3.5 Numerical Experiments . 67

3.5.1 Test 1 - Mesh adaptation to a scalar function . 67

3.5.2 Test 2 - Convergence on the adaptively generated grids 68

3.5.3 Test 3 - Error accumulation in time . 70

3.5.4 Test 4 - Sensitivity of the MMPDE algorithm . 70

3.5.5 Test 5 - Asymptotic convergence rates . 71

3.6 Summary . 75

Chapter 4
Optimal Transport and ℎ-adaptive based mesh generation for Poisson’s equation in non-
convex domains 77

4.1 Introduction . 78

4.2 Problem setup and discretisation . 79

4.2.1 The Poisson problem in 2D . 84

4.2.2 The variational formulation of Poisson’s equation . 85

4.3 A-posteriori estimates for the SIP-dG method . 86

4.3.1 Derivation of the L2 a-posteriori error estimate . 88

4.4 A-adapted meshes . 92

4.4.1 Winslow’s diffusion method . 92

8

4.4.2 Mesh generation using an OT strategy . 96

4.4.3 Local mesh scaling . 97

4.4.4 Solution of Monge-Ampère equation . 98

4.4.5 Computation of the final mesh . 99

4.4.6 Mesh Quality . 100

4.5 Numerical Results . 102

4.5.1 Results for the L-shaped domain . 103

4.5.1.1 ℎ-refinement . 103

4.5.1.2 OT based meshes for different values of W 104

4.5.1.3 Comparison between the ℎ-refinement and OT refinement methods 106

4.5.2 Results for the crack domain . 108

4.6 Summary . 111

Chapter 5
The Deep Galerkin and the deep Ritz method for Poisson’s equation on the L-shaped domain 113

5.1 Introduction . 113

5.2 Methodology . 115

5.2.1 Network structure . 115

5.2.2 The deep Galerkin method and the deep Ritz method 116

5.2.3 The optimisation algorithm and the loss approximation 118

5.3 Numerical Results - 1 . 119

5.3.1 Poisson’s equation . 120

5.3.2 Loss function . 124

5.3.3 Error analysis . 125

5.3.4 Convergence rate analysis for DRM . 126

5.3.5 Comparison with SIP-dG method . 127

5.4 Numerical Results - 2 . 128

5.5 Summary . 132

Chapter 6
Conclusion 133

9

Chapter A
Derivation of the optimal parameters for OT-based mesh generation 137

A.0.1 L∞ norm . 137

A.0.2 L2 norm . 139

Chapter B
Code 141

10

List of Figures

2-1 Adapted mesh to D(G, H) = 100+sin (2cG) sin (cH) using Winslow’s diffusion method. 28

2-2 Visualisation of an isotropic and anisotropic mesh on a squared domain. 29

2-3 Tangled mesh with overlapping elements 1 and 2. 32

2-4 Representation of a domain Ω with boundary mΩ and normal vector n. 34

2-5 Visualisation of discontinuous quadratic Lagrange elements in 2D [LW10]. 40

2-6 Visualisation of a non-conforming triangulation with hanging node and a conforming
triangulation. 41

2-7 Visualisation of the diameter and in-diameter for a triangular element 41

2-8 The mesh is shape regular if the minimum angle U among all elements is uniformly
bounded from below by `(�). 42

2-9 The two-dimensional mapping of an element ̂ (a circle) in Ω2 , to a physical mesh
element (an ellipse) in Ω, under x(ξ). The skewness of the transformed element
is evident from the degree of compression and stretching of the ellipse [BRW15]. . . 43

2-10 Solution of Poisson’s equation on a L-shaped domain with homogeneous Dirichlet
boundary conditions using OT based A-adaptivity and ℎ-refinement. 46

2-11 FNN with two hidden layers and x = (G, C)) ∈ R2 as input. 48

2-12 Examples of activation functions used in deep learning. 48

2-13 Forward mode with D(G1, G2) = ln(G1)+G1G2−sin (G2) evaluated at (G1, G2) = (2, 5).
The original forward evaluation of the primal variables on the left is augmented by
the derivatives ¤E8 with respect to G1 on the right [Bay+18]. 51

11

2-14 Reverse mode with D(G1, G2) = ln(G1) + G1G2 − sin (G2) evaluated at (G1, G2) =

(2, 5). After the forward evaluation of the primal variables, the adjoint operations are
evaluated backwards starting from E5 = H = 1 [Bay+18]. Compared to the Forward
mode, here we obtain the derivatives with respect to both G1 and G2. 52

3-1 An illustration of the intersection between two triangles. The resulting polygon is
subdivided into a shape regular triangulation which represents the supermesh over
the intersection. 67

3-2 Projection error and the mesh quality measure& for (3.5.1), (3.5.2) and (3.5.3) using
Algorithm 4 for 50 iterations. 68

3-3 Test 1 - Visualisations of the functions D1, D2, D3 defined in (3.5.1))-(3.5.3)) discre-
tised in V8 , a criss cross mesh on the domain Ω = [0, 1]2 at initial iteration (8 = 0),
and final iteration (8 = 50). The physical mesh � is comprised by 104 triangular ele-
ments and for 8 = 0 equal to the criss-cross computational mesh. Note that the mesh
distorts locally to ensure good approximation of the hard-to-approximate features. . . 69

3-4 Test 2 - Asymptotic convergence rates for the best approximation on the finite element
space over the meshes generated by Algorithm 4. Note that for uniform meshes the
approximation of the discontinuous function is slower due to the lack of regularity.
The adapted meshes are able to resolve this to ensure optimal rates for the piecewise
constant approximations [GMP17]. 69

3-5 Test 3 - Here we show the error accumulation in time for the smooth initial condition
(3.5.4). The parameters used for the mesh adaptation are: #(= 15, : = 10−3

and V = 10−5. In each case the initial mesh was chosen such that dimV = 104.
The uniform scheme outperforms the non-conservative adaptive one as the error
introduced by Lagrange interpolation from �

= to �
=+1 is not counterbalanced by

the gain in accuracy on the adapted mesh. 71

3-6 Test 4 - Here we show the effect of varying (, the end time of the moving mesh
algorithm, within Algorithm 4. We fix : = 10−3 and V = 10−4. We examine the
effect of modifying (for the solutions given by (3.5.7) with initial conditions (3.5.4)
and (3.5.5). We show that the error stagnates as (gets large, meaning that the solution
of the MMPDE is close to a steady state for that particular (. 72

3-7 Test 5 - A comparison of the adaptive scheme given by Algorithm 3 and an equivalent
uniform scheme, both initialised with the same uniform meshes. The family of
uniformly refined initial grids ensures dimV ∈ [100, 6400]. We are examining the
approximation of the exact solution (3.5.7) with the smooth initial condition (3.5.4).
Notice that the adaptive scheme is able to achieve an approximation with smaller L2

error than the uniform scheme as well as a higher rate of convergence. 73

3-8 Test 5 - A comparison of the adaptive scheme given by Algorithm 3 and an equivalent
uniform scheme, both initialised with the same uniform meshes. The family of
uniformly refined initial grids ensures dimV ∈ [100, 6400]. We are examining the
approximation of the exact solution (3.5.7) with the discontinuous initial condition
(3.5.5). Notice that the adaptive scheme is marginally more accurate than the uniform
scheme. 74

4-1 An example of a non convex domain Ω (a L-shaped domain), with a uniform trian-
gulation and a non-uniform graded triangulation. 80

4-2 Example of a non-convex domain Ω with two re-entrant corners. 80

4-3 Solution of equation (4.5.1) represented in the physical and computational domain. . 93

4-4 Solution of eq.(4.5.1) on the mesh given by the Winslow’s MMPDE (dimV = 7005)
with monitor functions d in eq.(4.4.2)–(4.4.4). 94

4-5 Convergence rates for Winslow’s MMPDE with monitor functions d in eq.(4.4.2)–(4.4.4). 94

4-6 The solution error decreases monotonically over the iterations until reaching conver-
gence for all the monitor functions. The relative tolerance has been fixed to 1× 10−5,
while the timestep has been set to : = 10−3. 95

4-7 (Left) We show that the dependence of the quality measure on W computed numerically
fits the theoretical formula in (4.4.15) on the L-shaped domain (dimV = 4608).
(Right) The value of &(W) is independent on the dimension of the FE space. 101

4-8 Asymptotic convergence rates for the ℎ-refinement strategy on the finite element
spaceV. Note that the rate of convergence is optimal and independent on V̂. Uniform
mesh refinement yields a convergence rate of 2/3 due to the singular behaviour of the
solution at the origin [GMP17]. 103

4-9 Mesh obtained via the L2 a-posteriori bound (4.3.14) after 15 refinements. 104

4-10 Error and quality measures of the OT mesh for different W. 104

4-11 Error and quality measures for the a-priori OT mesh as function of W (dimV = 73728). 105

4-12 Solution of equation (4.5.1) on the OT mesh with W = 0.44. Note the smooth grading
and symmetry of this mesh even with @(�) > 1. 105

4-13 Convergence rates for different adaptive strategies. The rate of convergence is optimal
(1/#) for both ℎ-refinement and for the OT strategy (W = 0.44, 0.67 for L2 and L∞

norm, respectively). 106

4-14 CPU-runtime comparison. 107

4-15 Cell values of the a-posteriori measure [L2 , , [L∞ , for OT meshes with dimV =

7 × 104 for different values of W. The measure has been computed as a function of
the distance from the re-entrant corner. 107

4-16 Zoom of the mesh near the re-entrant corner obtained with the a-posteriori bounds
(4.3.14),(4.3.15). 108

4-17 Solution of Poisson’s equation (4.5.4) with the OT mesh generated as in §4.4.5. 108

4-18 Error and quality measures for the a-priori OT mesh as function of W (dimV = 74880). 109

4-19 Error and quality measures for the a-priori OT mesh as function of W (dimV = 74880). 110

4-20 Asymptotic convergence rates for different adaptive strategies. Note that the rate of
convergence is optimal for the ℎ-refinement and the OT strategy (W = 0.5, 0.75 for
the L2 and L∞ norm, respectively). 110

4-21 Cell values of the a-posteriori measure [L2 , , [L∞ , for OT meshes with dimV =

7 × 104 for different values of W. The measure has been computed as a function of
the distance from the re-entrant corner. 110

5-1 Architecture of a deep Ritz network [WB18]. Two fully-connected (FC) layers and
the residual connection is described in eq. (5.2.1). 116

5-2 Exact solution of equation (5.3.1) and Delaunay mesh with # = 833 on which the L2

error is computed. 121

5-3 Solution of Poisson’s equation with the DGM and DRM with uniformly sampled and
OT based collocation/quadrature points for # = 833 and F1 = 500. 122

5-4 Solution of Poisson’s equation with random collocation points and OT quadrature
points evaluated on the Delaunay mesh to compute the L2 error for F1 = 500. 123

5-5 Loss function given as sum of residual loss (;>BBA) and boundary loss (F1× ;>BB1) for
the DGM and DRM. The losses are evaluated on uniformly-sampled and OT based
quadrature points for # = 833 and F1 = 500. 124

5-6 Relative L2 error for the DGM and DRM with uniformly-sampled and OT quadrature
points for # = 833. 125

5-7 Relative L2 error for DRM with OT quadrature points. 126

5-8 L2 error comparison between SIP-dG solution and DGM on OT mesh. 127

15

5-9 Solution of Poisson’s equation for the DGM and the DRM with uniformly sampled
and regularly spaced collocation/quadrature points with # = 784 and F1 = 500. . . . 128

5-10 Loss function given as sum of residual loss (;>BBA) and boundary loss (F1 × ;>BB1)
for the DGM and the DRM. The losses are evaluated on randomly-sampled points
and on a regular grid for # = 784 and F1 = 500. 129

5-11 Relative L2 error for the DGM and the DRM with uniformly-sampled and regularly
spaced quadrature points for # = 784. 131

5-12 Convergence rate of L2 error using the DRM with regularly spaced points. 132

16

Chapter 1

Introduction

1.1 Motivation for the thesis

Mesh adaptivity is a critical component for the accurate resolution of multi-scale, multi-physics problems
modelled by partial differential equations (PDEs). By increasing the mesh resolution or the polynomial
degree of the numerical solution, the PDE can be approximated more accurately without significant
impact on the computational costs as would be in the case with uniform resolution. There has been a great
deal of research in the development and implementation of adaptive mesh methods for resolving solution
features, which broadly fit into three categories: ℎ-adaptive, ?-adaptive, and A-adaptive [PLW05].

The most widely developed adaptive method is ℎ-refinement, which locally coarsens or refines the mesh
by removing or adding mesh points, and hence changes the mesh topology and number of points. For this
method, the elements to refine/coarsen are usually chosen based on a local error estimate of the solution
[Ver94]. This method requires coarsening and refinement for hyperbolic and parabolic PDEs at many
iterations. This process can be computationally expensive in high-dimensions and, for finite difference
and finite volume methods, must track hanging nodes resulting from the addition or subtraction of
mesh points [Gar77]. Nevertheless, ℎ-refinement coupled with finite element (FE) methods is a mature
technology and offers a rich literature of mathematical results which is lacking in other adaptive strategies
[Bab71; Ver94; Bak97; Ape13].

The ?-adaptive method does not modify the mesh topology and the number of points, but locally
increases or decreases the order of the spatial discretisation. For FE method, this involves increasing
the order of the basis function, whereas in the Finite Difference method it corresponds to using a higher
order differencing formula. There exists a wide literature of research that combines ℎ- and ?- adaptivity
to balance the addition of mesh points with the increment of approximation order [AS98; CGH14;
RPD06].

17

In contrast to the previous methods, the A-adaptive framework, also known as moving mesh method, seeks
a map from a computational (uniform) domain to a physical (adapted) domain, so that the desired mesh in
the physical domain is the image of a (fixed) mesh in the computational domain. In the discretised form,
the adapted mesh has fixed number of points that move according to an equidistribution and alignment
condition, such that the density of mesh points is increased in regions of the domain where the solution
exhibits small-scale features. This method requires fewer degrees of freedom than ℎ-refinement and does
not increase the order of basis function/differencing formulas, as demanded by ?-adaptivity. This method
has proved successful in a variety of applications, ranging from Burgers equation [Coo+19], semi-linear
blow up equations [BWG04], and numerical weather prediction [MCB18]. The most common scheme
used to couple the solution of hyperbolic/parabolic PDEs and the moving mesh method is the rezoning
method, which alternates the steps of solving the PDE and updating the mesh [HR11]. This method is
computationally cheap but does require the interpolation of the approximate solution from the current
adapted mesh to the new adapted one at each iteration of the numerical scheme. This introduces artificial
diffusion, which ultimately affects the accuracy of the numerical solution. In Chapter 3 we bridge this
gap by implementing a conservative data transfer operator that is based on the concept of supermesh
[FM10].

The theory of Optimal Transport (OT) plays an important role in A-adaptivity. It has been shown in
[BHR09] that coupling the equidistribution condition with an OT strategy results in the formulation of
a nonlinear Monge-Ampère equation, whose solution leads to a mesh with many desirable properties.
Although the numerical solution of the Monge-Ampère equation is time expensive in general, we propose
in Chapter 4 an alternative cheaper approach that exploits the topology of the domain and the radial
symmetry of the solution of a Poisson problem in non-convex domains. In particular, the OT map that
leads to the equidistributed mesh can be rewritten in terms of a non-algebraic equation for a L-shaped and
crack-domain. We propose a novel a-posteriori error to drive the ℎ-adaptation and analyse the property
of the resulting OT mesh. Finally, we compare the two methods in terms of accuracy and quality of the
mesh.

Since deep learning is becoming an increasingly popular framework for the solution of PDEs [RPK19;
KZK21; SS18], we adopt some of the proposed methods. In Chapter 5 we train a neural network for
the solution of Poisson’s equation on training points, which are located according to an equidistribution
condition. The rich literature on this topic has provided important theoretical results, mostly related to
the asymptotic behaviour of network parameters, to define the function approximation power of networks
with specific configurations [MMN18; SKM21; JHG18]. The training of a neural network consists in
the minimisation of a loss function that embeds the physical properties of the PDE. This is usually
performed using stochastic gradient descent method, which discretises a loss (objective) function over
a set of training points randomly sampled. Despite the cited papers have proved successful in solving
several PDEs, it is still not clear how to train the network to achieve the optimal accuracy and how the
location of training points affects the solution of the PDE. Moreover, we will show that this framework is
not as robust as the FE method because careful tuning of the network parameters is required to possibly
yield a satisfactory convergence rate.

18

1.2 Achievements of the thesis

This thesis aims to improve the existing applications of moving mesh methods for multi-dimensional
hyperbolic and elliptic PDE problems with challenging solution structures. In Chapter 3 the linear
advection problem will be solved using a rezoning approach, alternating the mesh adaptation and the
approximate solution of the PDE using a FE method. In Chapter 4 Poisson’s equation will be solved
using a FE method with the help of ℎ- and OT based A-adaptation. The OT mesh will be employed in
Chapter 5 to obtain an accurate approximate solution of the same equation by training a neural network.
We will compare the accuracy of the network output with the FE solution obtained in Chapter 4.

Here, we list the main achievements for each Chapter of the thesis:

• Chapter 3: we apply A-adaptivity to the linear advection equation using the rezoning approach,
which couples the adaptive strategy with the upwinding discontinuous Galerkin (dG) discretisation.
This scheme requires an interpolation step and introduces various challenges as it is a common
source of diffusion. The novelty of this Chapter is a modified rezoning method that ensures the
mass conservation property. We achieve this through a conservative local Galerkin projection,
removing one of the inherent disadvantages of interpolation based methods [FM10]. We conduct
numerical experiments to assess the robustness and approximability of the proposed scheme. We
observe mass conservation and an increase of the solution accuracy due to the adapted mesh.

• Chapter 4: we solve Poisson’s equation in non-convex two-dimensional domains using the symmet-
ric interior penalty discontinuous Galerkin (SIP-dG) method. The solution exhibits a singularity
at the re-entrant corner and lies in a weighted Sobolev space. Under this framework, we de-
rive a novel L2 a-posteriori error estimate. We discretise the domain on meshes using either an
ℎ-adaptive or an OT based moving mesh strategy. The ℎ-refinement strategy is guided by the
proposed L2 and a L∞ a-posteriori estimate, and ensures each numerically optimal convergence
rate for the SIP-dG method. The OT mesh is derived semi-analytically, by considering the local
behaviour of the solution near the re-entrant corner. This second procedure exhibits the same
accuracy as the ℎ-refinement strategy but is computationally less expensive. Moreover, we show
that the quality measure of the OT mesh elements does not depend on its location and the number
of total mesh nodes. Finally, we link the two adaptive strategies by showing that the OT mesh
equidistributes the a-posteriori estimate in L2 and a L∞ norm.

• Chapter 5: we propose an alternative method to solve Poisson’s equation by using the neural
network framework. The deep Galerkin (DGM) and the deep Ritz method (DRM) is used to
minimise a loss (objective) function related to the problem. The loss functions of these two
formulations are related to their FE counterparts. We show that the choice of the quadrature points
is crucial for the accuracy of the solution. More precisely, if we use the vertices of the OT mesh
derived in the Chapter 4 as training points, the training process is more stable and the accuracy
much higher compared to uniformly random sampled points. Moreover, the DRM proves to be

19

more accurate than the DGM. This may be related to the variational formulation of the DRM, that
is supposed to be naturally adaptive during the training of the network.

1.3 Structure of the thesis

In Chapter 2 we propose an overview of the frameworks used in the next three Chapters. We begin with
the core mathematical principle at the foundation of moving mesh methods in one and higher dimensions.
We consider variational methods and an Optimal Transport based method, which consists of solving
a nonlinear Monge-Ampère equation. Next, we introduce the fundamental concepts and theoretical
results of the FE method. Finally, we illustrate the main components of the training procedure of a
neural network and theoretical results characterising its approximation power.

Chapter 3 deals with the solution of a linear advection problem in two-dimensional space with a
moving mesh method that assures mass conservation. The physical PDE is discretised using the lowest
order discontinuous Galerkin method, while A-adaptivity is applied through Winslow’s method. The
projection of the approximate physical solution from the old to the new adapted mesh is achieved through
a mass-conservative L2 projection, which requires the definition of a supermesh. Numerical experiments
confirm the expected conservation properties and illustrate error analysis. We conclude the Chapter by
summarising the implications of the numerical results.

In Chapter 4 we conduct different numerical experiments related to ℎ- and A-adaptivity applied to
Poisson’s equation in two-dimensional non-convex domains. Under the SIP-dG discretisation, we derive
a novel L2 a-posteriori error estimate and use it to drive ℎ-adaptation. We also expose our method
to construct an OT mesh semi-analytically for A-adaptivity. Numerical experiments compare the two
methods in terms of accuracy and quality measure.

Chapter 5 concerns the application of neural network as an alternative approach to solve Poisson’s
equation defined in Chapter 4. We introduce two loss functions, based on the PDE residual and
the definition of an energy functional. Both losses are discretised via mean squared error and the
trapezoidal quadrature rule. We show that the choice of training points based on the OT strategy
provides approximate solutions with much higher accuracy compared to the choice of randomly sampled
collocation/quadrature points. Another numerical experiment on a squared domain corroborates the
previous result. The Poisson’s equation is solved more accurately by using the DRM with non-randomly
sampled quadrature points.

We wrap up our results and suggest open areas for future research in Chapter 6.

20

Chapter 2

Background material

Abstract

This Chapter contains a self-comprehensive review of the theoretical frameworks and the numerical
methods used in the next Chapters of the thesis. Firstly, we introduce the concept of mesh adaptivity,
which is the main theme all the works are linked to. In particular, we discuss different implementations
of one- and multi-dimensional moving mesh methods for the solution of partial differential equations
(PDEs). We provide then an overview of Finite Element (FE) methods, with the most important
theoretical results. Particular attention is paid on the discretisation of non-convex domains and on mesh
quality measures, as these topics will be dealt with to a large extent for the remainder of the thesis.
Finally, we illustrate the main components of deep learning (DL) applied for the solution of PDEs. We
describe the training procedure of neural networks and illustrate the main theoretical Theorems that
express their function approximation power.

Mesh adaptivity has been proved successful in improving the accuracy and efficiency of numerical
solutions to PDEs [PLW05; HR11]. There exist different ways the adaptation can be implemented.
We will focus mostly on A-adaptive (moving mesh) methods, which relocate a fixed number of mesh
nodes and must satisfy an equidistribution and alignment condition. The connectivity of the mesh is
unaltered and the accuracy that is obtained by these methods is much higher compared to a uniform
mesh with the same number of points. Moving mesh methods have received a huge interest in the past
decades in both theoretical research and practical applications for the solutions to PDEs in different
fields, ranging from computational fluid dynamics (CFD) [Tan05; Zha+93; QS07] to pattern formation
[Gav+11; GL13]. The general idea behind the application of A-adaptivity in general dimensions is related
to the concept of equidistribution and alignment condition. There exist several formulations of moving

21

mesh strategies to accomplish those two conditions, and they are generally independent on the specific
type of the underlying physical PDE that must be solved. The implementation of A-adaptivity may be
computationally expensive, as involves the discretisation of both the physical PDE and of a moving mesh
PDE to drive the mesh adaptation. However, this problem can be mitigated for specific choices of FE
spaces by parallelising the code. In the following section, we will examine mesh equidistribution in one
spatial dimension and detail different methods to derive numerically the equidistributed mesh. We will
then discuss mesh adaptivity in the multidimensional context, with a particular focus on the Optimal
Transport (OT) strategy.

The ℎ- and ?- versions of the Finite Element method (FEM) are different ways of adding degrees of
freedom (dofs) to the model. The ℎ-adaptive method improves the accuracy of the result by refining
the mesh in areas containing a high error. A criterion must be specified to select the elements that
are going to be refined. The chosen elements decrease their length and are split into two or more
elements of the same type. The ?-adaptive strategy improves the accuracy of the numerical solution
by using the same mesh, with the same number of elements, but increasing the dofs in some elements
based on some criteria. The main difference between the ℎ-adaptive and ?-adaptive method lies in
how these elements are treated. The ℎ-method uses many simple elements, whereas the ?-method uses
few complex elements. In general, we see different convergence behaviors for ℎ- and ?- refinements.
While ℎ-refinement leads to algebraic convergence error in the energy norm, ?-refinement leads to an
exponential convergence under specific global regularity of the solution [BG92; Bab71]. If singularities
are present in the model, both ?- and ℎ-refinement lead to algebraic convergence while the slope of curve
for ?-refinement is twice that of the ℎ-refinement [FDF11]. In this case, the higher costs of ?-elements
and the more dense system matrices might be a problem. Therefore, an ℎ?-refinement can be used to
recover the exponential rate of convergence and decrease the influence of the singularities. We will
show that ℎ-refinement is enough to ensure exponential convergence rate using a prescribed a-posteriori
estimator to address the solution of Poisson’s equation in non-convex domains [BBO99; HSS02].

2.1 Moving meshes in 1D

We start our discussion on mesh adaptivity by looking at the problem of constructing an A-adapted mesh
in 1D. We aim to find the optimal location of a fixed number of points to best approximate a known
function D(G) by means of piecewise constant/linear interpolation. The equidistribution condition is the
key to find a solution to this problem. Given an integer # > 1 and a continuous integrable monitor
function d(G) > 0, the equidistribution condition involves the derivation of a mesh � = {G8}#8=1 so that
G1 = 0 < G2 < · · · < G# = 1, which evenly distributes d over all the sub-intervals:

∫ G2

G1

d(G) dG = · · · =
∫ G#

G#−1

d(G) dG. (2.1.1)

This entails that the area under d is the same for each interval. The function d is defined as the monitor

22

function and encodes geometric information about D, such as slope or curvature. To express these
quantities accurately, we first define the space of continuously differentiable functions of order : by:

Definition 2.1.1 (Spaces of continuously differentiable functions) Let : be a nonnegative integer,
Ω ⊂ R3 an open bounded domain, and U a multi-index defined as U = (U1, . . . , U3) and with
|U | = U1 + · · · + U3 . Then

�: (Ω) = {D(G) : �UD(G) ∈ � (Ω), |U | ≤ :}

is a Banach space equipped with the norm ‖D‖
�: (Ω) =

∑
|U | ≤: sup |�UD(x) |. Here �UD := m|U|D

mG
U1
1 ...mG

U3
3

.

In 1D, there exists a unique equidistributed mesh of # points satisfying (2.1.1) for any strictly positive
monitor function.

For practical purposes, it is useful to rewrite (2.1.1) as

∫ G 9

0

d(G) dG = (9 − 1)
(# − 1)f, 9 = 1, . . . , #, (2.1.2)

where f =
∫ 1
0
d(G)3G and b 9 = (9−1)

(#−1) , 9 = 1, . . . , # compose a uniform mesh on [0, 1].

For a better mathematical understanding of the equidistribution process, we can think of � as being
generated by the differentiable coordinate transformation G = G(b) : [0, 1] → [0, 1] such that G 9 =
G(b 9), 9 = 1, . . . , # . The continuous version of (2.1.2) can be then rewritten as

∫ G (b)

0

d(G) dG = fb ∀b ∈ (0, 1). (2.1.3)

Differentiating (2.1.3) with respect to b, the output of the map G(b) satisfies

d(G) dG
db = f. (2.1.4)

This formula says that if the density function d(G) takes on high values, the derivative dG/db, and hence
the distance between two consecutive mesh points, has to be small. If D ∈ �2 (

[0, 1]
)

and we consider
the question of approximating it with a piecewise linear interpolating function, then the density d must
be a normalised scaling of its curvature in order to minimise the interpolation error, such that

d(G) =
√

1 + VD2
GG (G), (2.1.5)

23

where the constant V is tuned to control the amount of mesh points that cluster in proximity of highest
curvature regions. Another popular choice is the arc-length monitor function d(G) =

√
1 + VDG (G)2,

which does require lower regularity for D and is used if we are trying to interpolate it using a piecewise
constant function [HR11].

2.1.1 De Boor’s algorithm

The de Boor’s algorithm is a practical method of finding an equidistributed mesh. For Ω = [0, 1],
the algorithm defines initially a uniform mesh �

0 = {G0
8
}#
8=1 [Boo73]. We then approximate d as a

piecewise constant function and define %(G) =
∫ G
0
d(G) dG. Then we discretise the integral as

%(G 9) =
9∑
8=2
(G8 − G8−1)

d(G8) + d(G8−1)
2 , 9 = 2, . . . , #. (2.1.6)

The equidistribution condition (2.1.2) reads as: %(G 9) = b 9%(1), 9 = 2, . . . , # − 1.

To find the mesh �
1 = {G1

9
}#
9=1 at the next iteration, one first determines the index : such that

%(G0
:−1) < b 9%(1) < %(G

0
:). (2.1.7)

We then obtain from the linear approximation of %(G) with respect to the mesh points

b 9%(1) − %(G0
:−1) = (G

1
9 − G0

:−1)
d(G:−1) + d(G:)

2 , (2.1.8)

from which we can derive the node position at the next iteration

G=+19 = G=:−1 +
2
(
b 9%(1) − %(G=:−1)

)
d(G=

:−1) + d(G
=
:
) .

Even though de Boor’s algorithm equidistributes meshes for a piecewise constant monitor function d,
the sequence of meshes {�=} converges to �̂ = {Ĝ}#

8=1 , satisfying

(Ĝ 9 − Ĝ 9−1)
d(Ĝ 9−1) + d(Ĝ 9)

2 = (b 9 − b 9−1)f̂ℎ , 9 = 2, . . . , #, (2.1.9)

where f̂ℎ =
∑#
9=2 (Ĝ 9 − Ĝ 9−1)

d(Ĝ 9−1)+d(Ĝ 9)
2 .

24

The mesh sequence produced by the corresponding iterative method with a piecewise linear approxima-
tion to the mesh density function converges to a limit mesh satisfying (2.1.9) with max8{G=+18

−G=
8
} =−→ 0.

The mesh difference decreases at roughly the rate O(1
2), provided that the mesh density function is

sufficiently smooth and # sufficiently large [Pry89]. Subsequent theoretical results in [Xu+10] show
convergence for the above case of piecewise constant interpolation.

2.1.2 The Boundary Value Problem method

We illustrate another practical method to compute the equidistributing mesh � based on a boundary
value problem (BVP) formulation of the equidistribution principle.

Differentiating equation (2.1.4) with respect to b we obtain the second order differential equation

d
db

(
d(G) dG

db

)
= 0, (2.1.10)

subject to the boundary conditions G(0) = 0 and G(1) = 1.

Suppose that an approximation (� , d)= to (� , d) and a mesh density function d= are given at iteration
=. Discretising the BVP (2.1.10) on a fixed computational mesh �2 : {b 9 }#9=1 and using central finite
difference we obtain

2
b 9+1 − b 9−1

(
d(G=

9+1) + d(G=9)
2 ·

G=+1
9+1 − G=+19

b 9+1 − b 9
−
d(G=

9
) + d(G=

9−1)
2 ·

G=+1
9
− G=+1

9−1

b 9 − b 9−1

)
= 0, 9 = 2, . . . , # − 1,

(2.1.11)

with G1 = 0 and G# = 1. Keeping d fixed on the current iteration, the system is linear for the next
iteration and can be solved for the mesh �

=+1 until reaching convergence to � .

2.1.3 Moving Mesh PDEs

For the numerical solution of time-dependent problems, the monitor function d will depend on the time
variable, too. The coordinate transformation is chosen such that G = G(b, C) satisfies

d
db

(
d(G) dG

db

)
= 0,

G(0, C) = 0, G(1, C) = 1.
(2.1.12)

25

A semi-discretisation of eq.(2.1.12) using finite differences or finite elements gives a system of ODEs.
Moreover, the introduction of the mesh speed into the equation provides a degree of temporal smoothing
for mesh movement, which is necessary for an accurate solution of many PDEs.

A mesh equation involving mesh speed is referred to as moving mesh PDE (MMPDE). There exists
numerous ways to define the MMPDEs [HRR94a; HRR94b]. The most popular ones derives from the
gradient flow equation of an adaptation functional [HR98a; HR98b]. A popular choice of MMPDE,
named MMPDE5, reads as

mG

mC
=

1
g

m

mb

(
d
mG

mb

)
, (2.1.13)

where the parameter g controls the speed of the mesh points which move over time. We note that the
right hand side contains the equidistribution relation (2.1.10). This term drives the mesh movement
towards the equidistribution of the monitor function d. The term vanishes when the equidistribution is
satisfied, giving no mesh movement. Moreover, if d is time-independent we obtain

G(b) = lim
C→∞

G(b, C) ⇒ 1
g

m

mb

(
d
mG

mb

)
→ 0. (2.1.14)

The MMPDE5 can be discretised in space using central finite differences or a finite element method in
space and a forward/backward Euler method in time.

2.2 Higher dimensional Moving Mesh methods

In one dimension, the equidistribution condition with suitable boundary conditions is sufficient to
determine uniquely the map b → G(b) from the computational domain Ω2 to the physical domain Ω. In
higher dimensions, that condition only fixes the size, but not the orientation and the skewness of the mesh
elements. Additional constraints are required to define a unique and well-posed mesh mapping. We will
give a brief introduction to meshes constructed from variational principles (e.g. MMPDE) and optimally
transported mesh (e..g. Monge-Ampère equation) that will be used in Chapter 4 and 5. Such a moving
mesh PDE in higher dimensions can be found by minimising a functional, which characterises specific
mesh properties, such as alignment or orthogonality. A matrix monitor function is also described to
control all those properties.

The functional is formulated in terms of either the coordinate transformation x = F (ξ, C) or the inverse
transformation ξ = F −1 (x, C). The latter is used more frequently as avoids mesh tangling [Dvi91].
Hence, the general idea is to first solve the MMPDE for ξ(x) and then determine the transformed
coordinate x(ξ) by interpolation [Hag94].

26

The MMPDE for the inverse map is derived from the minimisation of the adapted functional

� [ξ] =
∫
Ω

� (M , ξ,∇xξ) dx, (2.2.1)

where � is a continuous function and M is the matrix monitor function. Supposing that there exists
a steady mesh generation strategy, which consists of minimising � [ξ] along the first-order functional
derivative, the gradient flow equation is defined by

mξ

mC
= − X�

Xξ
. (2.2.2)

In practice, it is more suitable to define different descent directions than the fastest one and to adjust the
time scale of the mesh equation. Hence, equation 2.2.2 is redefined as

mξ

mC
= −%

g

X�

Xξ
, (2.2.3)

where % is a positive-definite differential operator, defined as a bounded symmetric operator such that
the inner product 〈%x,x〉 > 0 for all x ≠ 0. The positive constant Y controls the timescale of the mesh
movement [HK15a; HR98b].

For sake of treatment, we consider the one-dimensional analogue of (2.2.3). In one dimension, De
Boor’s equidistribution principle is used to form the steady mesh generator. The idea behind this
principle is to choose the coordinate transformation by equidistributing a monitor function � (G) > 0.
The equidistribution equation can be obtained by minimising

� [b] = 1
2

∫ 1

0

1
�

(mb
mG

)2
dG, (2.2.4)

where for convenience both the computational and physical domain are the unit interval. The Euler-
Lagrange equation for (2.2.4) is

X�

Xb
= − m

mG

(1
�

mb

mG

)
= 0. (2.2.5)

Taking % =
(
�
bG

)2
�, where � is the identity matrix and bG = mb

mG
, we obtain the one-dimensional MMPDE

mb

mC
=
�2

gb2
G

m

mG

(1
�

mb

mG

)
. (2.2.6)

27

After exchanging the roles of dependent and independent variables we obtain

mG

mC
=

1
g

m

mb

(
�
mG

mb

)
, (2.2.7)

which is exactly the MMPDE5 defined in equation (2.1.13). Obviously, the above general procedure
works in any dimension, provided that a functional for steady mesh adaptation is given. However, the
extension of equidistribution to two dimensions is neither straightforward nor unique. The derivation of
the Euler-Lagrange equation for (2.2.1) is given in [HR11, Chapter 6].

Several moving mesh methods have been developed based on this method, depending on the choice of
the adaptation functional. We refer to [BHR09; HR11] for the characterisation of different functionals
and differential operators. We now describe Winslow’s method, which will be used to solve a MMPDE
coupled with a linear advection equation in Chapter 3 and a Poisson problem in Chapter 4.

2.2.1 Winslow’s variational-based diffusion method

In this section, we review Winslow’s adaptive diffusion method for generating iteratively an adapted mesh
� , tesselating an open bounded domain Ω ⊂ R3 , with respect to a given target function [Win66]. The
computational mesh �2 remains fixed, whereas the physical mesh points of �

8
move at each iteration. In

a continuous setting, the problem can be formulated as seeking the image from a computational domain
Ω2 , discretised by �2 , to the physical domain Ω, tessellated by �

8
, 8 ∈ N. With a variational method,

this mapping is determined as the minimiser of an adaptation functional [Hua15; HS03]. The MMPDE
associated with the minimiser will be solved by an Euler-Lagrange equation, that will be discretised in
space and time in the following subsections. An example of adapted mesh with Winslow’s method is
provided in figure 2-1.

Figure 2-1: Adapted mesh to D(G, H) = 100 + sin (2cG) sin (cH) using Winslow’s diffusion method.

28

1 Derivation of the MMPDE As mentioned in the previous section, a common way to solve the
MMPDE associated with x(ξ) is to solve first the MMPDE associated with the inverse coordinate
transformation ξ(x) and then apply a change of variable.

The adaptation functional � [ξ] for the inverse map ξ(x) takes the form

� [ξ] =
∫
Ω

� (∇xξ, ξ,x) dx, (2.2.8)

where the adaptation functional � accounts for the concept of equidistribution and alignment.

The former controls the size of each element of the mesh through a continuous integrable monitor
function d(x) > 0 such that

∫

d(x) dx =
f

#
∀ ∈ � , (2.2.9)

where # is the number of elements of � and f =
∫
Ω
d(x) dx. The equidistribution condition uniquely

defines the transformation in one-dimension. A further alignment condition must be imposed for higher
dimensions. This specifies a preferred direction for the edges of� to follow. We assume that the physical
domain Ω ⊂ R3 is polyhedral and that each reference element ∈ � is an equilateral 3-simplex with
unit volume. Let W1, . . . , W3 (3+1)/2 be the edges of an element , the condition requires that

|W1 |M = · · · = |W3 (3+1)/2 |M , (2.2.10)

where |W8 |M is the length of W8 in the metric M . In the case of Winslow’s adaptation method, the
metric M does not enforce any preferred direction and can be written as M = d(x)�3 , where I3 is the
identity matrix in R3×3 . Thus, the resulting adapted mesh is isotropic. Conversely, the mesh is said to be
anisotropic when stretched elements are used, as visible in Figure 2-2. More precisely, the anisotropic
mesh matrix monitor function defines the mapping from an ellipsoid into a unit sphere [Rem+00].

a Isotropic mesh. b Anisotropic mesh.

Figure 2-2: Visualisation of an isotropic and anisotropic mesh on a squared domain.

Incorporating equidistribution and alignment condition into an adaptation functional � [ξ] leads to a

29

MMPDE. In this thesis, we work with the simple and commonly used Winslow’s adaptation functional
[Win66]. The functional is given by

�F8= [ξ] =
1
2

∫
Ω

1
d

∑
8

(∇b8)) (∇b8) dx, (2.2.11)

where d is a given monitor function. This function can be chosen to depend on the solution D of the
physical PDE. A natural choice for D ∈ �1 (Ω) is given by the arc-length monitor function

d =

√
1 + 1

X
|∇D |2, (2.2.12)

where X is a user-specified intensity parameter for � [HR11; BHR09], as this places more points in
regions of high gradient. Different monitor functions are proposed §4.4.1 of Chapter 4.

Setting the first variation of (2.2.11) to zero leads to the following MMPDE [CRR15, equation 6]:

mx

mC
=

1
g1(x, C)

[∑
8, 9

�8, 9
m2x

mb8mb 9
+

∑
8

�8
mx

mb8

]
, (2.2.13)

where A is a matrix and � is a vector involving the Jacobian matrix

J =
mx

mξ
=

[
Gb G[

H b H[

]
, |� | = det(J). (2.2.14)

The balancing function 1(x, C) should be chosen so that all mesh points move with a uniform time scale,
while the user-controlled parameter g > 0 is chosen to adjust the time-scale of the mesh movement.

In the case 3 = 2, the computational domain is referenced by the coordinates ξ = (b, [), while the
physical domain is expressed in terms of the continuous coordinates x = (G, H).

The matrix A and vector � are defined as

�1,1 =
1
|� |2d (G

2
[+ H2

[), �1,2 = − 1
|� |2d (Gb G[+ H b H[) = �2,1, �2,2 =

1
|� |2d (G

2
b + H2

b),

�1 =
1
|� |2d2

[
(G2
[+ H2

[)db − (Gb G[+ H b H[)d[
]
,

�2 =
1
|� |2d2

[
−(Gb G[+ H b H[)db + (G2

b + H2
b)d[

]
,

30

By substituting these coefficients into equation (2.2.13) and re-arranging some terms we obtain the
parabolic MMPDE

mx

mC
=

1
|� |2d2

[
(G2
[+ H2

[)
m

mb

(
d
mx

mb

)
− (Gb G[+ H b H[)

m

m[

(
d
mx

mb

)
− (Gb G[+ H b H[)

m

mb

(
d
mx

m[

)
+ (G2

b + H2
b)
m

m[

(
d
mx

m[

)]
.

(2.2.15)

The discretisation in time of (2.2.15) allows us to computex(ξ, C8+1) and hence�
8+1 given the knowledge

of d(x(ξ, C8)) and �
8
. The full spatio-temporal discretisation will be discussed in detail in Chapter 3

to drive the mesh adaptation for the linear advection equation. The same approach will be employed in
Chapter 4 for Poisson’s equation in L-shaped and crack domains.

2.2.2 Optimal Transport based mesh adaptation

A different way to find a unique map in higher dimensions is to impose an Optimal Transport (OT)
constraint on the mesh. This method is a natural extension from the MMPDE methods in one dimension
because it retains much of their simplicity, such as solving a scalar equation and having an automatic
boundary mapping. It has been shown through several applications to be general enough to produce well
resolved, high quality meshes [BW06; BW09; BCW13]. We first redefine the equidistribution principle
in higher dimensions as

M (x) |� (x) | = \ :=

∫
Ω
" (x) dx∫
Ω2

dξ
, (2.2.16)

where the Jacobian of the coordinate transformationJ (x) and its determinant |� (x) | in the 2D Euclidean
space are given by

� (x) =
[
Gb G[

H b H[

]
, |� (x) | = Gb H[− G[H b . (2.2.17)

To ensure that the mesh does not tangle, the map (2.2.16) must be locally invertible, so that |� (x) | ≠ 0
for all ξ. In 2D, we can define the concept of tangling by first referring to the orientation of the mesh
elements. In particular, a triangle element defined by three ordered points 012 is positively/negatively
oriented if the interior of the element lies to the left/right of the oriented segment 01, or equivalently
12 or 20. Then, a mesh is tangled if it contains elements of opposite orientation, or equivalently if it
displays overlapping elements [DS13], as visible in Figure 2-3.

31

Figure 2-3: Tangled mesh with overlapping elements 1 and 2.

The OT condition aims at finding the map x(ξ) which minimises the distance

� [ξ] =
∫
Ω2

|x(ξ) − ξ |2 dξ. (2.2.18)

This constraint seeks a mesh that equidistributes the monitor function " (x) while staying as close to
the uniform mesh as possible. It has been proved in [Caf90] and [Bre91] that from the OT (2.2.18) and
equidistribution (2.2.16) constraint there exists a unique and regular map:

Theorem 2.1 ([Bre91] and [Caf90]) There exists a unique, optimal map x(ξ) that satisfies the equidis-
tribution principle (2.2.16). The mapping has the same regularity as the monitor function " (x). The
mapping can be written as the gradient of a unique convex potential q(ξ) up to a constant as

x(ξ) = ∇ξq(ξ), Δξq(ξ) > 0.

The Jacobian of the mapping is then

J (∇ξq) =
[
qb b qb [

q[b q[[

]
:= �2q. (2.2.19)

Replacing the value for the Jacobian of the mapping (2.2.19) for the convex mesh potential q(ξ) into the
equidistribution principle (2.2.16), it follows that q(ξ) satisfies the Monge-Ampère equation

" (x(ξ)) |�2q| = \. (2.2.20)

The Monge-Ampère equation is a highly studied equation in differential geometry and physics. It has

32

numerous applications outside of grid generation, including meteorology and oceanography [BCW13],
movement of materials around obstacles [Fel99], and optimal reflector design [CKO00]. The existence
and regularity of its solutions has been a highly studied problem for a quadratic cost function [DF11;
Fig07].

The equation (2.2.20) must be supplemented with suitable boundary conditions. Under the assumption
of a convex two-dimensional region, it has been shown that it admits a unique convex solution [Del+08;
Caf96].

2.3 The Finite Element method

Having constructed a mesh using one of the previous methods, we now consider the problem of solving a
PDE on this mesh. The Finite Element (FE) method provides high flexibility for doing this, handling both
structured and unstructured meshes, where in the first case each mesh node has the same connectivity
(not for the latter). In the next Chapters, this will be applied to discretise both MMPDEs and physical
PDEs. We will illustrate now finite elements for linear elements on triangular meshes, even though the
approach generalises for any polygonal or polyhedral domain.

2.3.1 Model Problem

Let Ω denote a bounded domain in R3 , 3 ≥ 1. We define the Hölder spaces as

Definition 2.3.1 (Hölder Spaces) Let U ∈ (0, 1]. Then �0,U (Ω) is the subset of �0 (Ω) comprising all
5 ∈ �0 (Ω) such that:

| 5 |�0,U (Ω) = sup
x,y∈Ω,x≠y

| 5 (x) − 5 (y) |
‖x − y‖U < ∞, (2.3.1)

where ‖·‖ is the Euclidean norm in Ω. For 5 ∈ �0,U (Ω), we define

‖ 5 ‖�0,U (Ω) = ‖ 5 ‖�0 (Ω) + | 5 |�0,U (Ω) .

The Laplacian operator is Δ :=
∑3
8=1

m2

mG2
8

. For illustrative purposes, we seek the solution D ∈ �2 (Ω) of
the strong form of the Poisson problem

− ΔD(x) = 5 (x), (2.3.2)

33

given the source term 5 ∈ �0,U (Ω). Throughout the thesis, we denote the boundary of Ω by mΩ or Γ.

Various boundary conditions can be applied to the PDE (2.3.2) such that the problem has a unique
solution. The most commonly used boundary conditions are

• Dirichlet boundary conditions, or essential boundary conditions, are in the form:

D = D� on mΩ. (2.3.3)

• Neumann boundary conditions, or natural boundary conditions, appear when integration by parts
is applied to the PDE. They specify the flux of the solution on the boundary mΩ, where mD

mn = ∇D ·n
and denotes the normal derivative at the boundary with normal vector = (see Figure 2-4):

:
mD

mn
= D# on mΩ. (2.3.4)

• Robin boundary conditions are a weighted combination of both Dirichlet and Neumann boundary
conditions:

UD + V mD
mn

= D' on mΩ, (2.3.5)

where U and V are two constant parameters.

Figure 2-4: Representation of a domain Ω with boundary mΩ and normal vector n.

For simplicity, we will only consider homogeneous Dirichlet boundary condition D� = 0 on mΩ for the
remainder of this Chapter.

2.3.2 Functional setting

In order to solve the weak formulation of Poisson’s equation, we need to define the functional spaces
that contains integrals of function derivatives. We start by introducing the Lebesgue space of square
integrable functions on Ω as

L2 (Ω) =
{
D :

∫
Ω

|D(x) |2 dx < +∞
}
, (2.3.6)

34

equipped with the norm ‖D‖2L2 (Ω) :=
∫
Ω
|D(x) |2 dx.

The Hilbert space H: (Ω) of order : ∈ N includes solution of PDEs in the weak form. It is defined by

H: (Ω) :=
{
D ∈ L2 (Ω) :

∑
U: |U | ≤:

‖�UD‖L2 (Ω) < ∞
}
, (2.3.7)

with norm ‖D‖2H: (Ω) :=
∑
U: |U | ≤: ‖�UD‖2L2 (Ω) . The term U is a multi-index and the derivatives �U are

understood in weak sense [Eva10, §5.2.1].

Sobolev spaces of order (:, ?), with ? ≥ 1, generalise Hilbert spaces of order : and are defined by

, :, ? (Ω) =
{
D ∈ L? (Ω) : �UD ∈ L? (Ω) for |U | ≤ :

}
,

‖D‖2
, :,? (Ω) :=

∑
U: |U | ≤:

‖�UD‖2L? (Ω) .
(2.3.8)

For ? = ∞ we have

, :,∞ (Ω) =
{
D ∈ L∞ (Ω) : max

U: |U | ≤:
ess sup |�UD(x) | < +∞

}
,

‖D‖, =,∞ (Ω) := max
U: |U | ≤:

ess sup |�UD(x) |.
(2.3.9)

For the remainder of this Chapter, we denote the Hilbert space + = H1 (Ω) as a linear function space
with inner product 〈·, ·〉+ : + ×+ → R, which takes the expression:

〈D, E〉+ =

∫
Ω

DE dx +
∫
Ω

∇D · ∇E dx = 〈D, E〉L2 (Ω) +
∫
Ω

∇D · ∇E dx, (2.3.10)

and the corresponding norm ‖·‖+ = 〈·, ·〉1/2
+

.

Before applying the finite element discretisation, we need to formulate the problem (2.3.2) in a variational
or weak form, where we combine the PDE and the boundary conditions into one expression. The
homogeneous Dirichlet boundary condition for the solution D is embedded in the function space +0 =

{D ∈ H1 (Ω) : D |mΩ = 0}.

We first multiply both sides of equation (2.3.2) by a smooth test function E ∈ +0 such that

−
∫
Ω

ΔDE dx =

∫
Ω

∇D · ∇E dx −
∫
mΩ

mD

m=
E dB ∀E ∈ +0. (2.3.11)

35

Applying integration by parts in equation (2.3.11) we obtain

∫
Ω

∇D · ∇E dx −
∫
mΩ

mD

m=
E dB =

∫
Ω

5 E dx ∀E ∈ +0, (2.3.12)

and with E = 0 on mΩ the weak formulation of the Poisson problem reads as

∫
Ω

∇D · ∇E dx =

∫
Ω

5 E dx ∀E ∈ +0. (2.3.13)

We note that in the strong formulation the solution D is required to be in �2 (Ω). The weak form reduces
the smoothness of the solution as it needs only the first weak derivatives of D.

In the abstract form, the weak formulation is defined as

Find D ∈ + such that:

�(D, E) = ; (E) ∀E ∈ +,
(2.3.14)

where �(·, ·) is a continuous bilinear form on + × + and ; (·) is a continuous linear form on + . When
solving a PDE of physical phenomena is crucial to have a well-posed problem. This means that the
problem has a solution, the solution is unique and changes continuously with the initial conditions.
There are several properties that ensure the well-posedness of the problem:

Definition 2.3.2 (Continuity [BS08, Definition 2.5.2]) A bilinear form �(·, ·) is continuous on + × +
if there exists a positive constant " such that

�(E, F) ≤ " ‖E‖+ ‖F‖+ ∀E, F ∈ +. (2.3.15)

Definition 2.3.3 (Coercivity [BS08, Definition 2.5.2]) A bilinear form is coercive in + if there exists a
positive constant U such that for any E ∈ +

�(E, E) ≥ U ‖E‖2+ ∀E ∈ +. (2.3.16)

Given D ∈ + , we recall that a continuous linear functional on + can be defined by ;D (E) = 〈D, E〉. We
show that the converse is also true.

Theorem 2.2 (Riesz Representation Theorem [BS08, Theorem 2.4.2]) Any continuous linear func-
tional ; on a Hilbert space + can be represented uniquely as

36

; (E) = 〈D, E〉,

for some D ∈ + . Furthermore, we have

‖D‖+ = ‖;‖+ ′ ,

where + ′ is the dual space of + .

These conditions ensure the existence and uniqueness of the solution of problem (2.3.13), as stated in
the Lax-Milgram Theorem:

Theorem 2.3 (Lax-Milgram [BS08, Theorem 2.7.7]) Let + be a Hilbert space, let �(·, ·) be a sym-
metric continuous, coercive bilinear form on + × + and let ; ∈ + ′ be a continuous linear functional.
Then, there exists a unique D ∈ + such that (2.3.14) satisfies:

�(D, E) = ; (E) ∀E ∈ +. (2.3.17)

2.3.3 The Ritz and Galerkin methods for elliptic problems

We showed that original Dirichlet problem has been restated in the weak formulation, which admits
a unique solution under certain conditions. The approximation of the weak problem defines the Ritz
and the Galerkin method. Both of them are presented for a conforming FE discretisation, so that the
solution space + is replaced by a finite dimensional subspace V ⊂ + , with dim(V) = # . We denote
�ℎ (·, ·) : V × V→ R an approximation of �(·, ·) and ;ℎ (·) : V→ R an approximation of ; (·).

Provided that �ℎ (·, ·) is symmetric, the Ritz method is stated as the minimisation problem:

Find Dℎ ∈ V,V ⊂ +, such that :

� (Dℎ) ≤ � (Eℎ) ∀Eℎ ∈ V,

with � (Eℎ) =
1
2�ℎ (Eℎ , Eℎ) − ; (Eℎ).

(2.3.18)

The Galerkin method uses a similar approach as for Ritz method, except that the abstract problem does
not require the symmetry of the bilinear form. Therefore we might not endow V with a norm defined
from the scalar product based on �ℎ (·, ·). The approximate weak Galerkin method is stated as

37

Find Dℎ ∈ V,V ⊂ +, such that :

�ℎ (Dℎ , Eℎ) = ;ℎ (Eℎ) ∀Eℎ ∈ V,
(2.3.19)

with �ℎ (·, ·) being a coercive continuous bilinear form and ;ℎ (·) being a continuous linear form.

In particular, the approximation of the Poisson problem in (2.3.13) reads as

Find Dℎ ∈ V, 5 ∈ L2 (Ω), such that :∫
Ω

∇Dℎ · ∇Eℎ dx =

∫
Ω

5 Eℎ dx ∀Eℎ ∈ V. (2.3.20)

The approximation space is defined in terms of piecewise polynomials of total degree ? ≥ 0. We denote
the polynomial space for each element of the mesh � as P? (). Finally, the approximation space is
written as V =

{
E ∈ �0 (Ω) ∩+0 : E | ∈ P? (), ∀ ∈ �

}
.

The two proposed methods will be employed to derive a loss function for a neural network to solve
Poisson’s equation in Chapter 5.

2.3.4 Finite Element spaces

In the previous section we defined the Ritz and Galerkin method for the approximation of the solution of
the PDE. The following results will refer to the Galerkin discretisation in (2.3.19). Provided this abstract
framework, which allows us to seek approximate solutions to PDEs, we need to chose the approximate
space V and construct a basis B = (q1, . . . , q#) of V on which the discrete solution is decomposed:

Dℎ =

#∑
9=1
D 9q 9 , (2.3.21)

where # = dim(V), {D 9 } are called global degrees of freedom and {q 9 } are named global shape
functions. The approximate space V is constructed with an admissible mesh � from a tessellation of
the domain Ω. We can now state the following Lemma that relates the approximate solution Dℎ and the
solution D of problem (2.3.19):

Lemma 2.4 (Galerkin orthogonality [BS08, Lemma 2.17]) Let + be a Hilbert space and V a finite
dimensional subspace of + . We denote by D ∈ + , Dℎ ∈ V the solution to problem (2.3.14) and to
approximate problem (2.3.19), respectively. We have then

38

�ℎ (D − Dℎ , Eℎ) = 0 ∀Eℎ ∈ V. (2.3.22)

The relation (2.3.22) indicates that the error D − Dℎ is orthogonal to every element of the approximating
space V in the inner product induced by �ℎ (·, ·).

Let D be the solution to the variational problem (2.3.14) and Dℎ be the solution to the approximation
problem (2.3.19). We now want to estimate the error ‖D − Dℎ ‖+ . We do so by the following Lemma:

Lemma 2.5 (Céa’s Lemma [BS08, Theorem 2.8.1]) Given the assumption in Lemma 2.4 we have

‖D − Dℎ ‖+ ≤
"

U
‖D − Eℎ ‖+ ∀Eℎ ∈ V, (2.3.23)

with " > 0 the continuity constant and U > 0 the coercivity constant.

Moreover, the bound (2.3.23) implies that

‖D − Dℎ ‖+ ≤
"

U
inf
Eℎ ∈Vℎ

‖D − Eℎ ‖+ ∀Eℎ ∈ V. (2.3.24)

If we work in the energy norm ‖·‖� = �ℎ (·, ·)1/2, we obtain the following result:

Corollary 2.6 (Estimate in the energy norm) Given the assumptions in Theorem 2.5, the following
inequality holds:

‖D − Dℎ ‖� ≤ ‖D − Eℎ ‖� ∀Eℎ ∈ V. (2.3.25)

Thus the FEM computes the best approximation of D in the energy norm. We can use (2.3.23) to obtain
a rate of convergence and estimate the error D − Dℎ . We do this by choosing Eℎ ∈ V so that the right
hand side of (2.3.23) can be easily computed and is a good estimate of the error.

The discontinuous Galerkin Finite Element method

Discontinuous Galerkin (dG) methods are locally conservative, stable, and high-order accurate methods
that can easily handle complex geometries, unstructured meshes, and approximations that have polyno-
mials of different degrees in different elements. These properties, which render them ideal to be used
with ℎ?-adaptive strategies, have brought these methods into the field of computational fluid dynamics,
second-order elliptic problems, elasticity, and Korteweg-deVries equations [Arn+02; Arn+00].

The definition of the dG method needs quantities that link the values of the approximate solution Dℎ
between different elements of the mesh � . All degrees of freedom of a discontinuous finite element

39

are internal to the element, which means that no global continuity is imposed by these elements. This is
illustrated in Figure 2-5.

Figure 2-5: Visualisation of discontinuous quadratic Lagrange elements in 2D [LW10].

We will define more precisely the quantities used for the dG discretisation in Chapter 3 and Chapter 4.

2.3.5 Mesh and Quality measure

We defined in §2.1 and §2.2 different methods to compute a mesh in 1D and 2D. In this section, we
provide other definitions in order to characterise the regularity and the level of adaptivity of a mesh.

Mesh regularity is a geometric property indicating how close mesh elements are to being equilateral.
An example of such metric is the shape regularity, that will be defined based on the mesh size and
in-diameter of the mesh elements.

Mesh adaptivity characterises how well a mesh adapts to the solution of a PDE and is thus a property
related to the physical problem being solved. The level of adaptivity can be quantified via equidistribution
and alignment, that is via a given matrix monitor function " (x) in the context of A-adaptivity, as showed
in §2.2.

Definition 2.3.4 (Conforming mesh in 2D) Let Ω ⊂ R2 be a 2D polygonal domain, we define � a
conforming triangulation as a finite family { 8}8∈N of cells satisfying:

1. ∈ � implies is an open triangle.

2. For any , � ∈ � we have that ∩ � is either empty, a vertex, or a common edge of both and �.

3. ∪ ∈� = Ω.

For each ∈ � we introduce the cell diameter

ℎ = 380<() := BD?x,y∈ 3 (x, y), (2.3.26)

where 3 (x, y) is the (Euclidean) distance between x and y.

40

a Triangulation with hanging
node.

b Conforming triangulation.

Figure 2-6: Visualisation of a non-conforming triangulation with hanging node and a conforming
triangulation.

The in-diameter of is

d := sup{diam(�) : � is an open ball contained in }. (2.3.27)

Figure 2-7: Visualisation of the diameter and in-diameter for a triangular element .

We will also assume in Chapter 4 that all the meshes generated by ℎ-refinement are shape regular:

Definition 2.3.5 (Shape regularity) Let G = {�
8
}8 ∈N be a family of meshes, then G is characterised

by the shape regularity `(�) if

`(�) := min
 ∈�

8

ℎ

d
> 0. (2.3.28)

Additionally, we define the mesh size by

Definition 2.3.6 (Mesh size)
ℎ� := max

 ∈�
(380<()). (2.3.29)

We denote the maximum and minimum mesh width of � by

ℎ = max
 ∈�

ℎ , ℎ = min
 ∈�

ℎ .

41

Figure 2-8: The mesh is shape regular if the minimum angle U among all elements is uniformly bounded
from below by `(�).

Finally, we define the level of mesh adaptivity in 2D in terms of skewness. This quantity indicates how
far mesh elements are from being equilateral. For triangular elements, the skewness can be computed as
the ratio between the minimum and maximum vertex angle. A more general indicator employs the local
map & : ̂ → , with ̂ ∈ �2 and ∈ � .

In order to visually interpret this quantity, we follow the steps in [BRW15]. Let J be the Jacobian of
the map x : Ω2 → Ω as defined in equation and ̂ be a circular set in Ω2 centered at ξ0 and

 ̂ = {ξ : (ξ − ξ0)) (ξ − ξ0) = Â2},

where the radius Â ∝ (|Ω2 |/#)1/2. The linearisation about ξ0 is given by

x(ξ) = x(ξ0) + J (ξ0) (ξ − ξ0) + O(|ξ − ξ0 |2).

The corresponding image set = x(̂) in Ω is approximately given by

 =

[
x : (x − x(ξ0))) J−) J−1 (x − x(ξ0)) = Â2

]
.

Let the singular value decomposition (SVD) of J be

J = *Σ/) ,

where * = [u1,u2] (the left singular vectors), + = [v1, v2] (the right singular vectors) are orthogonal
matrices, and _1, _2 are the positive singular values of the matrix Σ = diag(_1, _2). It follows that

 =

[
x : (x − x(ξ0))) *Σ−2*) (x − x(ξ0)) = Â2

]
,

42

so that the orientation of is determined by the left singular vectors of *, and size and shape by the
singular values f1 and f2. We quantify the size, shape and orientation of an element using the
singular values and left singular vectors of J and the eigenvalues and eigenvectors of the metric tensor
M = J−ZJ−1 = *Σ−2*) . The eigenvectors ofM are D1 and D2 and the eigenvalues f1, f2.

Finally, the skewness of an element is defined as

Definition 2.3.7 (Skewness)

& := CA (JTJ)
2 det(JTJ)1/2

=
1
2

(
_1
_2
+ _2
_1

)
. (2.3.30)

Figure 2-9: The two-dimensional mapping of an element ̂ (a circle) in Ω2 , to a physical mesh element
 (an ellipse) in Ω, under x(ξ). The skewness of the transformed element is evident from the degree of
compression and stretching of the ellipse [BRW15].

We define the global quality measure (global skewness) as

& = max
 ∈�

& . (2.3.31)

We will compute the skewness of the Optimal Transport mesh elements in Chapter 4, and show that it
is independent on their location and the dimension of the mesh.

2.3.6 Error analysis for FEM

The goal of this section is to bound the error 4ℎ := D − Dℎ arising from the Finite Element discretisation
in a Sobolev norm and relate it to the mesh properties defined in the previous section. We will define
two categories of error estimators based on the knowledge of the true solution D of a prescribed problem.
These are named a-priori and a-posteriori error estimators.

43

1 A-priori error estimator A-priori estimators provide useful information on the asymptotic be-
haviour of the approximate solution. The most important property for any conforming finite element
formulation, that is with V ⊂ + , is the inequality (2.3.24) in Céa’s Lemma:

‖D − Dℎ ‖+ ≤
"

U
‖D − Eℎ ‖+ ∀Eℎ ∈ V,

which gives a control on the discretisation error using the norm in the solution space + . Since Eℎ can
be chosen as an interpolant, Céa’s Lemma asserts that the error of the finite element solution measured
in the + norm is of the same order as the interpolation error. Choosing + ⊂ H1 (Ω) and employing
interpolation estimates, it turns out that the error measured in the H1 norm is

‖D − Dℎ ‖H1 (Ω) ≤ 2ℎ
?

�
‖D‖H?+1 (Ω) , (2.3.32)

where ? ≥ 1, 2 is a stability and interpolation constant which does not depend on the interpolation space
and ℎ� is the mesh size in Def.2.3.6. We also assume that the solution D ∈ H?+1 (Ω).

Furthermore, we have for the error in the L2 norm with ? ≥ 1

‖D − Dℎ ‖L2 (Ω) ≤ 2ℎ
?+1
�
‖D‖H?+1 (Ω) , (2.3.33)

which means that the convergence rate of the solution is O(ℎ?
�
) and O(ℎ?+1

�
) in the H1 and L2 norm,

respectively [BS08]. The dG method has the same order of convergence in the L2 norm [Arn+00].

2 A-posteriori error estimator The purpose of an a-posteriori error estimator is to provide bounds
for the solution error in a specified norm. Ideally, an effective error estimator should be close to the
actual (unknown) error and be asymptotically correct, in the sense that with increasing mesh resolution
the convergence rate should be the same as the actual error [GB05].

Explicit error estimators involve direct computation of the interior element residuals and the jumps at
the element boundaries to find an estimate for the error in the energy norm.

Let D and Dℎ be the solution of (2.3.13) and (2.3.20), we start with the error representation

�ℎ (4ℎ , E) = ;ℎ (E) −�ℎ (Dℎ , E), (2.3.34)

which holds true for arbitrary test functions E ∈ + . If the domain integral is split into the contribution
for each element ∈ � , then equation (2.3.34) can be rewritten as

44

�ℎ (4ℎ , E) =
∑
 ∈�

(∫

5 E dx −
∫

∇Dℎ · ∇E dx
)
∀E ∈ +. (2.3.35)

Applying integration by parts to the last term of equation (2.3.35) leads to

�ℎ (4ℎ , E) =
∑
 ∈�

(∫

'E dx +
∑
4∈Γ

∫
4

�E dx
)
∀E ∈ +, (2.3.36)

where ' is the interior element residual and defined as ' := (5 + ΔDℎ) | . The jump term � of the
gradient across element edge 4 is

� :=

n4 · ∇Dℎ + n′4 · ∇D′ℎ if 4 ⊂ Γ�

0 if 4 ⊂ Γ�

, (2.3.37)

where Γ� is the set of internal edges. In (2.3.37) the edge 4 is shared between and ′, such that
4 = ∩ ′.

Using the Galerkin orthogonality condition we can introduce a piecewise linear interpolant ΠℎE in
equation (2.3.36). Using interpolation inequalities with constant 2� [AO97] and the Cauchy-Schwarz
inequality we finally obtain the error bound

‖4ℎ ‖2� ≤ 2�
(∑
 ∈�

ℎ2
 ‖R‖

2
L2 () +

∑
4∈Γ

ℎ ‖�‖2L2 (4)

)
(2.3.38)

In practice, the term 2.3.38 is regrouped so as to define the local a-posteriori estimate:

‖4ℎ ‖2� ≤
∑
 ∈�

(
21ℎ

2
 ‖R‖

2
L2 () + 22ℎ ‖�‖2L2 (m)

)
:=

∑
 ∈�

[2
 . (2.3.39)

The local a-posteriori estimate [2

can prove very useful for ℎ-adaptive schemes, as it can detect cells that
need refining. This process ultimately leads to the equidistribution of the local a-posteriori estimator.
We will apply such estimate in L2 and L∞ norm in Chapter 4 for the Poisson problem. We will also link
[to the equidistribuion condition in the context of A-adaptivity.

2.3.7 Non-convex domains

Solutions of elliptic boundary value problems defined in domainsΩwith re-entrant corners have singular
behaviour at these corners. This occurs even when data of the underlying problem are very smooth. Such

45

singular behaviour affects the accuracy of the Finite Element method throughout the whole domain. For
example, it is well known that the solution D of Poisson’s equation defined on a polygonal domain with
re-entrant corners has a singular function representation.

Given a finite element approximation of D, it has been proved that D ∈ H: (Ω) for : < 1 + c/l, where l
is the maximum of the re-entrant angles [Gri11]. This lack of regularity affects the accuracy of the finite
element approximation. In particular, standard dG linear finite element methods on a quasi-uniform
triangulation yield O(ℎ (c/l)−Y

�
) and O(ℎ (2c/l)−Y

�
) accuracy for any Y > 0 in the H1 and L2 norm,

respectively. Adapted methods have been developed in order to retain the optimal convergence orders.
Local mesh grading was introduced by [OR68; BKP79]. These papers treat only the case of piecewise
linear finite elements. Other methods include the singular function method (augmenting technique)
described in [ZSG02; Str08].

In Chapter 4, we will address Poisson’s equation in non-convex domains using the Symmetric Interior
Penalty dG (SIP-dG) finite element method. We will define weighted Sobolev spaces in order to ensure
the existence and uniqueness of the solution. We will show numerically that the optimal convergence
rate is recovered when the SIP-dG method is combined with ℎ- and A- adaptive strategies. The resulting
meshes are shown in figure 2-10.

a Optimal Transport strategy. b ℎ-refinement method.

Figure 2-10: Solution of Poisson’s equation on a L-shaped domain with homogeneous Dirichlet boundary
conditions using OT based A-adaptivity and ℎ-refinement.

Chapter 5 will deal with the same problem but by using the deep learning framework. In particular, we
will compare the accuracy of the solution of the neural network output using randomly sampled training
points and the OT-based mesh vertices derived in §4.4.5 of Chapter 4.

46

2.4 Background on neural networks

Here we give a simple introduction of the main concepts behind deep learning and PINNs. In general
context, the training procedure of a deep neural network (DNN) consists of three components:

• Neural network structure.

• Loss function.

• Optimisation method for training the DNN.

At the end of the training process, the DNN will construct an approximated solution whose regularity
depends on the network structure. In the next section, we will describe all the network components in
more detail.

2.4.1 Network structure

The architecture of an artificial neural network is based on the concept of the biological neuron. An
important role is played by the flow of information that is passed through interconnected neurons arranged
in layers. A DNN can then be regarded as a concatenated structure of layers as visualized in Figure 2-11.
This can be also referred to as a feedforward neural network:

Definition 2.4.1 (feedforward neural network (FNN)) Let !, 3, =1, . . . , =! ∈ N and =0 := 3. A
!-layer feedforward neural network DΘ : R=0 → R=! with affine linear maps �; : R=;−1 → R=; ,
x → �; (x) = W;x + b; with W; ∈ R=;×=;−1 , b; ∈ R=; and a bounded continuous activation functions
f; : R→ R, ; = 1, . . . , ! is defined as

• Input Layer: D0
Θ
(x) = x ∈ R3 .

• Hidden Layers: D;
Θ
(x) = f;

(
W;D

;−1
Θ
(x) + b;

)
∈ R=; for 1 ≤ ; ≤ ! − 1.

• Output Layer: DΘ (x) = W!D
!−1
Θ
(x) + b! ∈ R=! ,

where the activation functions are used component-wise. Here, 3 is the dimension of the input layer, !
denotes the number of layers, also called depth of DΘ, =1, . . . , =!−1 denote the number of neurons for
each of the ! − 1 hidden layers, also called width of the respective layer. If =1 = · · · = =!−1, then =8 is
called width of DΘ for 8 ∈ {1, . . . , ! − 1}. The dimension of the output layer is =! . The matrices W;

contain the network weights and the vectors b; contain the network biases. We encode them into one
parameter Θ; ∈ R=;×=;−1+=; for ; ∈ {1, . . . , !}. Finally, all the parameters are encoded into the vector
Θ := (Θ1, . . . ,Θ!) ∈ R2 , with 2 =

∑!
;=1 =; (=;−1 +1), by which we specify the dependence of the network

with the notation DΘ (x).

47

Figure 2-11: FNN with two hidden layers and x = (G, C)) ∈ R2 as input.

The graph of a FNN is acyclic and has only edges which follow the direction from input to output. The
activation function determines whether a neuron is activated or inhibited. Moreover, it is responsible
for the nonlinear transformation of the input which prevents the model from being a linear regression
model. Commonly used activation functions are displayed in Figure 2-12.

Each activation function has its advantages and disadvantages [Nwa+18]. We will use the hyperbolic
tangent function: C0=ℎ(G) = B8=ℎ (G)

2>BℎG
in Chapter 5 because it is infinitely continuously differentiable, so

that the approximate solution is also sufficiently smooth.

Figure 2-12: Examples of activation functions used in deep learning.

2.4.2 Training and Loss

The training of the network parameters corresponds to minimising a specified loss function. For a given
inputx the loss function describes a measurement of the error between the network output DΘ (x) and the
target function D(x). There exist several loss functions that are used for machine learning applications
according to which task they have to solve. The mean squared error ("(�) loss is one of the most
common loss functions:

Definition 2.4.2 (Mean squared error (SYK) Loss [GBC16]) Let DΘ : R3 → R=! , with 3, =! ∈ N,
be a FNN as in Def.2.4.1. Let Ω ⊂ R3 be a bounded domain and D : Ω → R=! be the target function
that the FNN aims to approximate. Then, for a given set {x8}#A8=1 of #A training points the mean squared

48

error loss function L"(� : R2 → R is defined as

L"(� (Θ) =
1
#A

#A∑
8=1

(
DΘ (x8) − D(x8)

)2
.

Due to the squaring, larger errors are penalised more heavily than smaller ones. In addition to that,
quadratic functions are preferred over other mappings, (e.g. | · |), since they are differentiable in each
point.

The differentiability of the loss function follows from the differentiability of the activation function and
the fact that a quadratic function is differentiable as well. The training process of the network under the
MSE leads to the network DΘ∗ , which can be viewed as the result of the optimisation problem

DΘ∗ = arg min
DΘ

L"(� (Θ). (2.4.1)

The minimisation can be done using a gradient descent approach. The method of steepest descent
described in Algorithm 1 is the simplest gradient method for optimisation [Yua06]. However, for non-
convex functions it is possible that the algorithm fails to converge towards the global minimum. The main
risk is that the algorithm converges more slowly and possibly towards a local minimum, independently
on the choice of the learning rate. Therefore, this method is rarely used in practice.

Algorithm 1 Steepest Descent
Require: Objective function L(Θ) and initialisation of Θ0
Ensure: Θ:

1: Initialise iteration step : := 0
2: Compute stepsize U: > 0 via line search
3: while Θ: not converged do:
4: : ← : + 1
5: Compute gradient 6: = ∇ΘL(Θ:−1)
6: Compute new parameters Θ: = Θ:−1 − U:−16:
7: Update stepsize U: ← U:−1
8: end while

In this thesis, we consider a stochastic gradient descent (SGD) approach. Unlike gradient descent, a
SGD method only takes small subsets of the training dataset, so-called mini-batches, in each optimisation
step. This yields only approximations of the actual gradients leading to a noisy gradient in total. Due
to this noise, the method is capable of escaping possible local minima. If the algorithm reaches a local
minimum, it is likely to leave it again due to the momentum and the algorithm continues optimizing.

The SGD method we are dealing with is called Adam (Adaptive Moment estimation) [KB14] and is
described in Algorithm 2. This only requires first-order gradients and the magnitudes of parameter
updates are invariant to rescaling of the gradient. Adam tackles the SGD problems by using estimations

49

of first and second moments of the gradient to adapt the learning rate for the network parameters in each
update.

Algorithm 2 Adam
Require: Stepsize U, decay rates V1, V2 ∈ [0, 1)
Require: Initialisation Θ0 and objective function L(Θ)
Ensure: Θ:

1: Initialise iteration step : := 0
2: Initialise 1st moment vector <0 := 0
3: Initialise 2nd moment vector E0 := 0
4: while Θ: not converged do:
5: : ← : + 1
6: Compute gradient 6: = ∇ΘL(Θ:−1)
7: Update 1st moment estimate <: ← V1<:−1 + (1 − V1)6:
8: Update 2nd moment estimate E: ← V2E:−1 + (1 − V2)62

:

9: Compute corrected 1st moment estimate <̂: = <:
1−V1

10: Compute corrected 2nd moment estimate Ê: = E:
1−V2

11: Compute new parameters Θ: = Θ:−1 − U <̂:√
Ê:+Y

12: end while

In Algorithm (2) 62
:

denotes the element-wise square. The authors recommendU = 0.001, V1 = 0.9, V2 =

0.999 and Y = 10−8 as default parameters [KB14].

In deep learning, the gradient∇L(Θ) is obtained through back-propagation, which computes the gradient
by using the chain rule while propagating backwards through the network [Bis95, pp.140-148]. This
technique is implemented efficiently in several machine learning frameworks, such as TensorFlow and
PyTorch [Pas+19] via automatic differentiation (AD).

2.4.3 Automatic-Differentiation

Automatic Differentiation (AD) is a set of techniques that allow to compute derivatives efficiently. There
exists two types of automatic-differentiation, depending on the ratio between input nodes and output
nodes. The forward mode is more suitable when the number of input nodes is smaller than the output
nodes. On the contrary, the reverse mode is more convenient to use for a large number of input variables
[GW08; Bay+18].

Forward mode

AD in forward accumulation mode requires only operations on a computational graph, which relates
the primal variable G to the final output D(G). The derivative D′(G) is computed by associating each
intermediate variable E8 with the derivative ¤E8 = mE8

mG 9
, for 9 = 1, . . . , 3. Applying the chain rule to each

elementary operation, we generate the corresponding primal trace, given on the left hand side in Figure
2-13. Evaluating the primals E8 with their corresponding derivatives ¤E8 gives the required derivative in

50

the final variable D(G). The method can be naturally extended to multivariable functions to compute the
Jacobian [Bay+18].

Figure 2-13: Forward mode with D(G1, G2) = ln(G1) + G1G2 − sin (G2) evaluated at (G1, G2) = (2, 5).
The original forward evaluation of the primal variables on the left is augmented by the derivatives ¤E8
with respect to G1 on the right [Bay+18].

Reverse mode

AD in reverse mode corresponds to a generalized back-propagation algorithm, as it propagates deriva-
tives from a given output. This is achieved by complementing each intermediate variable E8 in the
computational graph with the adjoint E8 = mH

mE8
.

The derivatives are computed in the second phase of a two-phase process. In the first phase, the
forward mode is run once, populating intermediate variables E8 and recording the dependencies in the
computational graph. In the second phase, derivatives are calculated by propagating adjoints E8 in
reverse, from the outputs to the inputs. The computations are illustrated in Figure 2-14

2.4.4 Approximation theorems

In the mathematical theory of artificial neural networks, universal approximation Theorems are results
that establish the accuracy of generated class of functions within a given function space of interest.
These results are important to quantify the accuracy of the solution of a PDE from a PINN under specific
configurations. The approximation capabilities of the feedforward architecture are usually confined to
space of continuous functions between two Euclidean spaces.

In 1989, Hornik, Stinchombe, and White published a proof showing that for any continuous function
D on a compact set ⊂ R3 , there exists a feedforward neural network, having only a single hidden
layer, which uniformly approximates D to within an arbitrary Y > 0 on [HSW89]. Before stating the

51

Figure 2-14: Reverse mode with D(G1, G2) = ln(G1) +G1G2−sin (G2) evaluated at (G1, G2) = (2, 5). After
the forward evaluation of the primal variables, the adjoint operations are evaluated backwards starting
from E5 = H = 1 [Bay+18]. Compared to the Forward mode, here we obtain the derivatives with respect
to both G1 and G2.

Theorem, we recall that the uniform norm of a function D : → R is defined as

‖D‖sup = sup{|D(x) | : x ∈ }. (2.4.2)

In addition, given �3 := [0, 1]3 , we define " (�3) the space of finite, signed regular Borel measures on
�3 . A measure ` is regular if and only if the following conditions are satisfied:

1. `() < ∞ for all compact sets .

2. `(�) = inf{`(*) : � ⊆ *, * open}.

3. `(�) = sup{`() : ⊆ �, compact}.

Regular measures exhibit properties that one would expect for compact sets. In fact, the measure of a
compact set has finite measure when the measure being applied is regular. This makes sense as compact
sets are closed and bounded in a metric space. Similarly, if we are measuring a set � and we take
the lower bound on the measure of open sets containing � , we obtain the measure of � . The same
holds when we approximate � by compact sets from below. Another reason for restricting the Theorem
to regular measures is that this is a prerequisite for invoking the Riesz representation Theorem in the
original proof. Finally, we define a discriminatory activation function by

Definition 2.4.3 (Discriminatory activation function [ZHS09]) An activation function f(·) is called
discriminatory for ` ∈ " (�3) if

∫
�3

f
(
w)
8 x + 18

)
d`(x) = 0 (2.4.3)

for all weights w8 ∈ R3 , biases 18 ∈ R implies that ` ≡ 0.

52

In some sense, a discriminatory f(·) entails a finite measure when it acts on linear transformations of
input. That is, the definition tells us that for nonzero `, there exist w8 , 18 such that equation (2.4.3) does
not hold. In other words, the discriminative property of f(·) prevents it from losing the information
conveyed from one layer to the next one. The universal approximation Theorem is stated as

Theorem 2.7 (Universal approximation Theorem [HSW89]) Let D be a continuous function with do-
main in a compact set ⊂ R3 . Let f be a continuous, discriminatory activation function. Then for any
Y > 0 there exists a neural network DΘ such that

‖D(x) − DΘ (x)‖sup < Y, (2.4.4)

where

DΘ (x) =
#∑
8=1

U8f(w8x + 18), U8 ∈ R.

The universal approximation Theorem for arbitrary width and bounded depth has been proved in [Yar17].
We consider the Sobolev space,=,∞ ([0, 1]3) as in eq.(2.3.9) and denote the unit ball in,=,∞ ([0, 1]3)
by

�=,3 = {D ∈ ,=,∞ ([0, 1]3) : ‖D‖, =,∞ ([0,1]3) ≤ 1}.

The following Theorem holds for a network architecture with unspecified weights:

Theorem 2.8 (Approximation Theorem[Yar17, Theorem 1]) For any 3, = and Y ∈ (0, 1), there is a
ReLU network architecture that

1. is capable of expressing any function from �3,= with error Y.

2. has the depth at most 2(;=(1/Y) + 1) and at most 2Y−3/= (;=(1/Y) + 1) weights and computation
units, with some constant 2 := 2(3, =).

It follows from the Bramble-Hilbert lemma that localised Taylor polynomials can approximate a function
5 ∈ ,=,∞ ([0, 1]3). For functions 5 ∈ �= ([0, 1]3), this approximation follows from Taylor’s theorem.

An extension of the previous result for approximating function D in L? , ? ∈ (0,∞), that does not require
logarithmic growth of network layers, has been derived in [PV18].

Given the class of smooth functions

FV,3,� :=
{
D ∈ �= ([−1/2, 1/2]) : ‖D‖�0,V ([−1/2,1/2]) ≤ �

}
,

53

with ‖D‖�0,V ([0,1]) = supG,H∈[0,1],G≠H
{
|D (G)−D (H) |
|G−H |V < ∞

}
, we can state the Theorem:

Theorem 2.9 (Generalised approximation Theorem [PV18, Theorem 3.1]) For any 3 ∈ N, V, �, ? >
0 there exists constants B = B(3, V, �, ?) and 2 = 2(3, V, �) > 0 so that for any function 5 ∈ FV,3,� and
any Y ∈ (0, 1/2), there is a ReLU neural network DΘ with at most (2 + dlog2 Ve)(11 + V/3) layers, and
at most 2Y−3/V nonzero weights satisfying

‖DΘ − D‖L? ([−1/2,1/2]3) < Y, ‖DΘ‖sup < d�e .

Theorems 2.7–2.9 refer only to the error of the approximation function with respect to the network
parameters, but do not provide any convergence rate with respect to the number of training points or
other scaling quantities. This is a key difference from the FEM, as we have showed that an order of
convergence can be defined based on the mesh size in §5.3.3. We will evidence that the neural network
is unable to scale the accuracy of the approximate solution as the FEM does in Chapter 5.

The Authors in [OPS20] address ReLU DNNs approximation rates for analytic functions in � = (0, 1)
with possibly a point singularity. Based on their results, DNNs can emulate high-order ℎ-FEM on general
partitions of a bounded interval, as well as ?- and ℎ?-FEM. From an approximation theoretical point of
view, RELU DNNs perform as well as the best FE approximation for a number of function classes, which
are solutions of elliptic PDEs. Therefore, the huge interest arisen by DL methodologies is not really
justified and should be contextualized in terms of other well established mathematical frameworks.

Chapter 5 will treat the training of a neural network to solve Poisson’s equation on the L-shaped domain,
as done in Chapter 4. We will show that the location of the training points impacts dramatically on
the accuracy of the approximate solution. If they are chosen as vertices of the OT mesh derived in
Chapter 4, the result will be much more accurate that a random choice of quadrature points. We will
then compare the convergence rate obtained by the network output with that one retrieved by the SIP-dG
method defined in Chapter 4. We will conclude the Chapter by repeating the same experiment on a
simpler Poisson problem posed over a squared domain.

54

Chapter 3

An adaptive conservative moving mesh
method

Abstract

We present an adaptive moving mesh strategy endowed with a mass conservation property for the
numerical solution of the two-dimensional linear advection equation in which the solution exhibits
localised near singular behaviour. We achieve this through the solution of an auxiliary moving mesh
problem driven by a gradient based monitor function. The method we propose is of staggered type, hence
requires an appropriate data transfer operator over different meshes. We make use of an L2 projection
operator that requires the construction of a supermesh for evaluation. We show by extensive numerical
experiments that the method is robust and is able to approximate challenging numerical features.

3.1 Introduction

Partial differential equations (PDEs) arise from a variety of areas [MG90], including meteorological,
such as the semi-geostrophic equations [RN94], oceanographical, such as the Korteweg-de Vries (KdV)
and optical, such as the nonlinear Schrödinger equations [MGO05]. These equations are examples of
conservation laws, which often develop very localised transient features, such as shocks and moving
fronts. These features are difficult to approximate using standard numerical schemes posed over uniform
meshes. One potential solution to this, well used in finite element techniques, is to employ different
refinement strategies to increase the spatial accuracy in the region of the propagating shock. These include

55

local mesh refinement [PLW05], local polynomial enrichment [AS98] and moving the underlying mesh
nodes [Eis87], ℎ-, ?- and A-refinement, respectively. One of the common features of these refinement
strategies is that they all alter the number or the location of the degrees of freedom in the mesh.

Moving mesh methods are, by now, well studied in the numerical solution of PDEs [BHR09; BHR96].
As discussed in the introduction of Chapter 2, the main advantage of these methods is that they do not
alter the topology of the initial mesh, preserving the number of nodes, connectivity and data structures.
This allows for an efficient implementation and coupling to existing computational fluid dynamics (CFD)
solvers [Her+13]. The main ingredients, in addition to the underlying PDE discretisation, are the mesh
equations and the monitor function, which controls the relative density of the mesh points in the physical
domain and is commonly based on the gradient or curvature of the field [BHR09; HR11].

Fundamentally, moving mesh strategies can be split into two categories [Tan05]:

• Interpolation free (quasi-Lagrange) methods - The mesh equation and PDE are approximated
simultaneously. This is computationally more complex as the position of the nodes of the mesh
are additional degrees of freedom in the system. There is, however, no requirement to transfer
data from an old mesh to the new one.

• Interpolation based (rezoning) methods - The mesh equation and PDE are staggered, the PDE
is solved first and mesh equation subsequently based on that solution. Computationally, this is
cheaper than interpolation free methods. However a data transfer operator is required to interpret
the discrete solution over the new mesh.

In this Chapter, we are concerned with interpolation based methods and pay particular attention to
properties of the data transfer operator, a necessity allowing the evolution of the discrete solution as the
underlying mesh changes. Its definition does introduce various challenges as it is a common source of
diffusion. The long term dynamics of solutions can be destroyed by the addition of artificial numerical
diffusion. The reason for inclusion of the proposed transfer operator is the desirable stability properties
this endows on the discrete scheme.

Our focus in this Chapter is illustrating how the data transfer step can be done in a conservative fashion
through a local Galerkin projection, removing one of the inherent disadvantages of interpolation based
methods over those that are interpolation free [FM10]. More specifically, the conservative property is
the total mass of the scalar field on which this procedure is applied. This requires the construction of a
supermesh, a conforming triangulation obtained by the intersection between the old and the new mesh.

The novelty of this approach consists of coupling the conservative Galerkin projection with Winslow’s
variable diffusion method for mesh movement, described in §2.2.1 of Chapter 2. To showcase the
properties of our approach, we employ the adaptive strategy with a well used upwinding discontinuous
Galerkin (dG) discretisation of the linear advection equation. We use this equation, with initial conditions
from smooth to singular, as our test problem as it is arguably the most challenging conservation law to

56

approximate despite its linearity. The reason for this is that any numerical errors are propagated in time,
there is no chance to rectify this through entropic loss as is common in other (systems of) conservation
laws that develop shocks, shallow water equations or Euler’s equations, for example.

We conduct numerical experiments to assess the robustness and approximability of the A-adaptive
procedure and the adaptive-conservative dG scheme. In this case, we are able to show that:

1. The moving mesh method is able to generate meshes locally refined around areas of interest.
Families of these meshes are able to optimally approximate even discontinuous functions.

2. The conservative A-adaptive approximation significantly outperforms the non-conservative variant
as well as the equivalent simulation over a uniform grid.

3. The moving mesh problem is sensitive to parametric choices, especially for irregular functions.

4. With good choices of these parameters, the A-adaptive approximation of the advection equation
outperforms the uniform counterpart.

The remainder of the Chapter is structured as follows: In §3.2, we introduce the problem, relevant
notation and the discretisation scheme. §3.3 contains an overview of moving mesh methods used for
solving time-dependent PDEs as well as our proposed moving mesh scheme using Winslow’s method.
In §3.4, we describe the local conservative Galerkin projection and the algorithm that is used to construct
and process the supermesh. §3.5 illustrate numerical experiments designed to test the discretisation of
the moving mesh PDE. Finally, we summarise our results in §3.6 and provide an overview of the topic
addressed in Chapter 4.

3.2 Problem setup and discretisation

Throughout this Chapter we denote the standard Lebesgue spaces by L? (Ω) for Ω ⊆ R, ? ∈ [1,∞],
equipped with corresponding norms ‖D‖L? (Ω) . In equation (2.3.7) of Chapter 2 the Hilbert space of
order : ∈ N was defined by:

H: (Ω) := {D ∈ L2 (Ω) : ‖D‖H: (Ω) < ∞}, (3.2.1)

where ‖D‖2H: (Ω) :=
∑
U: |U | ≤: ‖�UD‖2L2 (Ω) and �U are understood in weak sense.

Furthermore, for a portion of the boundary Γ� ⊂ mΩ, we define

H1
0,Γ� (Ω) :=

{
D ∈ H1 (Ω) : D |Γ� = 0

}
. (3.2.2)

57

Let Ω ⊂ R2 be a convex, simply connected domain of interest with outward pointing normal n and
consider the problem

mD

mC
+ v · ∇D = 0 in Ω × [0,)],

D(x, 0) = D0 (x) on Ω × {0},

D = 6 on mΩ− × [0,)],

(3.2.3)

where
mΩ− = {G ∈ mΩ : v · n < 0} , (3.2.4)

the constant prescribed velocity v ∈ !∞, D0 ∈ H0 (Ω), and the inflow boundary condition 6 ∈ L2 (mΩ−)
for C ∈ [0,)]. We will be particularly interested in problems for which D0 (x) has a (near) singular
behaviour.

Given those conditions, we can define a map D : C → D(x, C) from the temporal domain to the Hilbert
space H1 (Ω). We make use of the following notation for time-dependent Bochner spaces:

L? (0,) ; H1 (Ω)) :=
{
D : [0,)] → H1 (Ω) :

∫)

0
‖D(C)‖ ?

H1 (Ω)
dC < ∞

}
. (3.2.5)

The solution of the advection equation D(x, C), (x, C) ∈ Ω × [0,)] lies in this space [Eva10, Section
5.9.2].

Let � be a conforming mesh of Ω comprised of simplicial and/or box-type elements as definition 2.3.4
of Chapter 2.

We consider the finite element space

V := {Φ ∈ L2 (Ω) : Φ| ∈ P? ()}, (3.2.6)

where P? () is the space of polynomials of total degree ? for ? ≥ 0.

For F ∈ V and any ∈ � , we define the upwind jump across the inflow boundary m − by

bFc (x) := lim
n→0+
(F(x + nv) − F(x − nv)) . (3.2.7)

Let us denote � := {F ∈ L2 (Ω) : v · ∇F ∈ L2 (Ω)} as the graph space of the PDE. For F ∈ �, we let
F+

and F−

denote the interior and exterior trace of F on , respectively. The exterior trace on can

58

be referred to as the interior trace on ′, where ′ shares an edge contained in m −/mΩ−. Then

bFc | := F |+ − F |− . (3.2.8)

Let

�(D,Φ) :=
∑
 ∈�

[∫

mD

mC
Φ + v · ∇DΦ dG −

∫
m −/mΩ−

v · n bDcΦ+ dB −
∫
m −∩mΩ−

v · nD+Φ+ dB
]
,

; (Φ) :=
∑
 ∈�

[∫
m −∩mΩ−

v · n6Φ+ dB
]
.

(3.2.9)

The semidiscrete dG method we consider to approximate (3.2.3) is to seek* ∈ C1 ([0,)];V) such that

�ℎ (*,Φ) = ;ℎ (Φ) ∀Φ ∈ V. (3.2.10)

Fully discrete scheme. Subdivide the time domain [0,)] into a partition of #) consecutive subintervals
with endpoints denoted 0 = C0 < C1 < · · · < C#) =) . We denote the =-th timestep as g= = C= − C=−1 and
consistently use the shorthand �= (·) = � (·, C=) for a time-dependent function or function space.

We discretise (3.2.10) using a three-stage explicit Strong-Stability-Preserving Runge-Kutta (SSPRK)
scheme [GGI]. This high order time discretisation method preserves the strong stability properties of
first order explicit Euler time stepping. Let �= ∈ R" denote the vector of basis functions such that
V= = span(�=). The SSPRK method can be realised by defining mass and advection matrices M = and
A= respectively componentwise as

M =
8, 9 =

∫
Ω

�=
9�

=
8 dx,

A=
8, 9 = −

∑
 ∈�

[∫

(
v · ∇�=

9

)
�=
8 dG −

∫
m −/mΩ−

v · n
⌊
�=
9

⌋
�=,+
8

dB −
∫
m −∩mΩ−

v · n�=,+
9

�=,+
8

dB
]
,

b=8 =
∑
 ∈�

∫
m −∩mΩ−

v · n�=,+
8
6 dB.

(3.2.11)

Note that each of the matrices are time-dependent. This is since V= changes in time through movement
of degrees of freedom.

59

The SSPRK3 solution*=+1 ∈ V= is computed by the following multi-stage iterations for = = 0, . . . , #−1:

M =,1 = *= + g= (A=*= − b=) ,

M =,2 =
3
4*

= + 1
4

(
,1 + g=

(
A=,1 − b=

))
,

M =*=+1 =
1
3*

= + 2
3

(
,2 + g=

(
A=,2 − b=

))
,

(3.2.12)

where,1,2 ∈ R" and, by an abuse of notation, we denote*8 as the array of finite element coefficients
at time C8 . The M = is a block diagonal matrix, thus can be inverted elementwise leading to very little
computational overhead, as expected from an explicit timestepping method. Note that the finite element
space V= does not change from one RK stage to another. See Algorithm 3 for further details.

3.3 Moving mesh methods

Moving mesh strategies are characterised by three major components: the mesh adaptation strategy, the
method used to discretise the physical PDE, and the approach used to couple the moving mesh to the
evolving solution of the PDE.

The effect of the mesh movement in the time discretisation of the physical PDE can be treated with either
the quasi-Lagrange approach or the rezoning approach [BHR09; HR11]. Quasi-Lagrange methods
ensure the mesh points move continuously in time and physical time derivatives are transformed into
time derivatives along mesh trajectories with an additional convection term [HR11]. If an explicit time
integrator is used for solving the physical PDE, this extra convection term can pose a critical constraint
on the choice of the timestep size due to the Courant-Friedrichs-Lewy (CFL) condition. Indeed such
methods are often unstable and very stiff [LP96].

Rezoning approaches require that the mesh is updated at each time step by solving a Moving mesh
PDE (MMPDE), introduced in §2.2 of Chapter 2. This procedure treats the MMPDE and the physical
PDE separately, offering flexibility for coding each component with any preferred numerical scheme.
The physical solution must then be transferred from the old to the new mesh. This step is critical
for the success of this approach, as a poor choice can lead to loss of both accuracy and stability. A
conservative interpolation procedure [FM10; Zha06] is desirable to preserve those properties and ensure
that conservation laws are inherited by the numerical scheme.

Given*= ∈ V=, the solution of (3.2.12) at the time C=, Algorithm 3 describes the adaptive-conservative
dG scheme that will be studied in the numerical experiments of §3.5. Note that it inherently calls another
algorithm defined by Algorithm 4.

This algorithm is similar to the rezoning approach originally formulated in [HR11, Section 2.6], with
the only addition of the local Galerkin projection procedure.

60

Algorithm 3 Adaptive-conservative dG scheme.

Require: D0, �0,)
Ensure: *#)

1: Set = := 0, C0 := 0
2: Let*0 = ΠD0 be the L2 projection of the initial data
3: Adapt the mesh �

0 by solving the MMPDE (Algorithm 4)
4: while C= ≤) do:
5: Step forward the SSPRK-dG scheme (3.2.12) to compute*=+1 ∈ V=
6: Adapt the mesh �

=+1 by solving the MMPDE (Algorithm 4)
7: Construct an appropriate projector Π : V= → V=+1 and let *̂=+1 = Π*=

8: Update the timestep g=+1 to ensure the CFL condition is satisfied
9: Set C= = C= + g=+1,*= := *̂=+1, = += 1

10: end while

3.3.1 Winslow’s variational-based diffusion method

In §2.2.1 of Chapter 2 we introduced Winslow’s adaptive diffusion method. We now discretise the
equation (2.2.15) using the finite element method and apply it to the linear advection problem.

1 Numerical Solution of Winslow’s MMPDE In this section, we illustrate the numerical procedure
to solve the MMPDE (2.2.15) by using a finite element discretisation. In particular, we discretise the
weak formulation (2.2.15) of the MMPDE in space and time using finite element space comprised of
linear elements and a semi-implicit Euler integrator. The computational domain is still referred by the
coordinates ξ = (b, [), while the continuous coordinates of Ω are expressed by x = (G, H).

2 Weak formulation We begin by splitting the boundary of Ω2 into two components, Γ� and Γ# .
The weak formulation of Winslow’ MMPDE is obtained by multiplying both sides of (2.2.15) by an
appropriate test function and integrate by parts over Ω2 . We seek x ∈ H1

0,Γ� (Ω2)
2

∫
Ω2

�(x) mx
mB

Φ dξ =

∫
Ω2

d(x)
{
− m

mb
(U1 (x)Φ)

mx

mb
+

[
m

m[
(U2 (x)Φ)

mx

mb
+

m

mb
(U2 (x)Φ)

mx

m[

]
− m

m[
(U3 (x)Φ)

mx

m[

}
dξ ∀Φ ∈ H1

0,Γ� (Ω2)
2,

(3.3.1)

where U1 (x) = G2
[+ H2

[, U2 (x) = Gb G[+ H b H[, U3 (x) = G2
b
+ H2

b
and �(x) = |� |2d2 (x). We denote

by B the temporal variable for the MMPDE, not to be confused with C used in equation (3.2.3).

Note that the weak form (3.3.1) requires the solution x(ξ, C) to be twice weakly differentiable. This
condition is delicate to interpret in a primal form, so we circumvent the difficulties by computing U1,2,3

61

in the following fashion:

Ũ1 (x) = Π

(
G2
[+ H2

[

)
,

Ũ2 (x) = Π
(
Gb G[+ H b H[

)
,

Ũ3 (x) = Π

(
G2
b + H2

b

)
.

(3.3.2)

Time discretisation. The discretisation of (3.3.1) in the temporal variable is realised with a semi-implicit
Euler scheme. To that end, we divide the domain [0, (] into a partition of #(consecutive subintervals
0 = B0 < B1 < · · · < B#(= (, with B8 − B8−1 = : for all 8. We treat the non-linear terms through
evaluation at the current time step B8 , while the linear terms are evaluated at the next time step B8+1. We
denote x8+1 to be the solution of (3.3.1) at B8+1. Specifically, we seek x8+1 ∈ H1

0,Γ� (Ω2)
2 such that∫

Ω2

�(x8)
(x8+1 − x8

:

)
Φdξ =

∫
Ω2

d(x8)
{
− m

mb
(Ũ1 (x8)Φ)

mx8+1
mb

+
[
m

m[
(Ũ2 (x8)Φ)

mx8+1
mb

+ m

mb
(Ũ2 (x8)Φ)

mx8+1
m[

]
− m

m[
(Ũ3 (x8)Φ)

mx8+1
m[

}
dξ ∀Φ ∈ H1

0,Γ� (Ω2)
2.

(3.3.3)

Fully discrete scheme. Let Ω2 be tessellated with a conforming, shape regular mesh �2 that is fixed in
time. We denote by � ∈ R% the vector of basis functions such that P1 (�2) = span(�). The algebraic
system for the numerical solution X8 = (-8 , .8) of (3.3.3) can be decoupled and takes the form

(M8 − :S8)X8+1 = M8X8 , (3.3.4)

whereX8 denotes the array of coefficients at time B8 and the weighted mass and stiffness matricesM8 ,S8

are given by

(M8)0,1 =

∫
Ω2

�(X8)�0 (ξ)�1 (ξ) dξ =

∫
Ω2

|� (ξ) |2, (X8)2�0 (ξ)�1 (ξ) dξ, (3.3.5)

(S8)0,1 =

∫
Ω2

, (X8)
(
− m

mb
(Ũ1 (X8)�0)

m�1

mb
+ m

m[
(Ũ2 (X8)�0)

m�1

mb
+

m

mb
(Ũ2 (X8)�0)

m�1

m[
− m

m[
(Ũ3 (X8)�0)

m�1

m[

)
dξ.

(3.3.6)

Practically, the matrices (3.3.5) and (3.3.6) are evaluated by a three point Gaussian quadrature rule
and the non-symmetric system (3.3.4) is solved by using sparse LU decomposition [BH74]. For large
problems resulting from, for example a high-resolution mesh, iterative methods can be used as faster

62

and less memory-demanding options, e.g. GMRES and MINRES.

3 Boundary conditions of the MMPDE For the sake of clarity, the numerical solution of (3.3.1)
computes the shift of the new mesh coordinates rather than the coordinates themselves. Homogeneous
Dirichlet BCs fix the mesh points over Γ� . However, this condition generally does not ensure good mesh
quality, especially close to the boundary, and a combination of Dirichlet and Neumann BCs result in less
skewed meshes [BHR09]. For Ω = [0, 1]2 we enforce essential Dirichlet conditions on -8 on the east-
west sides and natural Neumann conditions on the top-bottom sides. Concerning.8 , Dirichlet conditions
are applied on the top-bottom sides and Neumann conditions on the east-west sides. Importantly, this
allows the mesh nodes to move along the boundaries.

4 The monitor function To assemble the system in (3.3.4), the discrete monitor function, (X8) ∈
P1 (�

8
) must be defined over Ω2 . We choose to represent ,̂8 ∈ P1 (�2). The discrete map X8 (ξ) allows

us to compute the coefficients ,̂8 as

,̂8 = ,̂8 (ξ) = , (X8 (ξ)) =
√

1 + 1
X
‖� [*8] (X8)‖2L2 , (3.3.7)

where the optimal intensity parameter, X [HR11], is chosen as

X =
1
|Ω|

∫
Ω

‖� [*8] ‖L2 dx. (3.3.8)

The term � [+] ∈ V×V is a discrete gradient operator of a generic finite element object + ∈ V, defined
through ∫

Ω

� [+]Φ dx =

∫
Ω

∇+ Φ dx −
∫
E
È+É {{ Φ }} dB ∀Φ ∈ V. (3.3.9)

The monitor function can be directly defined with respect to the vector*8 and denoted by ,̂ (*8).

A common practice that we utilise in our numerical experiments to reduce the skewness in a mesh is
to smooth ,̂ by solving a diffusion PDE [HK15b]. This procedure can be realised by considering the
equation to find ,̃ ∈ P1 (�2) such that∫

Ω2

Φ,̃ dξ +
∫
Ω2

V∇Φ · ∇,̃ dξ =

∫
Ω2

Φ,̂ dξ ∀Φ ∈ P1 (�2), (3.3.10)

where V � 1 is a diffusion parameter and homogeneous Neumann boundary conditions are applied on
mΩ2 .

The resulting MMPDE scheme provides an adapted mesh �
#(

to the solution *=+1 of (3.2.12). This
represents a subfunction called by Algorithm 3.

The errors in the solution of (3.3.4) are critically dependent on the nature of the resulting mesh.
Essentially, the error is a combination of the skewness, or lack of shape regularity, and the scale of the

63

Algorithm 4 MMPDE

Require: #(, TOL, : , V, 1,*=+1
Ensure: �

#(
1: Set 8 := 0 and Y := 2TOL
2: while 8 < #(or n <TOL do:
3: Solve the fully discretised MMPDE (3.3.4) to obtain x8+1 and generate the mesh �

8+1
4: Compute ,̂ (*=+1) using (3.3.7)
5: Smooth ,̂ (*=+1) to obtain ,̃ (*=+1) by (3.3.10)
6: Set Y = ‖x8+1 − x8 ‖L2 (Ω2) /‖x8 ‖L2 (Ω2)
7: Set x8 := x8+1 and 8 += 1
8: end while

mesh. The skewness indicates how far mesh elements are from being equilateral, while the scale checks
how well the mesh is adapted to the solution. For triangular elements, the skewness can be computed as
the ratio between the minimum and maximum vertex angle. The quality measure for the element and
the global quality measure & were defined in Chapter 2 as (2.3.7) and (2.3.31), respectively.

We remark that a high value of & corresponds to skewed mesh elements that can accurately align to
the small-scale features of the solution. In the context of hyperbolic PDEs, this can pose issues for
the efficiency and numerical stability of the algorithm 3. The CFL condition restricts the time step for
explicit time discretisation schemes with skewed elements and increases the runtime of the simulation.
As a result, the quality measure for such family of PDEs can only be used as useful metric for mesh
adaptation to the initial condition D0.

5 Sensitivity of the MMPDE on the user-specified parameters We highlight that the stability of
the algorithm 4 and the quality of the resulting mesh are strongly dependent on the smoothing parameters
V and the number of iterations #(. A high value of V increases the stability of the algorithm at the
cost of the level of adaptivity. The monitor function is more diffused over the domain Ω and the mesh
points are unlikely to collide. However, this implies that the mesh elements might not accurately align
to small-scale features.

Concerning the tuning of #(, it is recommended to first run the algorithm for the initial condition D0

with a high number of iterations, and keep track of the relative tolerance Y. In terms of computational
time, the optimal value of #(can be set to the iteration number that guarantees a level of tolerance
close to Y. Although this approach is reasonable for solutions that preserve the structure of small-scale
features, there is no general guidance about initially smooth solutions of hyperbolic PDEs that develop
such features over time. In this case, the safest approach that ensures a good mesh adaptation is to fix a
high value of #B and rely more on the tolerance Y as criterion to stop the algorithm.

64

3.4 Data transfer over timesteps

Data transfer of the field*=+1 from the mesh �
= to the new adapted mesh �

=+1 := �
#(

is an important
step for the accuracy and stability of the solution of a physical PDE. A Lagrange interpolator in this role
suffers from several drawbacks. In particular, the integral of the interpolated function is not conserved,
monotonicity is preserved only for linear interpolation, and is not suitable for discontinuous fields.

The local Galerkin projection does not suffer from the same drawbacks and we will use this to represent
the scalar field onto the new mesh [FM10]. This process involves the construction of a conforming
triangulation that captures the features of �

=+1 and �
=. In the literature this is referred to as a

supermesh.

3.4.1 Local Galerkin Projection

Consider the projection of the scalar field *=+1 ∈ V= to V=+1. Let V= = span(�=) and V=+1 =

span
(
�=+1) . We make use of an L2 projection; to that end we seek *̂ ∈ V=+1 such that∫

Ω

*̂�=+1
8 dx =

∫
Ω

*=+1�=+1
8 dx ∀ 8 ∈ {1, . . . , "}, (3.4.1)

Consider the projection of the scalar field *=+1 from the old mesh �
= to the new mesh �

=+1. By
definition, let *̂=+1 be the optimal function in the L2 norm:

*=+1 − *̂=+1
L2 (Ω)

= min
* ∈V=+1

=+1 −
L2 (Ω) (3.4.2)

The L2 norm in (3.4.2) is minimised if the derivative of
=+1 −

L2 with respect to every coefficient
of* is zero. This leads to the system

∫
Ω

*�=+1
8 dx =

∫
Ω

*=+1�=+1
8 dx ∀ 8 ∈ {1, . . . , "}. (3.4.3)

From eq.(3.4.3) global mass conservation follows naturally as the constant function 1Ω is contained in
V= for each = ∈ N.

Expanding*=+1 and *̂=+1 with respect to their basis functions yields

∫
Ω

"∑
8=1

*̂=+19 �=+1
8 �=+1

9 dx =

∫
Ω

"∑
8=1

*=+18 �=
8 �

=+1
9 dx ∀ 9 ∈ {1, . . . , "}. (3.4.4)

65

If we abuse notation slightly and let*=+1, *̂ denote the array of the finite element coefficients and

(M1)8, 9 =
∫
Ω

�=+1
8 �=+1

9 dx, (3.4.5)

(M2)8, 9 =
∫
Ω

�=+1
8 �=

9 dx ∀ 8, 9 ∈ {1, . . . , "}. (3.4.6)

then *̂ solves
M1*̂ = M2*

=+1. (3.4.7)

Note that the computation of *̂ is not trivial as it involves the computation of products between basis
functions of V= and V=+1. Over each element ̂ ∈ �

=+1, the basis functions of V= are in general
discontinuous piecewise polynomials. Since the integrals over ̂ are evaluated exactly at the quadrature
points only for polynomials, each entry of M2 must be computed at the region of intersection between
 ̂ and ∈ �

=. The collection of those meshed regions defines a conforming triangulation called
supermesh.

The algorithm for constructing the supermesh can be summarized as follows:

Algorithm 5 Supermesh construction between �
= and �

=+1

Require: �
=,�=+1,VT

Ensure: Scalar field *̂=+1 transferred to adapted mesh �
=+1

1: for ̂ ∈ �=+1 do:
2: Identify all the intersecting elements ∈ �=

3: Create the mesh �
 , ̂

in ̂ ∩
4: Assemble M2 by integrating �= | and �=+1 |

 ̂
over �

 , ̂

5: Assemble locally the matrix M1 | ̂ and compute *̂=+1 |
 ̂

from (3.4.7)
6: IfVT is continuous, solve eq.(3.4.7) globally
7: end for
8: Assemble the vector *̂=+1 ∈ V=+1

For a given element ̂ ∈ �
=+1, we must ensure all possible intersecting elements in �

= are found
efficiently. The greedy algorithm performs O(|�=+1 | |�= |) intersection tests. These can be first filtered
by an Axis Aligned Bounding Box tree algorithm [Har16], which only consider pairs with intersecting
bounding boxes. The construction takes O(|�= | log |�= |), and the query for each element takes
O(log |�= |). This is the strategy we utilise.

The vertices of the intersecting polygon can be computed with the Sutherland-Hodgman clipping algo-
rithm [SH74]. The meshing procedure is performed connecting with an edge a generic vertex with all the
other vertices except the adjacent ones. If ∩ ̂ is formed by = vertices, with 4 ≤ = ≤ 6, the intersecting
region can be decomposed in = − 2 triangles. For each triangle the integral

∫
 ∩ ̂ �=+1

8 �=
9 dx can

be computed exactly using the Gaussian quadrature rule. An illustration of the procedure is given in
Figure 3-1. Note that, for the lowest order dG space, only the area | ∩ ̂ |, which is computed with the
shoelace method [Mei69], is needed to assemble M2.

66

Figure 3-1: An illustration of the intersection between two triangles. The resulting polygon is subdivided
into a shape regular triangulation which represents the supermesh over the intersection.

3.5 Numerical Experiments

In this section we test the methods described in §3.2–3.4. The implementation has been carried out
using the DOLFIN interface of FEniCS [LW10]. The software Paraview has been used as visualisation
tool. For each test, we used a Gaussian quadrature rule of order 6 and took : = 0 in V for simplicity.

3.5.1 Test 1 - Mesh adaptation to a scalar function

In this first experiment, we test the effectivity of Algorithm 4 to construct meshes that resolve certain
prescribed functions with differing properties and regularity (Figure 3-3). With that in mind, let �

8

denote the sequence of meshes generated by Algorithm 4 from an initial uniform criss-cross mesh. Let
Π8D ∈ V8 := V(�

8
) be the L2 projection of a function D.

Consider the following three functions:

Gaussian : D1 (G, H) = exp
(
− 50

(
(G − 0.5)2 + (H − 0.5)2

))
, (3.5.1)

Smooth function : D2 (G, H) = 3 − tanh
(
30

(
(G − 0.3) + (H − 0.2)

))
, (3.5.2)

Discontinuous function : D3 (G, H) =

3.0 if H + 0.8(G − 0.2) <= 0,

1.0 otherwise.
(3.5.3)

These have been chosen to show numerically the difference in accuracy of the approximate solutions for
decreasing smoothness in the initial condition, from D1 to D3.

67

In Figure 3-2a we show the behaviour of ‖D − Π8D‖L2 (Ω) and in Figure 3-2b the quality measure & for
each of the meshes produced for the functions (3.5.1), (3.5.2) and (3.5.3) using Algorithm 4.

0 20 40

10−2

10−1.5

8

‖ D
−
Π
8D
‖ L

2
(Ω
)

D1: eq.(3.5.1)
D2: eq.(3.5.2)
D3: eq.(3.5.3)

(a) The projection error as a function of iterations of the
discretisation of the MMPDE.

0 20 40
100

101

8

&

(b) The mesh quality as a function of iterations of the
discretisation of the MMPDE.

Figure 3-2: Test 1 - Here we show the projection error and the mesh quality measure & for D1, D2, D3
defined in eq.(3.5.1)–(3.5.3) using Algorithm 4 for 50 iterations. The initial criss-cross computational
mesh is fixed and composed of 104 elements, whereas the physical mesh is then iteratively adapted.
In this experiment we took the time step : = 10−3 (3.3.4) and the smoothing parameter V = 7 × 10−4

(3.3.10). Note that the discontinuous function is approximated almost as well as the other functions
despite the discontinuity not being aligned with the mesh. To compensate, as expected, the mesh quality
measure increases dramatically. This results in quite anisotropic elements.

3.5.2 Test 2 - Convergence on the adaptively generated grids

In this test, we examine the approximability of the finite element spaces over the meshes generated by
the moving mesh procedure in Algorithm 4. We consider a family of uniform criss-cross computational
meshes, each one a uniform refinement of the previous mesh. For each of these initial meshes, we use
Algorithm 4 to generate a mesh�

#(
, which is able to resolve the features of the functions (3.5.1)–(3.5.3).

For each realisation of �
#(

, we let ΠD denote the L2 projection onto the finite element space associated
to this mesh and we test the asymptotic convergence rates, measured in terms of the degrees of freedom.

Figure 3-3 shows the functions together with a visualisation of the result of applying Algorithm 4. Figure
3-4 shows the convergence of the best approximation over the uniform and warped meshes. Notice that
the functions are better approximated over the warped meshes, but also that the discontinuous solution is
approximated optimally despite the lack of regularity. This is consistent with other studies of irregular
functions on warped meshes [GMP17].

1 Adaptive-conservative dG advection equation with upwinding This last set of experiments detail
the validation of the fully coupled adaptive conservative moving mesh dG scheme for the numerical
solution of the advection equation (3.2.3) via Algorithm 3. It employs both the MMPDE (Algorithm 4)

68

(a) D1 on the initial mesh. (b) D2 on the initial mesh. (c) D3 on the initial mesh.

(d) D1 on the final mesh. (e) D2 on the final mesh. (f) D3 on the final mesh.

Figure 3-3: Test 1 - Visualisations of the functions D1, D2, D3 defined in (3.5.1))-(3.5.3)) discretised in
V8 , a criss cross mesh on the domain Ω = [0, 1]2 at initial iteration (8 = 0), and final iteration (8 = 50).
The physical mesh � is comprised by 104 triangular elements and for 8 = 0 equal to the criss-cross
computational mesh. Note that the mesh distorts locally to ensure good approximation of the hard-to-
approximate features.

103 10410−3

10−2

10−1
0.25

0.5

dimV

‖ D
−
Π
D
‖ L

2
(Ω
)

(a) A family of uniform meshes.

103 10410−3

10−2

10−1

0.5

dimV

‖ D
−
Π
D
‖ L

2
(Ω
)

D1: eq.(3.5.1)
D2: eq.(3.5.2)
D3: eq.(3.5.3)

(b) A family of adaptive meshes.

Figure 3-4: Test 2 - Asymptotic convergence rates for the best approximation on the finite element
space over the meshes generated by Algorithm 4. Note that for uniform meshes the approximation of the
discontinuous function is slower due to the lack of regularity. The adapted meshes are able to resolve
this to ensure optimal rates for the piecewise constant approximations [GMP17].

69

and the conservative Galerkin projection as a data transfer operator.

2 Test Problems We prescribe two different initial conditions

D0 (x) = 3 − tanh
(
30

(
(G − 0.2) + (H − 0.2)

))
, (3.5.4)

D0 (x) =

3.0 if H + 0.8(G − 0.2) <= 0,

1.0 otherwise,
(3.5.5)

for Ω := [0, 1]2 and set a constant velocity field

v =

(
1
2 ,
√

2
2

)
, (3.5.6)

as not to align with the mesh. We impose an inflow boundary condition consistent with the exact solution

D(x, C) = D0 (x − vC) (3.5.7)

over mΩ−, which corresponds to the west and south sides of Ω. The solutions we consider are a smooth
travelling front and a discontinuous travelling front.

3.5.3 Test 3 - Error accumulation in time

In this test, for the smooth front initial condition given by (3.5.2), we compare the performance of the
proposed adaptive scheme with and without the conservative data transfer projection to that one of the
uniform scheme. As such, we are able to show the importance of the conservative data transfer operator
for the success of the scheme. To that end, we take an initial uniform triangulation formed of 104

criss-cross elements. The mesh is then adapted to the initial condition using Algorithm 4. The advection
equation is then solved using the three-stage SSPRK-dG scheme (3.2.12).

The results are shown in Figure 3-5, where it is apparent that the L2 error over time grows at a smaller
rate for the conservative adaptive scheme than its uniform and non-conservative counterparts.

3.5.4 Test 4 - Sensitivity of the MMPDE algorithm

In this test, we explore the sensitivity of the MMPDE described in Algorithm 4. We fix the initial
triangulation to be of criss-cross type with 104 elements. We fix the parameters : = 10−3, V = 10−4 and
vary the parameter (within Algorithm 4.

Figure 3-6 shows results by varying the parameter (for both initial conditions. The SSPRK-dG scheme
is kept the same. The key point is that the MMPDE must be solved in the time interval [0, (] for (large
enough to ensure that (3.3.3) is close enough to reach a steady state.

70

0 0.1 0.2 0.3
10−2

10−1

C=

‖ D
(·,
C =
)−

*
=
‖ L

2
(Ω
)

cons. adaptive
noncons. adaptive

uniform

(a) Error accumulation in time for the uniform, adaptive
nonconservative and adaptive conservative schemes.

0 0.1 0.2 0.3
0

2

4

6

8
·10−2

time

� � �‖ *=
‖ L

1
(Ω
)−
‖ D
(·
,C
=
)‖

L
1
(Ω
)� � �

‖ D
(·
,C
=
)‖

L
1
(Ω
)

(b) Relative mass error for the uniform, adaptive noncon-
servative and adaptive conservative schemes.

Figure 3-5: Test 3 - Here we show the error accumulation in time for the smooth initial condition (3.5.4).
The parameters used for the mesh adaptation are: #(= 15, : = 10−3 and V = 10−5. In each case the
initial mesh was chosen such that dimV = 104. The uniform scheme outperforms the non-conservative
adaptive one as the error introduced by Lagrange interpolation from �

= to �
=+1 is not counterbalanced

by the gain in accuracy on the adapted mesh.

3.5.5 Test 5 - Asymptotic convergence rates

In this test, we compare the adaptive-conservative scheme to an equivalent SSPRK-dG scheme running
on the initial uniform mesh. In both cases, the time step has been chosen adaptively to ensure a CFL
condition is satisfied. For the uniform scheme, we take a family of consecutively refined initial meshes
where dimV ∈ [100, 6400] and run the SSPRK-dG scheme (3.2.12). For the adaptive scheme, we
take the same initial meshes; however this time apply Algorithm 4. In both cases we track the L2 error
evaluated as a function of time as well as the time step.

We test two exact solutions, a smooth moving front and a discontinuous moving front. The results are
shown in Figures 3-7 –3-8, where we are able to see an improved convergence rate for the adaptive
scheme applied to both test problems over the uniform one.

71

0 0.1 0.2 0.3

10−2

10−1

C=

‖ D
(·,
C =
)−

*
=
‖ L

2
(Ω
)

(= 0
(= 0.01
(= 0.02
(= 0.04

(a) The L2 error as a function of time for the adaptive
approximation of (3.5.7) with smooth initial condi-
tions (3.5.4).

0 0.1 0.2 0.3

10−3.2

10−3

10−2.8

C=

g =

(b) The timestep as a function of time for the adaptive
approximation of (3.5.7) with smooth initial condi-
tions (3.5.4).

0 0.1 0.2 0.3

10−1.2

10−1

C=

‖ D
(·,
C =
)−

*
=
‖ L

2
(Ω
)

(= 0
(= 0.01
(= 0.02
(= 0.04

(c) The L2 error as a function of time for the adaptive
approximation of (3.5.7) with discontinuous initial con-
ditions (3.5.5).

0 0.1 0.2 0.3

10−3

C=
g =

(d) The timestep as a function of time for the adap-
tive approximation of (3.5.7) with discontinuous ini-
tial conditions (3.5.5).

Figure 3-6: Test 4 - Here we show the effect of varying (, the end time of the moving mesh algorithm,
within Algorithm 4. We fix : = 10−3 and V = 10−4. We examine the effect of modifying (for the
solutions given by (3.5.7) with initial conditions (3.5.4) and (3.5.5). We show that the error stagnates as
(gets large, meaning that the solution of the MMPDE is close to a steady state for that particular (.

72

0 0.1 0.2 0.310−3

10−2

10−1

100

C=

‖ D
(·,
C =
)−

*
=
‖ L

2
(Ω
)

" = 100
" = 400
" = 1600
" = 6400

(a) The L2 error as a function of time for the adaptive
approximation.

0 0.1 0.2 0.3

10−3

10−2

C=

g =

(b) The time step as a function of time for the adaptive
approximation.

0 0.1 0.2 0.310−3

10−2

10−1

100

C=

‖ D
(·,
C =
)−

*
=
‖ L

2
(Ω
)

" = 100
" = 400
" = 1600
" = 6400

(c) The L2 error as a function of time for the uniform
approximation.

0 0.1 0.2 0.3

10−2.5

10−2

C=

g =

(d) The time step as a function of time for the uniform
approximation.

Figure 3-7: Test 5 - A comparison of the adaptive scheme given by Algorithm 3 and an equivalent
uniform scheme, both initialised with the same uniform meshes. The family of uniformly refined
initial grids ensures dimV ∈ [100, 6400]. We are examining the approximation of the exact solution
(3.5.7) with the smooth initial condition (3.5.4). Notice that the adaptive scheme is able to achieve an
approximation with smaller L2 error than the uniform scheme as well as a higher rate of convergence.

73

0 0.1 0.2 0.310−2

10−1

100

C=

‖ D
(·,
C =
)−

*
=
‖ L

2
(Ω
)

" = 100
" = 400
" = 1600
" = 6400

(a) The L2 error as a function of time for the adaptive
approximation.

0 0.1 0.2 0.3 10−4

10−3

10−2

10−1

C=

g =

(b) The time step as a function of time for the adaptive
approximation.

0 0.1 0.2 0.310−2

10−1

100

C=

‖ D
(·,
C =
)−

*
=
‖ L

2
(Ω
)

" = 100
" = 400
" = 1600
" = 6400

(c) The L2 error as a function of time for the uniform
approximation.

0 0.1 0.2 0.3 10−4

10−3

10−2

10−1

C=

g =

(d) The time step as a function of time for the uniform
approximation.

Figure 3-8: Test 5 - A comparison of the adaptive scheme given by Algorithm 3 and an equivalent
uniform scheme, both initialised with the same uniform meshes. The family of uniformly refined initial
grids ensures dimV ∈ [100, 6400]. We are examining the approximation of the exact solution (3.5.7)
with the discontinuous initial condition (3.5.5). Notice that the adaptive scheme is marginally more
accurate than the uniform scheme.

74

3.6 Summary

In this chapter, we have proposed and studied an A-adaptive algorithm for the solution of a linear
hyperbolic PDE. The moving mesh method is able to adapt the mesh to increase the spatial accuracy of
the solution in the L2 norm. We achieved this by making use of a conservative Galerkin projection as a
data transfer operator via the construction of a supermesh.

While the scheme itself shows good error reduction properties, it has a number of shortcomings. In
particular, for each time step the solution of a quasilinear parabolic PDE is required to compute the
solution to the Winslow’ mesh adaptation step. This dramatically increases computational cost over, say
an ℎ- or ?-adaptive method, to achieve the same error tolerance. That being said, the method has the
potential for massive parallelisation since at any time step, the mesh is just an affine transformation of a
uniform grid.

The next chapter will use A-adaptivity for the solution of the two-dimensional Poisson’s equation in
non-convex domains. Moreover, we will expand our analysis by employing a ℎ-refinement strategy and
comparing the two adaptive mesh strategies. Since the equation is elliptic, the rezoning approach is not
required, but the non-convexity of the domain raises several issues for the accurate solution of the PDE.
We will also formulate an algorithm to construct an Optimal Transport mesh as alternative to the use of
Winslow’s method.

75

76

Chapter 4

Optimal Transport and ℎ-adaptive
based mesh generation for Poisson’s
equation in non-convex domains

Abstract

We solve the two-dimensional Poisson’s equation using the symmetric interior penalty discontinuous
Galerkin method on non-convex domains. The solution exhibits a singularity at the re-entrant corner
and lies in a weighted Sobolev space. Under this framework, we derive a novel L2 a-posteriori estimate.

We discretise a L-shaped and crack domain on meshes using an ℎ-adaptive and an Optimal Transport
based mesh strategy. The ℎ-refinement strategy will be guided by the proposed L2 and L∞ a-posteriori
estimate, each displaying numerically optimal convergence rate. The Optimal Transport mesh is derived
semi-analytically, by considering the local behaviour of the solution near the re-entrant corner. This
second procedure exhibits the same accuracy as the ℎ-refinement strategy but is computationally less
expensive. On the contrary, the Winslow’s method generates meshes that yields low order of convergence
for different monitor functions.

Numerical experiments show that the skewness of the Optimal Transport mesh elements does depend
only on the angle of the re-entrant corner. Moreover, the resulting Optimal Transport mesh is able to
equidistribute the a-posteriori estimates. This hints at the close relationship between Optimal Transport
and ℎ-adaptation for the common goal of equidistributing the local interpolation error.

77

4.1 Introduction

Solutions of second order elliptic boundary value problems defined on non-convex domains typically
display singular behaviour at the re-entrant corners and lie in Sobolev spaces H: for small : > 1 [BG88;
BG89]. The theoretical framework of weighted Sobolev spaces, which were originally studied in [BR72;
BKP79] for elasticity and potential problems, can deal with the low regularity of the solution and will
be used for discretising Poisson’s equation. To obtain accurate solutions of such problems, several
procedures have been proposed. In [SH16; ZS02; ZSG02] the solution of Poisson’s equation is treated
via a singular decomposition D = F + _B, where F is regular, B is a singular function, and the coefficient
_ is the so called stress intensity factor. Alternatively, the mesh tessellating the domain can be adapted to
the problem via an ℎ-,?-adaptive strategy based on some form of solution error bound [BKP79; BG92].
In [CD02] the authors analyse a second order elliptic equation with strongly discontinuous coefficients
and derive an a-posteriori error estimator which depends locally on the oscillations of the coefficients
around singular points. The extension to low-order nonconforming finite element methods on both
triangular and quadrilateral meshes, with hanging nodes allowed for local mesh refinement, has been
addressed in [KH10]. Finally, the reduction rate of data oscillation, missed by the averaging process
associated with finite element methods (FEM), together with an a-posteriori error, was used to construct
an efficient adaptive FEM for two- and three-dimensional elliptic partial differential equations (PDEs)
with linear rate of convergence [MNS00].

In this chapter we treat the two-dimensional Poisson’s equation defined on two non-convex domains
with prescribed Dirichlet boundary conditions. The discretisation is performed with the symmetric
interior penalty discontinuous Galerkin (SIP-dG) method, formulated in [Arn82; Arn+00; Arn+02].
The popularity of the dG method resides in its flexibility with respect to adapted elements of various
types and shapes. In order to account for the singularities, we employ appropriate adaptive mesh
strategies to obtain optimal convergence rates for the dG solution.

In the first part of the Chapter we will derive a new a-posteriori error estimate for the solution in the
L2 norm. The proof relies on the dual weak formulation of the Poisson problem and on the properties
of the weighted Sobolev spaces [Sch98; Wih03]. An L∞ a-posteriori bound will be also used for the
subsequent numerical experiments [DG12]. The a-posteriori bounds will then be incorporated into
an ℎ-adapted SIP-dG method to solve Poisson’s equation on both a L-shaped and crack domain. The
rates of convergence of the solution in the L2 and L∞ norms will be computed using the corresponding
a-posteriori bounds.

In the second part of the Chapter we will construct A-adapted mesh by using Winslow’s method and an
Optimal Transport (OT) strategy guided by an a-priori estimate of the interpolation error of the solution.
The former method performs poorly on the proposed problem with different choices of monitor functions.
The latter method is an adaptation of the OT mesh adaptive methods described in [BW09], which rely on
the derivation of a local map from a computational to a physical domain (in which the underlying equation

78

is posed) through the solution of an appropriate Monge-Ampère equation. This new OT method exploits
the local structure of the solution of Poisson’s equation in the vicinity of the re-entrant corner, where the
solution strongly depends on the radial distance to the corner. This allows us to compute the OT mesh
via solving a one-dimensional non-algebraic equation, which is much less computationally expensive
than the fully two-dimensional Monge-Ampère equation [BW09; Pry12; MCB18]. To implement this
method, it is crucial to choose an appropriate value of an meta-parameter W, which controls the level
of node clustering near the re-entrant corner, ultimately affecting the accuracy, convergence rate of
the SIP-dG method and the quality of the mesh. The optimal values of W, in terms of accuracy and
convergence rate, can be determined through a-priori considerations of the solution interpolation error.

Through a series of careful numerical experiments we will demonstrate that the OT approach gives near
optimal rates of convergence of the interpolation error, with results very close to those of the ℎ-adaptive
refinement. However, the computational cost is significantly lower. It will be also proved theoretically
and by numerical tests that the adapted meshes show good regularity properties, and that the mesh quality
measure depends only on the angle of the re-entrant corner.

The remainder of the Chapter is structured as follows. In §4.2 we introduce the notation of the weighted
Sobolev spaces for the SIP-dG discretisation of Poisson’s equation. In §4.3 we derive the a-posteriori
error estimator in the L2 norm from the dual formulation of the original problem. In §4.4.2 we describe
the procedure for constructing the OT mesh and derive theoretically the optimal meta-parameters based
on the equidistribution of the local interpolation error. We will investigate the quality of the OT mesh
in terms of various metrics. In §4.5 we will conduct numerical tests on the L-shaped and crack domain.
Initially, we will assess the accuracy of the SIP-dG method generated on the ℎ-adaptive meshes using the
a-posteriori estimates. Then, we will show that the optimal meta-parameters derived from considering
the OT based strategy are close to the optimal ones showed numerically and equidistribute the a-posteriori
estimates. Finally, we will draw our conclusions in §4.6.

4.2 Problem setup and discretisation

The main aim of this Chapter is to study two different adaptive strategies coupled to a discontinuous
Galerkin method on a (non-uniform) mesh, for solving elliptic equations on a non-convex domain Ω

with a re-entrant corner of varying angle. A re-entrant corner is defined as any internal corner that forms
an angle of 180ř degrees or less. It is well known that the solution D of Poisson’s equation has gradient
singularity at this corner, leading to a degrading solution accuracy if a uniform mesh is used. As a result,
we will be considering non-uniform meshes generated by using either an ℎ-adaptation or a A-adaptation
method.

An example of such a non-convex domain (a L-shaped domain) is given in Figure 4-1, with a mesh given
by either a uniform or a non-uniform triangulation (generated by the OT method in §4.4.5).

79

(a) uniform triangulation. (b) OT mesh.

Figure 4-1: An example of a non convex domain Ω (a L-shaped domain), with a uniform triangulation
and a non-uniform graded triangulation.

In this section we detail some definitions related to non-convex domains, weighted Sobolev spaces where
the solution of Poisson’s equation lies, and introduce the abstract framework used to approximate such
solution.

Let Ω ⊂ R3 , 3 ≥ 2 be an open, bounded, polygonal domain with outward unit normal nΩ. Suppose
that the boundary Γ = mΩ is composed by a Dirichlet part Γ� with |Γ� | > 0 and a Neumann part Γ#
such that:

Γ = Γ� ∪ Γ# . (4.2.1)

All the vertices ofΩ are included in the closure. The corner vertices and the points of changing boundary
conditions are singular points and collected in the set

SP(Ω, Γ� , Γ#) = {�8 : 8 = 1, . . . , "}. (4.2.2)

The interior opening angle of the domain at �8 is measured anti-clockwise and denoted by l8 ∈ (0, 2c].
If l8 > c then the point �8 is a re-entrant corner and the solution will have a gradient singularity there.

Figure 4-2: Example of a non-convex domain Ω with two re-entrant corners.

80

Definition 4.2.1 (L-shaped and crack domain.) If 3 = 2 and l8 = 3c/2 we call �8 a corner (and if
there is only one such point) then Ω is called an L-shaped domain. Similarly if l8 = 2c, then �8 is
called a crack and Ω a crack domain.

To account for the change in the regularity of the elliptic problem at the re-entrant corners, suitable
Sobolev spaces will be introduced. A weight V8 ∈ (0, 1] is associated with each singular point �8 ∈
SP(Ω, Γ� , Γ#) and stored in the vector β = (V1, · · · , V"). For any number : ∈ R, we let

β + : = (V1 + :, . . . , V" + :),

�1 ≤ β < �2 ⇒ �1 ≤ V8 < �2 for 8 = 1, . . . , ".

We then introduce the weight function on Ω:

Φβ (x) =
"∏
8=1

A8 (x)V8 , A8 (x) = |x − �8 |, x ∈ Ω.

Then, for any integers < ≥ ; ≥ 0, the weighted Sobolev spaces H<,;

β
(Ω) are defined as completion of

the space �∞ (Ω) with respect to the weighted Sobolev norms

‖D‖2
H<,;

β
(Ω) = ‖D‖

2
H;−1 (Ω) + |D |

2
H<,;

β
(Ω) ; ≥ 1, ‖D‖2H<β (Ω) =

<∑
|U |=:
:=0

|�UD |Φβ+:
2

L2 (Ω) ; = 0, (4.2.3)

where

|D |2
H<,;

β
(Ω) =

<∑
|U |=:
:=;

|�UD |Φβ+:−;
2

L2 (Ω) , �UD =
m |U |D

mG
U1
1 mG

U2
2
, (4.2.4)

with U = (U1, U2) ∈ N2 and |U | = U1 + U2. When β = 0, we recover the standard Hilbert spaces as
H<,;

β
(Ω) ≡ H< (Ω).

Dirichlet boundary conditions are determined by the existence of a suitable trace lifting of the Dirichlet
data. The set of all functions in L2 (Γ), which are boundary values of functions in H< (Ω) is denoted by
H<−1/2 (Γ) and the continuous, linear mapping g : H< (Ω) → H<−1/2 (Γ) given by

g : H< (Ω) → H<−1/2 (Γ), < > 1/2

is called the trace operator [Sch98, Section 1.4].

81

Remark 4.1 (Properties of the weighted Sobolev spaces [Wih03, Remark 1.2.2]) The following prop-
erties hold:

1. If D ∈ H<,<

β
(Ω), < ≥ 0, then D ∈ H< (Ω0) for all domains Ω0 ⊂ Ω with

% ∉ Ω0 ∀% ∈ SP(Ω, Γ� , Γ#).

2. Although H2,2
β
(Ω) ⊄ H2 (Ω), it was proven in [BKP79, equation 2.2] that H2,2

β
(Ω) ⊂ �

0 (Ω).

3. For D ∈ H2,2
β
(Ω), there holds ∇D ∈ H1,1

β
(Ω)2.

We now introduce in the abstract setting the framework to derive the L2 a-posteriori estimate. Let + be
a Banach space and �(·, ·) : + ×+ → R a symmetric bilinear form and ; : + → R be a linear form. We
will consider the abstract problem of finding D ∈ + such that

�(D, E) = ; (E) ∀E ∈ +.

We will also assume that the �(·, ·) is bounded and coercive (Def.2.3.2 and Def.2.3.3 in Chapter 2).
We will apply this setting to solve the Poisson problem with a discontinuous Galerkin (dG) method on
a non-uniform mesh.

Properties of adapted mesh

Let � be a conforming mesh of Ω divided into elements (cells) as in Def. 2.3.4 of Chapter 2.

We suppose that all the meshes generated by ℎ-refinement procedures are shape regular, so that any
individual cell does not depart too much from being regular (for example it does not have vanishingly
small angles). In particular, if � = {�

8
}8∈N is a family of meshes, then � is characterised by the shape

regularity `(�) if

`(�) := min
 ∈�

8

(
` ≡

ℎ

d

)
> 0. (4.2.5)

The set of all edges of� is denoted byℰ, which we partition into subsetsℰ� ,ℰ# ,ℰ� , consisting of edges
lying on the Dirichlet boundary Γ� , the Neumann boundary Γ# , and the interior edges, respectively.
The corresponding quantities for each individual element are denoted by ℰ(), ℰ� (), ℰ# (),
ℰ� (), respectively. We split the index set {1, . . . , "} of boundary edges 48 into � and , on which
Dirichlet and Neumann boundary conditions are applied, respectively. This leads to Γ� =

⋃
8∈� 48 and

Γ# =
⋃
8∈ 48 .

82

The finite element space

We define the finite element space to be

V? := {E ∈ L2 (Ω) : E | ∈ P? () ∀ ∈ �}, (4.2.6)

where P? () is the space of polynomials of total degree ?. For the remainder of the Chapter, we denote
the space of piecewise linear polynomials by V, with ? = 1. We also remark that the space V does not
carry any inter-element continuity and does not encode any boundary condition. These will be enforced
weakly in the variational scheme.

Given an edge 4 ∈ ℰ, we define the jump and average operator of E ∈ V and v ∈ V2 at x ∈ 4 by

ÈEÉ :=

E | n + E | ′n ′

E | nΩ

ÈvÉ :=

v | · n + v | ′ · n ′ on 4 = m ∩ m ′

v | · nΩ on 4 = m ∩ Γ�
(4.2.7)

{{ E }} :=

1
2 (E | + E | ′)

E |
{{ v }} :=

1
2 (v | + v | ′) on 4 = m ∩ m ′

v | on 4 = m ∩ Γ�
(4.2.8)

Here E | denotes the trace of E onto the edge 4 ∈ ∩ ′ and n is the outward unit vector relative to
 on 4. For 4 ⊂ Γ, we define {{ E }} := E, {{ v }} := v, ÈEÉ := EnΩ, and ÈvÉ := v · nΩ.

We will use the following jump identity for the derivation of the a-posteriori error estimate:

ÈuEÉ = ÈuÉ {{ E }} + {{ u }} ÈEÉ . (4.2.9)

Using the jump and average operators we can introduce the mesh condition as a further quality measure
of the mesh:

@(�) := ‖ÈℎÉ /{{ ℎ }} ‖L∞ (ℰ�) . (4.2.10)

The quantity @(�) measures how ’similar’ adjacent mesh cells are. It has been proved in [GMP17] that
the inf-sup stability of the bilinear form given by the weak formulation of Poisson’s equation holds if
there is a constant U ∈ N+ such that @(�) ≤ U.

In later sections we will show how we can estimate both `(�) and @(�) for both ℎ-adapted and
A-adapted meshes on Ω.

83

To account for the singular behaviour of solutions at the singular points of the polygon Ω, we define the
set

0 = { ∈ � : % ∈ for some % ∈ SP(Ω, Γ� , Γ#)}. (4.2.11)

Let ∈
0. We will assume the mesh is enough refined such that exactly one singular point belongs
to . The corresponding vertex is denoted by � and the corresponding weight by ΦV . We denote
by ℰ� an edge of ℰ containing the vertex � , with ℰ� ⊂ ℰ(). For the sake of notation, if there is
only one singular point in Ω, we denote the set of edges with that endpoint byℰ0 and the weight by ΦV .

We conclude the section by stating the following Lemma, which is used to prove the consistency of the
discrete dG method for the Poisson problem and to derive the relative a-posteriori estimate:

Lemma 4.2 (Continuity at the interior edges [Wih03, Lemma 1.3.4]) Let D ∈ H1,1
β
(Ω)3 for 0 ≤

β ≤ 1 and 3 = 1, 2. Then, for an interior edge 4 ∈ ℰ� there holds ÈDÉ = 0 almost entirely (a.e.)
on 4.

4.2.1 The Poisson problem in 2D

We are interested in solving the following Poisson problem

−ΔD = 5 in Ω,

D = D� on Γ� .

∇D · nΩ = 6 on Γ# .

(4.2.12)

Here, 5 is a given datum lying on the dual space of H1
0 (Ω) and denoted by H−1 (Ω), D� ∈ H1/2 (Γ�)

and 6 ∈ H−1/2 (Γ#) are prescribed Dirichlet and Neumann boundary conditions, respectively. In the
framework of weighted Sobolev spaces; the existence, uniqueness and regularity of the solution of
problem (4.2.12) is stated in the following Theorem:

Theorem 4.3 (Regularity of Poisson’s equation [Wih03, Theorem 2.2.1]) Let Ω be a polygon in R2

and < ≥ 0 a given integer. Then, there exists a weight vector β<8= with 0 ≤ β<8= < 1 depending on the
opening angles at the vertices �8 ∈ SP(Ω, Γ� , Γ#), such that for weight vectors β with β<8= ≤ β < 1
and for

5 ∈ H<,0
β
(Ω), D� ∈ H<+3/2,3/2

β
(Γ�), 6 ∈ H<+1/2,1/2

β
(Γ#),

the problem (4.2.12) has a unique solution D ∈ H<+2,2
β

(Ω).

84

Remark 4.4 (Value of β [BG88, Theorem 2.1 - Remark 3]) In the case of Poisson’s equation the value
of β<8= is well-known at each corner �8 and given by

V<8=,8 =

1 − c

l
if �8�8+1 ∈ Γ� or Γ# ,

1 − c
2l otherwise.

(4.2.13)

As the re-entrant corner widens V increases. This enhances the singularity of the solution D, which must
be multiplied by Φβ with high β in equation (4.2.3) to state Theorem 4.3.

4.2.2 The variational formulation of Poisson’s equation

Since more than a decade, discontinuous Galerkin methods have been attractive due to their flexibility in
handling general meshes, non-uniformity in degree of approximation and capturing the rough solutions
more accurately [SW05]. We aim to employ this method for the problem (4.2.12). In particular, we
decide to use this over a standard FE linear discretization to derive a novel a-posteriori estimate in the
L2 norm.

We consider the standard formulation of the interior penalty method of Poisson’s equation (4.2.12):

Definition 4.2.2 (SIP-dG of Poisson equation [Arn82]) Define the discretised bilinear form �ℎ (·, ·)
for the Poisson problem by:

�ℎ (Dℎ , Eℎ) :=
∫
Ω

∇Dℎ · ∇Eℎ dx −
∫
ℰ�∪ℰ�

(
ÈDℎÉ · {{ ∇Eℎ }} + ÈEℎÉ · {{ ∇Dℎ }} −fℎ−1 ÈDℎÉ · ÈEℎÉ

)
dB

(4.2.14)

and the corresponding linear functional ;ℎ by

;ℎ (E) :=
∫
Ω

5 Eℎ dx +
∫
ℰ#

6E dB +
∫
ℰ�

(
Eℎfℎ

−1 − ∇Eℎ · nΩ

)
D� dB, (4.2.15)

where f > 0 is the discontinuity penalisation parameter used to ensure coercivity of the bilinear form.

The SIP-dG method of the Poisson problem (4.2.12) then reads as:

Find Dℎ ∈ V such that:

�ℎ (Dℎ , Eℎ) = ;ℎ (Eℎ) ∀Eℎ ∈ V.
(4.2.16)

Some basic properties of the SIP-dG method, such as existence and uniqueness of the result, have been
proved in [Wih03]. In particular, we are interested in following Proposition:

85

Proposition 4.5 (Consistency of the SIP-dG method [Wih03, Proposition 2.3.2]) Let Ω be a poly-
gon and β<8= ≤ β < 1 a weight vector. Then, for 5 ∈ H0,0

β
(Ω), D� ∈ H3/2,3/2

β
(Γ�), the bilinear form

and the linear functional in definition 4.2.2 are well-defined and the SIP-dG method is consistent:

�ℎ (D, Eℎ) − ;ℎ (Eℎ) = 0 ∀Eℎ ∈ V, (4.2.17)

where D ∈ H2,2
β
(Ω) is the exact solution of (4.2.12).

The proof is based on the fact that D ∈ H2,2
β
(Ω) ⊂ �

0 (Ω), ∇D ∈ H1,1
V
(Ω)2 by 4.1 and Lemma 4.2.

Remark 4.6 The SIP-dG method given in Def.4.2.2 is only consistent for D ∈ H3/2+Y (Ω), since we
require {{ ∇D }} to be well-defined in Proposition 4.5. Since D ∈ H2,2

β
(Ω), we assume that H2,2

β
(Ω) ⊂

H3/2+Y (Ω).

4.3 A-posteriori estimates for the SIP-dG method

In this section, we derive a novel a-posteriori bound for the solution of the SIP-dG method in the L2 norm.
Previous works have addressed a similar task. In particular, the authors in [MW14] derive a-posteriori
error estimates in the energy norm, while in [ARW07] the authors treat an optimal control problem for
a 2D elliptic equation with pointwise control constraints. The domain is assumed to be polygonal but
non-convex and corner singularities are treated by a priori mesh grading. Our proposed formulation in
the L2 norm does not involve any weight ΦV , resulting in an useful expression for testing the validity
of our numerical tests. At the end of this section, we will also introduce an upper bound of the error in
the L∞ norm [DG12] for further comparison between the ℎ- and A-adaptive methods. The L2 and L∞

a-posteriori estimates are given by (4.3.14) and (4.3.15).

The ℎ-adaptive strategy described in the subsequent numerical experiments uses these estimators in
an iterated fashion. Under this strategy, cells which have large a-posteriori errors are identified and
then refined. The solution is then recalculated until in all the cells the a-posteriori estimator is almost
the same. This leads to an adapted mesh which approximately equidistributes the a-posteriori error
estimators.

We will also give numerical evidence that these same bounds are automatically equidistributed when
using the optimal OT based A-adaptive strategy.

We now state element-wise trace inequalities and interpolation error bounds based on the local regularity
of the solution:

Lemma 4.7 (Trace inequalities [Sch98, Lemma 4.55]) Let ∈ � and denote by 4 ⊆ m the bound-
ary or some sides of . Further we define the space

86

H: (4) =
3∏
8=1

H: (48), : = 0, 1,

where 48 are the sides of and assume that one vertex of coincides with the origin. We have

1. If D ∈ H2 () and D = 0 at the vertices of , then D ∈ H1 (4) and

‖D‖2H1 (4) ≤ �ℎ |D |
2
H2 () ,

‖D‖2L2 (4) ≤ �ℎ
3
 |D |2H2 () .

(4.3.1)

2. If D ∈ H2,2
V
(), 0 < V < 1, and D = 0 at the vertices of , then

‖D‖2H1 (4) ≤ �ℎ
1−2V

|D |2H2,2

V
() ,

‖D‖2L2 (4) ≤ �ℎ
3−2V

|D |2H2,2

V
() .

(4.3.2)

We now state the following Lemma used to bound linear interpolants:

Lemma 4.8 (Errors for linear interpolant �Q [Wih03, Lemma 2.5.2]) Let be a triangle with ver-
tices �1, �2, �3. Further, Let E ∈ H2,2

V
(), with ΦV (x) = |x − �1 |V , 0 < V < 1. In corner

elements ∈
0, the linear interpolant of E in the vertices of , denoted by Π E satisfies

‖E − Π E‖L2 () ≤ �ℎ
2−V

|E |H2,2
V:
() ,

‖E − Π E‖H1 () ≤ �ℎ
1−V

|E |H2,2
V:
() ,

‖E − Π E‖H2,2
V
() ≤ � |E |H2,2

V:
() .

(4.3.3)

The above results holds also for V = 0, i.e. E ∈ H2 ().

87

4.3.1 Derivation of the L2 a-posteriori error estimate

We can now proceed with the derivation of the a-posteriori estimate. We will employ the dual formulation
of the original problem.

Theorem 4.9 (Dual formulation [BG88, Theorem 2.1]) There exists E ∈ H2,2
β
(Ω), where β depends

on the opening angles at the vertices of Ω, such that

−ΔI = D − Dℎ in Ω,

I = 0 on Γ� ,

∇I · nΩ = 0 on Γ# , (4.3.4)

and

‖I‖H2,2
β
(Ω) ≤ � ‖D − Dℎ ‖L2 (Ω) . (4.3.5)

Theorem 4.9 and the Galerkin orthogonality resulting from Proposition 4.5 leads to:

�ℎ (q, I) = 〈D − Dℎ , q〉 Dual formulation,

�ℎ (D − Dℎ , Iℎ) = 0 Galerkin orthogonality,

‖D − Dℎ ‖2 = �ℎ (D − Dℎ , I) = �ℎ (D − Dℎ , I − Iℎ).

(4.3.6)

Lemma 4.10 The L2 a-posteriori estimator for Poisson’s equation (4.2.12) on a non-convex domain
with one re-entrant corner using the SIP-dG method is

‖D − Dℎ ‖L2 (Ω) =
[
�1

(∑
 ∈∈�/
0

ℎ4
 ‖ 5 + ΔDℎ ‖

2
L2 () +

∑
 ∈
0

ℎ
4−2V

‖ 5 + ΔDℎ ‖2L2 ()

)
+ �2

(∑
4∈ℰ� /ℰ0

ℎ3
 4
‖È∇DℎÉ‖2L2 (4) +

∑
4∈ℰ0

ℎ
3−2V
 4
‖È∇DℎÉ‖2L2 (4)

)
+ �3

(∑
4∈ℰ� /ℰ0

ℎ 4 ‖ÈDℎÉ‖
2
L2 (4) +

∑
4∈ℰ0

ℎ
1−2V
 4
‖ÈDℎÉ‖2L2 (4)

)]1/2

(4.3.7)

where �8 , 8 = 1, . . . , 3 are positive constants depending on the mesh and shape regularity, ℎ , ℎ 4 is
the cell size of element , with 4 having an edge 4, and V is the parameter of the weighted Sobolev
space depending on the width of the re-entrant corner.

88

1 Proof: We use eq.(4.3.6) to bound the error in the L2 norm through the bilinear form �ℎ (I −
Iℎ , D − Dℎ):

�ℎ (I − Iℎ , D − Dℎ) =
∫
Ω

∇(I − Iℎ) · ∇(D − Dℎ) dx −
∫
ℰ�∪ℰ�

(
ÈI − IℎÉ {{ ∇(D − Dℎ) }} + ÈD − DℎÉ {{ ∇(I − Iℎ) }}

− fℎ−1 ÈI − IℎÉ ÈD − DℎÉ
)

dB

=

∫
ℰ�

(
È∇(D − Dℎ)É {{ I − Iℎ }} + {{ ∇(D − Dℎ) }} ÈI − IℎÉ

)
dB +

∫
Ω

(I − Iℎ) (5 + ΔDℎ) dx

−
∫
ℰ�

(
ÈI − IℎÉ {{ ∇(D − Dℎ) }} + ÈD − DℎÉ {{ ∇(I − Iℎ) }} −fℎ−1 ÈI − IℎÉ ÈD − DℎÉ

)
dB

=

∫
Ω

(I − Iℎ) (5 + ΔDℎ) dx +
∫
ℰ�

(
È∇(D − Dℎ)É {{ I − Iℎ }} − ÈD − DℎÉ {{ ∇(I − Iℎ) }}

+ fℎ−1 ÈI − IℎÉ ÈD − DℎÉ
)

dB

=: R1 + R2 + R3 + R4.

(4.3.8)

For the first term we start applying the Cauchy-Schwarz inequality:

R1 =

∫
Ω

(I − Iℎ) (5 + ΔDℎ) dx

≤
∑

 ∈�/
0

‖ 5 + ΔDℎ ‖L2 () ‖I − Iℎ ‖L2 () +
∑
 ∈
0

‖ 5 + ΔDℎ ‖L2 () ‖I − Iℎ ‖L2 ()

≤ � (1)1

∑
 ∈�/
0

‖ 5 + ΔDℎ ‖L2 () ℎ
2
 |I |H2 () + �

(2)
1

∑
 ∈
0

‖ 5 + ΔDℎ ‖L2 () ℎ
2−V |I |H2,2

V
()

≤ �1 ‖I‖H2,2
V
(Ω)

(∑
 ∈∈�/
0

ℎ2
 ‖ 5 + ΔDℎ ‖L2 () +

∑
 ∈
0

ℎ
2−V

‖ 5 + ΔDℎ ‖L2 ()

)
≤ �1 ‖D − Dℎ ‖L2 (Ω)

(∑
 ∈∈�/
0

ℎ2
 ‖ 5 + ΔDℎ ‖L2 () +

∑
 ∈
0

ℎ
2−V

‖ 5 + ΔDℎ ‖L2 ()

)
,

(4.3.9)

where Iℎ = Π I, the linear interpolant of I in the vertices of . For ∈ �/
0 and ∈
0 we used
Lemma 4.8. The last inequality is then given by eq.(4.3.5) in Theorem 4.9.

For the second term we obtain

89

R2 =
∑

4∈ℰ� /ℰ0

∫
4

È∇(D − Dℎ)É {{ I − Iℎ }} +
∑
4∈ℰ0

∫
4

È∇(D − Dℎ)É {{ I − Iℎ }} dB

≤ � (1)2

∑
4∈ℰ� /ℰ0

‖È∇DℎÉ‖L2 (4) ‖ {{ I − Iℎ }} ‖L2 (4) + �
(2)
2

∑
4∈ℰ0

‖È∇DℎÉ‖L2 (4) ‖ {{ I − Iℎ }} ‖L2 (4)

≤ � (1)2

∑
4∈ℰ� /ℰ0

ℎ
3/2
 4
|I − Iℎ |H2 (4) ‖È∇DℎÉ‖L2 (4) + �

(2)
2

∑
4∈ℰ0

ℎ
3/2−V
 4

|I − Iℎ |H2,2
V
(4) ‖È∇DℎÉ‖L2 ()

≤ � (1)2

∑
4∈ℰ� /ℰ0

ℎ
3/2
 4
|I |H2 (4) ‖È∇DℎÉ‖L2 (4) + �

(2)
2

∑
4∈ℰ0

ℎ
3/2−V
 4

|I |H2,2
V
(4) ‖È∇DℎÉ‖L2 (4)

≤ �2 ‖D − Dℎ ‖L2 (Ω)

(∑
4∈ℰ� /ℰ0

ℎ
3/2
 4
‖È∇DℎÉ‖L2 (4) +

∑
4∈ℰ0

ℎ
3/2−V
 4

‖È∇DℎÉ‖L2 (4)

)
,

(4.3.10)

where we have used Remark 4.1 and Lemma 4.2 for ∇D ∈ H1,1
V
(Ω)2, and Lemma 4.8 for |I − Iℎ |H2 (4)

and |I − Iℎ |H2,2
V
(4) . Note that for any edge 4 := 1 ∩ 2 ∈ ℰ, with elements 1, 2 ∈ � , the quantity

 4 := 1 ∪ 2 is well defined as the mesh is conforming.

For the third term we apply again the Cauchy-Schwarz and the trace inequality to obtain

R3 = −
∑

4∈ℰ� /ℰ0

∫
4

ÈD − DℎÉ {{ ∇(I − Iℎ) }} −
∑
W∈ℰ0

∫
4

ÈD − DℎÉ {{ ∇(I − Iℎ) }}

≤ � (1)3

∑
4∈ℰ� /ℰ0

‖ÈDℎÉ‖L2 (4) ‖ {{ ∇(I − Iℎ) }} ‖L2 (4) + �
(2)
3

∑
4∈ℰ0

‖ÈDℎÉ‖L2 (4) ‖ {{ ∇(I − Iℎ) }} ‖L2 (4)

≤ � (1)3

∑
4∈ℰ� /ℰ0

‖ÈDℎÉ‖L2 (4) ℎ
1/2
 4
|I |H2 (4) + �

(2)
3

∑
4∈ℰ0

‖ÈDℎÉ‖L2 (4) ℎ
1/2−V
 4

|I |H2,2
V
(4)

≤ �3 ‖D − Dℎ ‖L2 (Ω)

(∑
4∈ℰ� /ℰ0

ℎ
1/2
 4
‖ÈDℎÉ‖L2 (4) +

∑
4∈ℰ0

ℎ
1/2−V
 4

‖ÈDℎÉ‖L2 (4)

)
,

(4.3.11)

where we have used the property H2,2
V
⊂ H1,1

V
and Lemma 4.2 to cancel the term ÈDÉ.

90

For the fourth term we have

R4 =
∑

4∈ℰ� /ℰ0

∫
4

fℎ−1
4 ÈD − DℎÉ ÈI − IℎÉ dB +

∑
4∈ℰ0

∫
4

fℎ−1
4 ÈD − DℎÉ ÈI − IℎÉ dB

≤ � (1)4

∑
4∈ℰ� /ℰ0

fℎ−1
4 ‖ÈDℎÉ‖L2 (4) ‖ÈI − IℎÉ‖L2 (4) + �

(2)
4

∑
4∈ℰ0

fℎ−1
4 ‖ÈDℎÉ‖L2 (4) ‖ÈI − IℎÉ‖L2 (4)

≤ � (1)4 f
∑

4∈ℰ� /ℰ0

ℎ−1
4 ℎ

3/2
 4
‖I − Iℎ ‖H2 (4) ‖ÈDℎÉ‖L2 (4) + �

(2)
4 f

∑
4∈ℰ0

ℎ−1
4 ℎ

3/2−V
 4

‖I − Iℎ ‖H2,2
V
(4) ‖ÈDℎÉ‖L2 (4)

≤ �4f ‖D − Dℎ ‖L2 (Ω)

(∑
4∈ℰ� /ℰ0

ℎ
1/2
 4
‖ÈDℎÉ‖L2 (4) +

∑
4∈ℰ0

ℎ
1/2−V
 4

‖ÈDℎÉ‖L2 (4)

)
.

(4.3.12)

Summing up the terms (4.3.9)–(4.3.12), we divide by ‖D − Dℎ ‖L2 (Ω) and apply the arithmetic-mean
geometric-mean inequality [HR11, Theorem B.0.11] to obtain the final result. �

Corollary 4.11 The expression derived in Lemma 4.10 can be simplified if Dℎ ∈ V, with ? = 1 and
5 = 0. We further introduce the indicator function 14∈ℰ0 and rewrite (4.3.7) in the more compact form

‖D − Dℎ ‖L2 (Ω) ≤
(
�̂1

∑
4∈ℰ�

ℎ
3−214∈ℰ0 V

 4
‖È∇DℎÉ‖2L2 (4) + �̂2

∑
4∈ℰ�

ℎ
1−214∈ℰ0 V

 4
‖ÈDℎÉ‖2L2 (4)

)1/2
, (4.3.13)

where the term with constant �̂2 is the sum of the terms with constant�3 in eq.(4.3.7), as they all depend
on ÈDℎÉ with the same power of ℎ 4 .

For practical purposes, we reformulate (4.3.13) as a sum of cell-wise L2 error estimates:

‖D − Dℎ ‖2L2 (Ω) ≤
∑
 ∈�

(
�̂1

∑
4∈ℰ� ()

ℎ
3−214∈ℰ0 V̂

 4
‖È∇ℎDℎÉ‖2L2 (4) + �̂2

∑
4∈ℰ� ()

ℎ
1−214∈ℰ0 V̂

 4
‖ÈDℎÉ‖2L2 (4)

)
=:

∑
 ∈�

[2
L2 ,

,

(4.3.14)

where V̂ ∈ [0, 1] replaces the weight V (Remark 4.4). The term V̂ is included in the upper bound for the
L2 error but does not prevent the solution D of problem 4.2.12 to lie in H2,2

V
with V > V̂.

We also present an L∞ a-posteriori estimator for the SIP-dG method [DG12, equation 1.2] by assuming
that ? = 1 and 5 = 0 as in (4.3.13). The domain Ω is not required to be convex, thus the following bound
is appropriate for our numerical calculations:

91

‖D − Dℎ ‖L∞ (Ω) ≤ � ;ℎ,3

(
‖ℎ È∇DℎÉ‖L∞ (ℰ�) + ‖ÈDℎÉ‖L∞ (ℰ�)

)
=: [L∞ , , (4.3.15)

where ;ℎ,3 =
(
ln(1/ℎ)

)2.

We conclude this section by introducing the global error indicator [2
L2 :=

∑
 ∈� [2

L2 ,
and [L∞ :=

max ∈� [L∞ , , where [2
L2 ,

and [L∞ , refers to each cell in equation (4.3.14) and (4.3.15),
respectively.

4.4 A-adapted meshes

In this section we implement two A-adaptive strategies: Winslow’s diffusion method and an OT based
strategy. For the former, we propose different monitor functions and test the accuracy of the SIP-dG
method over the adapted meshes. We then describe our semi-analytical approach to construct an OT
mesh by exploiting the behaviour of the solution near the re-entrant corner. This results in a non-algebraic
equation that maps a uniform computational mesh to the OT mesh. The implementation of the algorithm
depends on the meta-parameter W. The optimal value that minimises the local interpolation error will
be computed analytically and numerical tests will corroborate the validity of the results.

4.4.1 Winslow’s diffusion method

The Winslow’s diffusion method is a moving mesh PDE (MMPDE), defined in §1 of Chapter 2. We
consider the functional

�,8= [ξ] =
1
2

∫
Ω

1
d(x)

∑
8

(∇b8)) (∇b8) dx, (4.4.1)

where d(x) > 0 is a given monitor function. This function can be chosen to depend on the discrete
solution Dℎ of the physical PDE. We consider as possible choices:

1. Gradient:

d | =

(
1 + 1

X
|∇ℎDℎ |2

)1/2
. (4.4.2)

2. Curvature:

d | =

(
1 + 1

X
|ΔℎDℎ |

)1/2
. (4.4.3)

92

3. A-posteriori:

d | =

(
1 + 1

X
[2

L2 ,

)1/2
. (4.4.4)

where X is a prescribed intensity parameter for � [HR11; BHR09]. The MMPDE associated with the
functional (4.4.1) has been derived and discretised in Chapter 3. Dirichlet boundary conditions are
imposed on all the sides of Ω except for that ones having the re-entrant corner as extremum. For those,
the monitor function d(ξ) has been first projected onto the two sides and the solution of the MMPDE5
[HR11] in one dimension is computed. This results in a effective movement of the boundary mesh points
towards the origin.

The non-convex domain Ω poses a practical complication for the application of Winslow’s MMPDE.
In fact, it is well known that if the computational domain Ω2 is not convex, the resulting physical mesh
might feature very skewed or even overlapping elements. A natural solution for that issue is to define
a computational mesh that is convex and solve for the coordinate transformation x(ξ) on this domain
[CHR99; LTZ01]. Once Ω2 is selected, a mesh �2 with the same topology as � can be constructed by
first specifying a correspondence between the boundaries mΩ and mΩ2 by a mapping 6(x), and then let
�2 be the image of � under the mapping ξ(x) satisfying

Δξ(x) = 0 in Ω,

ξ = 6(x) on mΩ.
(4.4.5)

(a) L-shaped domain. (b) Computational domain.

Figure 4-3: Solution of equation (4.5.1) represented in the physical and computational domain.

By mapping the L-shaped domain to a hexagon, it is possible to solve Winslow’s MMPDE without
incurring the risk of tangling elements. We remind that also the choice of X heavily affects the quality
of the final mesh. In particular, for X � 1, the mesh does not adapt to the target function. On the other
hand, X � 1 yields an adapted mesh, but the mesh elements might result too skewed.

93

(a) Gradient d. (b) Curvature d.

(c) A-posteriori d (V̂ = 0.0). (d) A-posteriori d (V̂ = 0.99).

Figure 4-4: Solution of eq.(4.5.1) on the mesh given by the Winslow’s MMPDE (dimV = 7005) with
monitor functions d in eq.(4.4.2)–(4.4.4).

103 104 105

10−4

10−3

1.0

0.67

dimV

‖ D
−
D
ℎ
‖ L

2
(Ω
)

unstructured
gradient
curvature
V̂ = 0.99

Figure 4-5: Convergence rates for Winslow’s MMPDE with monitor functions d in eq.(4.4.2)–(4.4.4).

Figure 4-3 shows the solution of Poisson’s equation on the L-shaped domain and the mapping to an
hexagonal computational domain using equation (4.4.5). Given the convex nature of the computational
domain, the Winslow’s MMPDE becomes stable and converges to a solution for all the monitor functions
in (4.4.2)–(4.4.4), as visible in Figure 4-6.

The monitor functions in (4.4.2)–(4.4.4) generate different meshes. In Figure 4-4, we notice that all

94

0 100 200

10−4

10−3

8

‖ D
−
D
ℎ
‖ L

2
(Ω
)

(a) Gradient d.

0 100 200

10−4

10−3

8

dofs: 684
dofs: 1716
dofs: 7005
dofs: 28290
dofs: 100080

(b) Curvature d.

0 50 100 150

10−4

10−3

10−2

8

‖ D
−
D
ℎ
‖ L

2
(Ω
)

(c) A-posteriori d (V̂ = 0.0).

0 50 100 150

10−4

10−2

8

(d) A-posteriori d (V̂ = 0.33).

0 100 200

10−4

10−3

8

‖ D
−
D
ℎ
‖ L

2
(Ω
)

(e) A-posteriori d (V̂ = 0.5).

0 100 200

10−4

10−3

8

(f) A-posteriori d (V̂ = 0.99).

Figure 4-6: The solution error decreases monotonically over the iterations until reaching convergence
for all the monitor functions. The relative tolerance has been fixed to 1 × 10−5, while the timestep has
been set to : = 10−3.

the meshes have elements compressed towards the re-entrant corner. In particular, the gradient and the
a-posteriori (V̂ = 0) monitor functions yield a mesh with few skewed elements (Figure 4-4a and 4-4c).
In contrast, the curvature and the a-posteriori (V̂ = 0.99) monitor functions produce anisotropic meshes
with more skewed elements (Figure 4-4b and 4-4d). The higher level of adaptation for the latter monitor
functions explains the optimal order of convergence showed in Figure 4-5.

95

4.4.2 Mesh generation using an OT strategy

The Optimal Transport (OT) is a A-adaptive strategy that takes a different approach than the ℎ-adaptive
method, as discussed in the introduction of Chapter 2. This process can be interpreted as taking a
computational domain Ω2 , with a fixed mesh �2 , and then mapping this with a diffeomorphic map F to
a physical domain Ω. The physical mesh � is then image of �2 under the action of F. The properties
of the mesh (such as the mesh regularity and the mesh grading) can then be found from looking at the
nature of the map. In the OT strategy this map is the gradient x = ∇q of a (mesh) potential, q which (in
general) is the solution of a Monge-Ampère equation. The main assumption is that there is a monitor
function d(x) of the solution at the point x in the physical space, which is large where we need to cluster
the mesh points. The OT method then constructs a mesh by equidistributing the integral of d over the
mesh cells, whilst minimising the Wasserstein distance between the mesh and a uniform mesh. This
approach gives both good mesh scaling and good mesh regularity [BRW15; BHR09; Wel+16]. The
mesh potential satisfies the Monge-Ampère equation in the form

d(∇q)�2q = �, (4.4.6)

where �2q is the Hessian of q and � is a constant. In this section we consider a function d(x) which
monitors the a-priori linear cell interpolation error of the solution in L∞ or in L2 norm. This is a proxy
for the FE error estimated in the previous sections, but we will show that it leads to good error estimates.

In general the fully nonlinear PDE (4.4.6) is hard to solve for a general domain, however, by making
certain observations about the nature of the re-entrant corner problem, we can make some significant
simplifications, which allows us to find an approximate solution for q. To do this we focus on the area
close to the re-entrant corner, which is where the mesh needs to be refined. We will assume that both
the computational and the physical domain have the same re-entrant geometry, and will consider a map
from one to the other which concentrates the mesh points close to the corner of the physical domain.

To do this we will take the origin 0 at the re-entrant corner, and take polar coordinates (B, k) and
(A, \) in the respective domains. We will also assume that k = \ = 0 on one edge of the corner and
k = \ = 2c/l on the other. Now we consider the local form of the solution D(A, \). At the corner this
has the leading order expression D(A, \) ∼ A X 5 (\) where the function 5 is slowly varying. As X < 1 in
the problems of interest, we have that the partial derivatives DA and DAA are all singular as A → 0, whereas
the partial derivatives of D with respect to \ are all bounded in this limit. The large values of the partial
derivatives with respect to A lead to large interpolation and FE errors. In other words, the difficulty in
representing D is due to its variation in A rather than in \. Accordingly it makes sense to consider a
mesh which concentrates points in the A-direction, but not in the \-direction. We then consider maps
F such that F(B, \) = (A (B), \). Note that this map trivially preserves the geometry of the re-entrant
corner. Following the framework described above, we can consider a radially symmetric mesh potential

96

function q(B) so that A = dq/dB and d(x) ≡ d(A). It follows from the reasoning in [BW10] that the
two-dimensional Monge-Ampère equation (4.4.6) takes the simpler form

d(qB)qBBA = �B (4.4.7)

or more simply

d(A)A 3A
3B

= �B. (4.4.8)

We now consider how the solution of this equation generates a mesh. Suppose that there is a uniform
mesh in the computational domain of constant mesh width (cell diameter) Δ. Provided that Δ is small,
then the corresponding mesh width ℎ in the physical domain is given by

ℎ =
dA
dBΔ. (4.4.9)

We will now consider solutions of (4.4.8) for various forms of the monitor function d(A).

4.4.3 Local mesh scaling

Consider the general solution of equation (4.2.12). The local (linear) interpolation error � on a small
cell of width ℎ in various norms is bounded by

� < 1ℎ
X
D (V)

L? ()
. (4.4.10)

Here X and V depend upon the order ? being used, although V = 2 is typical for the norms and problems
we consider. Using the expression D ∼ AU 5 (\), where 5 is a regular function of \, and again noting that
as A → 0 the partial derivatives of D with respect to A dominate those with respect to \, it follows that
for small A

� < 2ℎ
XAU−V .

In the OT formulation, we aim to equidistribute the estimate � over each cell. It follows that there is a
constant 3, and an exponent W (which is a meta-parameter which depends on the norm), such that

ℎ = 3A
W . (4.4.11)

Lemma 4.12 Let ℎ be given by (4.4.11), then this is equivalent to taking a monitor function d(A) given
by:

d(A) = �A−2W (4.4.12)

97

for some constant �.

1 Proof: From (4.4.11) we have ℎ ∼ 3A/3B = AW . Hence B ∼ A1−W . From the Monge-Ampère
equation (4.4.8) we then have, for some constant �

d(A)AAW = B = �A1−W so that d(A) = �A−2W .

�

The choice of W required to equidistribute the interpolation error � is dependent upon the norm used to
calculate the error. In particular, we have the following result:

Lemma 4.13 The value of W required to equidistribute the interpolation error is:

W = 1 − c

2l for the L∞ norm, W =
2
3 −

c

3l for the L2 norm.

2 Proof: See Appendix A. �

We remark that this strategy for finding W aims to equidistribute the two-dimensional interpolation error.
However, this is likely to be sub-optimal for the SIP-dG framework, which seeks instead to minimise the
local FE error. However, we will show in the numerical results of the next section, that the estimate of
W above is very close to being optimal for the FE error.

4.4.4 Solution of Monge-Ampère equation

The monitor function in (4.4.12) gives excellent mesh compression close to the corner when A is small.
However we also seek a mesh which becomes asymptotically regular as A becomes larger, so that it can
be matched to a near uniform computational mesh away from the re-entrant corner. This is equivalent to
having a monitor function which is close to a constant � for large values of A . A monitor function d(A)
which satisfies both conditions is given simply by:

d(A) = � + �A−2W . (4.4.13)

To find the mesh over all ranges of A we then substitute eq.(4.4.13) into eq.(4.4.8) to give

(
� + �A−2W

)
A

dA
dB = B.

98

Integrating this expression we find that A satisfies the nonlinear algebraic equation

�A2 + �

1 − W A
2(1−W) = B2. (4.4.14)

The equation (4.4.14) determines the mesh transformation from B to A (noting that \ is mapped to \).
Note that the parameter � and � controls the level of mesh compression near the corner. In fact, for high
values of � and small A we have A ∼ B1/(1−W) and for large � and A we have A ∼ B. For the remainder of
the analysis, we choose � = (1− W), as this is the maximum admissible value that respects the boundary
condition � + �/(1− W) = 1 when A, B = 1. The nature of the mesh then depends on the meta-parameter
W and we will find that the solution error is sensitive to its value.

4.4.5 Computation of the final mesh

The transformation (4.4.14) transforms a regular mesh in the computational domain to a mesh in the
physical domain, which is compressed close to A = 0 and which evolves into an almost uniform mesh as
A increases. However, the final transformation does not (quite) match the outer boundary of the region
to itself, and we need to make a small adjustment to the transformation for larger values of A to make
this possible. The following procedure can be used if there is a single re-entrant corner at the origin,
and the domain is ’star-shaped’ so that a straight line from the origin to each point on the boundary lies
wholly within Ω. Suppose we have a uniform regular mesh (b8, 9 , [8, 9) in Ω2 which we want to map into
an adapted non-uniform mesh (G8, 9 , H8, 9) in the (star-shaped) physical domain, with 8, 9 = 1, . . . , # . The
application of the adjusted OT method provides the desired mesh as follows:

1. For each pair (8, 9) compute B2
8, 9

= b2
8, 9
+ [2

8, 9
.

2. Compute the angle \8, 9 with respect to the semi-positive G axis by arctan
(
[8, 9

b8, 9

)
.

3. Compute the length ;8, 9 of the line spanned from the origin with angle \8, 9 to the boundary of the
domain.

4. Set the parameter � = 1− W and enforce the condition � + �
1−W ;

−2W
8, 9

= 1. This ensures that the new
mesh boundary matches with the original boundary region.

5. Solve equation (4.4.14) to find A8, 9 . Note that this can be done to low accuracy.

6. Set (G8, 9 , H8, 9) =
A8, 9

B8, 9
(b8, 9 , [8, 9).

Given the new mesh (G8, 9 , H8, 9), we can increase the resolution by applying the previous procedure from
a more graded uniform mesh.

An example of an OT mesh computed in this manner for the L-shaped domain, and W = 2/3 has already
been given in Figure 4-1 in §4.2. In this case # = 833, and the mesh on the right of this Figure is obtained

99

by solving the Monge-Ampère equation as above, with the uniform triangulation of the L-shaped domain
as computational domain on the left side. It is clear from the Figure that the resulting OT mesh is regular,
symmetric and smoothly graded towards the corner.

4.4.6 Mesh Quality

In the earlier discussion on ℎ-adaptivity in §4.2 we introduced two measures of mesh quality. The shape
regularity ` = ℎ:/d in 4.2.5 is a measure of the skewness of each individual cell . The mesh
condition @(�) = ‖ÈℎÉ /{{ ℎ }} ‖L∞ (ℰ�) in equation (4.2.10) is a measure of how smoothly graded the
mesh is. In the context of an ℎ-adaptive mesh these quantities are estimated from a direct analysis of the
mesh itself. In the context of A-adaptive meshes, and especially OT meshes, estimates of these quantities
can be obtained directly from the properties of the map from the computational to the physical space.

Global quality measure

A common metric for regularity of the mesh elements in the context of A-adaptive methods is the
skewness of the cell , which indicates how far mesh elements are from being equilateral. This metric
is very closely related to the shape regularity ` of each cell. Given the corresponding Jacobian J

with eigenvalues _1 and _2, the quality measure & for the element is a measure of the skewness and
is represented as in Def.2.3.7:

& := 1
2

(
_1
_2
+ _2
_1

)
,

with global mesh quality measure & = max ∈� & .

Note that & ≥ 1 and & = 1 for a completely non-skewed mesh. We then have the following result:

Theorem 4.14 The mesh quality measure & is bounded as A → 0 with a bound that depends only on W:

&(W) = 1
2

(
_1
_2
+ _2
_1

)
=

1
2

(
(1 − W) + 1

(1 − W)

)
. (4.4.15)

This entails two properties for &:

1. Independence on the mesh resolution with dimension # .

2. Independence on the distance from the origin 0.

1 Proof: Assuming that the computational mesh is uniform and so has a mesh quality measure &
independent of # , the quality measure of the physical mesh is also independent of # . Under the OT

100

transformation (G, H) = A
B
(b, [), we can determine the value of & analytically, this allows us to estimate

rigorous bounds for & . In particular, when the mesh gets more uniform away from the corner, we
assume that the largest values of & are given for cells where A ∼ 0. In this case the algebraic expression
(4.4.14) simplifies to A1−W = B. We then compute the Jacobian of the map (G, H) = B

W

1−W (b, [):

J =

[
Gb G[

H b H[

]
=

W

1 − W (b
2 + [2)

W

2(1−W) −1
[
b2 + (b2 + [2) 1−W

W
b[

b[[2 + (b2 + [2) 1−W
W

]
.

The eigenvalues of this Jacobian matrix are then _1 =
1−W
W
(b + a)2 and _2 = 1

W
(b + a)2. A simple

calculation gives the skewness measure (4.4.15) expressed only in terms of the coefficient W.

�

We can see from (4.4.15) that we have a good bound on the mesh quality measure. For example, if
W = 2/3, then& = 5/3, which is still close to one. This implies that the OT meshes are very regular, even
as A → 1. However, as W increases, & also increases and the mesh quality deteriorates. In Figure 4-7
we plot the resulting values of & for a variety of meshes for the L-shaped domain, computed using the
method of the previous section, which confirms these results. These observations are also qualitatively
suggested by looking at the OT mesh produced for the L-shaped and the crack domain and illustrated in
Figs. 4-12 and 4-17.

0 0.2 0.4 0.6
1

1.2

1.4

1.6

W

&

(a) The mesh quality measure & of the OT mesh
as a function of W.

103 104 105

1

1.2

1.4

1.6

dimV

W = 0.095
W = 0.24
W = 0.385
W = 0.52
W = 0.67

(b) Quality measure of the OT mesh as a function of # = dimV.

Figure 4-7: (Left) We show that the dependence of the quality measure on W computed numerically fits
the theoretical formula in (4.4.15) on the L-shaped domain (dimV = 4608). (Right) The value of &(W)
is independent on the dimension of the FE space.

Mesh condition

The mesh condition @(�) is a measure of how similar adjacent mesh cells are. For the OT meshes
constructed above, the primary cell variation is in the radial direction. If we assume as before that we have
a radial coordinate A (B), then for some constant Δ we have {{ ℎ }}= Δ(3A/3B) and ÈℎÉ = Δ(d2A/dB2)XB,

101

where XB is the increment in B from one cell to the next in the radial direction. The continuous
approximation for the condition @ at the -th cell, is then given by

@̄ =
d2A/dB2

dA/dB XB.

Suppose now that we have an OT mesh with dA/dB = AW . A simple calculation gives

@̄(�) = W

(1 − W)
XB

B
.

The largest value of @̄(�) arises at the boundary of the first and second cell from the origin, where
B = XB. This gives

@̂(�) = W

1 − W (4.4.16)

as an estimate for @(�). Observe that @̂(�) increases as W → 1 and @̄ decreases as B increases.

4.5 Numerical Results

In this section we compare results obtained with the a-posteriori estimate for ℎ-adaptivity and the OT-
based A-adaptive method on similarly sized meshes. In particular, we consider as a model problem the
following Poisson’s equation in the non-convex domain:

−ΔD = 0 in Ω,

D� (A, \) = A c/l sin (c\/l) on Γ,
(4.5.1)

where l ∈ [c, 2c] is the angle of the re-entrant corner located at 0 = (0, 0) ∈ R2. If l = 3c/2 this is
an ’L-shaped’ domain, and if l = 2c this is a ’crack’ domain. We note that D is analytic in Ω/{0} and
D ∈ H2,2

β
(Ω) ⊂ �

0 (Ω), so that SP(Ω, Γ� , Γ#) = {�1 := 0}. Therefore, the weight function is defined
as ΦV (x) = |x|V , where V ∈ (1 − c

l
, 1], according to Remark 4.4. Let Ω be the L-shaped domain

(−1, 1) × (−1, 1)/([0, 1) × (−1, 0]) with interior angle l = 3c/2 at the re-entrant corner. Then, the
harmonic solution of problem (4.5.1) is

D(A, \) = A2/3 sin (2\/3) . (4.5.2)

102

We compare the accuracy of the SIP-dG method applied to problem (4.5.1) using the different adaptive
mesh strategies and assess the quality of the resulting meshes. For all the tests, we compute the numerical
solution Dℎ ∈ V with ? = 1. All the tests have been performed with the FEniCS library [LW10].

4.5.1 Results for the L-shaped domain

4.5.1.1 ℎ-refinement

In the ℎ-adaptive process, we use the global error indicator [2
L2 and [L∞ defined in (4.3.14) and (4.3.15).

As a widely accepted criterion, elements with large error estimator are marked according to longest
edge bisection [BR14]. Here, we employ the so called maximum strategy (ms) starting from a uniform
triangular mesh, which can be described as follows:

[L2 , ≥ U max
 ′∈�

[′ ⇐⇒ is marked for refinement, (4.5.3)

where U ∈ (0, 1) is a predetermined parameter. The same criterion holds for [L∞ , . Under this
condition, we ensure that the mesh is regular enough in order to satisfy the assumptions in §4.3.1 for the
derivation of the a-posteriori estimate.

103 104 105
10−5

10−4

10−3

1.0

0.67

dimV

‖ D
−
D
ℎ
‖ L

2
(Ω
)

uniform
V̂ : 0.0
V̂ : 0.33
V̂ : 0.5
V̂ : 0.99

Figure 4-8: Asymptotic convergence rates for the ℎ-refinement strategy on the finite element space V.
Note that the rate of convergence is optimal and independent on V̂. Uniform mesh refinement yields a
convergence rate of 2/3 due to the singular behaviour of the solution at the origin [GMP17].

The ms ℎ-refinement strategy has been tested for different V̂. We observe that the level of refinement is
increasing near the corner as a function of V̂ (Figure 4-9) but does not affect the order of convergence
(Figure 4-8).

103

(a) V̂ = 0.0. (b) V̂ = 0.99.

Figure 4-9: Mesh obtained via the L2 a-posteriori bound (4.3.14) after 15 refinements.

4.5.1.2 OT based meshes for different values of W

We next consider the results of using a SIP-dG on an OT mesh with dimV = # nodes, generated by
using different values of W. In each case we calculate the L2 error of the solution, and also various mesh
quality measures. The results are summarised in Figs. 4-10 and 4-11.

103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1

dimV

‖ D
−
D
ℎ
‖ L

2
(Ω
)

(a) L2 error which is minimised when W ≈ 4/9.

103 104 105 106

10−5

10−4

10−3

10−2

10−1

dimV

‖ D
−
D
ℎ
‖ L
∞
(Ω
)

W = 0.0
W = 0.2
W = 0.44
W = 0.5
W = 0.67
W = 0.8
W = 0.9

(b) L∞ error which is minimised when W ≈ 2/3.

103 104 105 106

10−0.5

100

dimV

@
(�
)

(c) Mesh condition.

103 104 105 106

100.6

100.7

dimV

`
(�
)

W = 0.0
W = 0.2
W = 0.44
W = 0.5
W = 0.67
W = 0.8

(d) Shape regularity.

Figure 4-10: Error and quality measures of the OT mesh for different W.

104

10−1 100

10−4

10−3

10−2

W

L2

L∞

(a) Error.

10−1 100

100.6

100.7

W

`
(�
)

(b) Shape regularity.

10−1 100

10−1

100

W

@
(�
)

(c) Mesh condition.

Figure 4-11: Error and quality measures for the a-priori OT mesh as function of W (dimV = 73728).

In Figure 4-10a and 4-10b we show the solution error in the L2 and L∞ norms plotted as a function of
= dimV for a number of values of W. It is clear from these Figures that the optimal values of W are
very close to those obtained in Lemma 4.13, which equidistribute the respective interpolation errors.
Note that for these optimal values of W, the L2 error varies (optimally) as 1/# as # → ∞. In Figure
4-11a we observe that the L2 error changes smoothly with respect to W with a shallow minimum close to
the predicted value of W = 4/9. In contrast the L∞ error has a pronounced minimum close to W = 2/3,
where only a small range of W values yields a small error.

In Figure 4-11b and 4-11c we plot measures of the mesh quality. We see that the shape regularity `(�)
given in (4.2.5) decreases as a function of W until reaching the optimal value found in Lemma 4.13.
For higher values of W, the mesh regularity deteriorates. The mesh condition @(�) given in (4.2.10)
increases monotonically as W → 1. This is in agreement with equation (4.4.16).

In Figure 4-12 we present the resulting mesh for W = 0.44.

(a) Solution of Poisson’s equation. (b) Zoom on the re-entrant corner.

Figure 4-12: Solution of equation (4.5.1) on the OT mesh with W = 0.44. Note the smooth grading and
symmetry of this mesh even with @(�) > 1.

105

4.5.1.3 Comparison between the ℎ-refinement and OT refinement methods

Finite Element errors

In Figure 4-13a and 4-13b we compare the convergence rate of the FE error with an ℎ-refined mesh, the
OT mesh and a uniform mesh for the same value of # = dimV. We see an optimal 1/# convergence
rate for both adaptive meshes. In contrast, we observe convergence rates of 1/#2/3 and 1/#1/3 for the
uniform mesh.

103 104 105 106
10−6

10−4

10−2

1.0

0.67

dimV

‖ D
−
D
ℎ
‖ L

2
(Ω
)

unstructured
Winslow’

h-refinement
OT a-priori

(a) L2 error.

103 104 105 106

10−4

10−2
0.33

1.0

dimV

‖ D
−
D
ℎ
‖ L
∞
(Ω
)

(b) L∞ error.

Figure 4-13: Convergence rates for different adaptive strategies. The rate of convergence is optimal
(1/#) for both ℎ-refinement and for the OT strategy (W = 0.44, 0.67 for L2 and L∞ norm, respectively).

Run time for the computation of the solution on the two adapted meshes

In Figure 4-14 we present the CPU run time (calculated on a 16 GB RAM Computer with an Intel Core
i7-10510U processor) for the computation of the solution using both the ℎ-refinement and the OT mesh
averaged for 10 runs. In the first case, the solution is started with a coarse mesh and successively refined.
Additional computational time is required to compute the approximate solution of Poisson’s equation
and evaluate the error indicators [L2 , (eq.(4.3.14)). In the second case, there is an upfront cost for
calculating the mesh, followed by a single cost for finding the solution on that mesh. The execution time
is mainly dependent on the Newton’s algorithm used for solving the nonlinear algebraic equation for
each mesh point (eq. (4.4.14)).

The link between the OT mesh and the a-posteriori estimate

In this section we analyse the relationship between the a-posteriori bounds [2, [∞ used for ℎ-adaptivity
and the OT mesh obtained in the previous subsections. We first remark that effect of ℎ-refinement
is to approximately equidistribute the a-posteriori solution error [throughout each cell by reducing
the element mesh size until [is less than a prescribed tolerance. The result of this procedure leads
to the minimisation of the overall estimated FE error. In contrast the OT mesh with the value of W
given in Lemma 4.13 is designed to equidistribute the linear interpolation error in each cell. To make a

106

103 104 105

10−2

100

dimV
tim

e
[s

]

h-ref: V = 0.0
h-ref: V = 0.33
h-ref: V = 0.5
h-ref: V = 0.99

OT: W = 0.2
OT: W = 0.44
OT: W = 0.5
OT: W = 0.67

Figure 4-14: CPU-runtime comparison.

comparison we ask whether, following the calculation of the solution, the OT mesh also equidistributes
[in the vicinity of the origin. In Figure 4-15 we present the values of [calculated as a function of A on
the OT mesh close to the origin in both the L2 and L∞ norms. In this calculation we fix dimV = 7×104

and consider the effect of varying W.

10−4 10−3 10−2 10−110−6

10−5

A

[

W = 0.34
W = 0.44
W = 0.5
W = 0.65
W = 0.71
W = 0.78

(a) [L2 , .

10−2 10−110−4

10−3

A

W = 0.43
W = 0.5
W = 0.56
W = 0.62
W = 0.67
W = 0.75

(b) [L∞ , .

Figure 4-15: Cell values of the a-posteriori measure [L2 , , [L∞ , for OT meshes with dimV = 7× 104

for different values of W. The measure has been computed as a function of the distance from the re-entrant
corner.

It is apparent from this Figure that the OT mesh with the optimal value of W does equidistribute [(in
both norms) as A → 0. We observe for the L∞ norm in particular that the equidistribution property is
very sensitive to the value of W. This is consistent with the FE error also having a high sensitivity on the
value of W.

107

4.5.2 Results for the crack domain

We now consider the results of using the same approaches as in the previous section but in a domain Ω

with a crack (−1, 1) × (1, 1)/([(0, 1) × {0}]). The solution of equation 4.5.1 in this case is:

D(A, \) = A1/2 sin (\/2) . (4.5.4)

Numerically, we set the interior angle l to be 2c − n , with n = 10−3. We then, as before, calculate the
solution using an ℎ-adaptive SIP-dG method, and compare this with the solution on the OT meshes for
various values of W.

In Figure 4-16 we show the resulting ℎ-adapted meshes for various values of V. In comparison, we

(a) L2 a-posteriori (V = 0.0). (b) L2 a-posteriori (V = 0.99). (c) L∞ a-posteriori bound.

Figure 4-16: Zoom of the mesh near the re-entrant corner obtained with the a-posteriori bounds
(4.3.14),(4.3.15).

present in Figure 4-17 the OT mesh taking W = 1/2 together with the solution on this mesh. This again
shows good regularity and symmetry close to the origin.

a Solution of Poisson’s equation. b Zoom of the OT mesh near 0.

Figure 4-17: Solution of Poisson’s equation (4.5.4) with the OT mesh generated as in §4.4.5.

We repeat the earlier calculations to show how the parameter W affects the accuracy and the quality of

108

the resulting OT mesh. The results are shown in Figure 4-18. The optimal values of W that minimise
the FE errors in the two norms, leading to O(1/#) convergence, are in broad agreement with the ones
given in Lemma 4.13.

103 104 105 106

10−5

10−4

10−3

10−2

10−1

dimV

‖ D
−
D
ℎ
‖ L

2
(Ω
)

(a) L2 error which is minimised when W ≈ 1/2.

103 104 105 106

10−4

10−2

100

dimV

‖ D
−
D
ℎ
‖ L
∞
(Ω
)

W = 0.0
W = 0.2
W = 0.5
W = 0.6
W = 0.75
W = 0.8
W = 0.9

(b) L∞ error which is minimised when W ≈ 3/4.

103 104 105 106

10−0.2

100

100.2

dimV

@
(�
)

(c) Mesh condition.

103 104 105 106

100.55

100.6

dimV

`
(�
)

W = 0.2
W = 0.5
W = 0.6
W = 0.75
W = 0.8
W = 0.9

(d) Shape regularity.

Figure 4-18: Error and quality measures for the a-priori OT mesh as function of W (dimV = 74880).

Similarly, the results presented in Figure 4-20 show that the convergence rate of the solutions on the
optimal OT mesh and the ℎ-adapted mesh are very comparable.

In Figure 4-19, we see that the trend error trend is similar to the L-shaped case (Figure 4-11). On the
other hand, the shape regularity does not appear to consistently decrease for W ∈ (10−1, 5× 10−1). Also,
the mesh condition significantly increase for W higher than the right extremum of the previous interval.

Finally, the plots presented in Figure 4-21 show that, as in the L-shaped domain, the a-posteriori estimator
is equidistributed near the origin for the value of W providing the highest accuracy.

109

10−1 100
10−4

10−3

10−2

10−1

W

L2

L∞

(a) Error.

10−1 100

100.55

100.6

W

`
(�
)

(b) Shape regularity.

10−1 10010−0.2

100

100.2

W

@
(�
)

(c) Mesh condition.

Figure 4-19: Error and quality measures for the a-priori OT mesh as function of W (dimV = 74880).

103 104 105 106

10−5

10−4

10−3

10−2

0.5

1.0

dimV

‖ D
−
D
ℎ
‖ L

2
(Ω
)

unstructured
h-ref (V : 0.99)

OT a-priori

(a) L2 error.

103 104 105 106
10−5

10−4

10−3

10−2

10−1
0.25

1.0

dimV

‖ D
−
D
ℎ
‖ L
∞
(Ω
)

(b) L∞ error.

Figure 4-20: Asymptotic convergence rates for different adaptive strategies. Note that the rate of
convergence is optimal for the ℎ-refinement and the OT strategy (W = 0.5, 0.75 for the L2 and L∞ norm,
respectively).

10−4 10−3 10−210−6

10−5

A

[

W = 0.34
W = 0.4
W = 0.5
W = 0.6
W = 0.71
W = 0.78

(a) [L2 , .

10−7 10−5 10−3

10−3

10−2

A

W = 0.43
W = 0.5
W = 0.56
W = 0.62
W = 0.75
W = 0.81

(b) [L∞ , .

Figure 4-21: Cell values of the a-posteriori measure [L2 , , [L∞ , for OT meshes with dimV = 7× 104

for different values of W. The measure has been computed as a function of the distance from the re-entrant
corner.

110

4.6 Summary

In this Chapter, we have analysed the relationship between ℎ-adaptivity and an OT based strategy for the
solution of Poisson’s equation on non-convex domains with the SIP-dG method. Under this framework,
we derived a new L2 a-posteriori error estimate and adopted an L∞ error estimate from [DG12] for the
application of the ℎ-refinement strategy.

We have then constructed an OT mesh, which accounts for the singular behaviour of the solution at the
re-entrant corner. We evidenced that the skewness of this mesh increases locally only as a function of
the re-entrant angle and is independent on the resolution of the mesh and on the location of the cell.
This indicates that the OT mesh does mainly depend on the radial variable and is possible to formulate
the OT problem in one-dimension, avoiding the numerical treatment of the fully two-dimensional
Monge-Ampère equation. Optimality of the convergence rate and accuracy requires the specification
of a meta-parameter W, which controls the level of node clustering close to the origin. The optimal
values have been derived theoretically from local interpolation error estimates using an equidistribution
argument for L2 and L∞ norms. Although the estimate might be sub-optimal, as does not target directly
the FE error, it has been showed that the resulting OT mesh provides the same level of accuracy as the
ℎ-refined one. Both the methods achieve optimal convergence, in contrast to Winslow’s method supplied
with different monitor functions. The major advantage of the OT based method is that the solution is
obtained in one step, whereas the ℎ-refinement strategy demands the computation of the numerical
solution at each stage of the mesh refinement. We also remark the close relationship between the two
adaptive strategies, as the optimally-tuned OT mesh equidistributes the a-posteriori estimates used for
ℎ-refinement in order to minimise the global FE error.

The next Chapter will address the same Poisson problem on the L-shaped domain with the deep learning
framework. We will detail the procedure to train a neural network with two different loss (objective)
functions and use as training points the OT mesh vertices and randomly sampled points. We will observe
that the location of those points and the choice of quadrature rule for integral approximation is crucial
in order to obtain an accurate result.

111

112

Chapter 5

The Deep Galerkin and the deep Ritz
method for Poisson’s equation on the
L-shaped domain

Abstract

Following up on Chapter 4, we propose alternative approaches to solve Poisson’s equation on the L-
shaped domain by means of a neural network. We will detail the network structure, training procedure
and define two different loss functions, based on the Galerkin and Ritz method used in finite element
method. Numerical experiments reveal that the location of the training points and a quadrature rule
are crucial for the accuracy of the solution. If these points are chosen as vertices of the OT mesh
derived in Chapter 4, the accuracy is much higher compared to the usual case of functions using points
randomly sampled. Moreover, the deep Ritz method is also naturally adaptive and contributes to increase
the overall accuracy. We will compare the convergence rate of the DRM and of the SIP-dG method
discussed in the previous Chapter. We will observe that neural network is more accurate than the SIP-dG
only for solution with small-resolution, but the error does not decrease as for the FE based method with
additional degrees of freedom (dofs). A slightly better performance in terms of convergence rate is
achieved over a squared domain.

5.1 Introduction

In the field of numerical analysis, the strong representability of functions using deep neural networks
(DNNs) means that they are becoming increasingly popular for solving partial differential equations

113

(PDEs) [LLF98; Lon+18; RK18; SS18].

Compared to standard PDE solvers, such as Finite Element (FE) [BS08] and Finite Difference (FD)
methods [Smi86], deep learning (DL) methods provide a functional approximation of the solution of the
PDE using a combination of linear and non-linear transformations, as shown in §2.4.

In the current Chapter, we extend the work in the previous Chapter by studying the solution of the
Poisson’s equation on the L-shaped domain using the deep Galerkin method (DGM) [SS18] and the
deep Ritz method (DRM) [WB18]. Both train the network by minimising a loss (objective) function.
For the DGM, this is defined as the L2 norm of the residual of the PDE. In contrast, the latter method
defines the loss function as the energy functional of the PDE. This brings two advantages. Firstly, the
approximate solution can admit lower regularity when compared to the the DGM. Secondly, although
the discretised loss is not convex, its variational formulation is supposed to be naturally adaptive under
the optimisation process [WB18].

In certain simple cases, the integrals defining the loss functions can be approximated in a meshless fashion
[BBO03], by computing the mean squared error ("(�) directly using the functional approximation, or
over a mesh with a quadrature rule in more complex cases. The evaluation/quadrature points are usually
sampled uniformly at random [Che20] or via Latin Hypercube sampling (LHS) [RCS05]. The uniformly
random sampling poses critical issues in the training process, as the integrals defining the loss functions
are not approximated well with the resulting quadrature method. Also, the random collocation of points
inside the domain makes the network unaware of any singular behaviour of the solution, such as that
one arising in a L-shaped domain. As numerically shown in Chapter 4, posing more points on the area
close to the singularity, considerably increases the accuracy of the approximate solution.

In classical numerical methods, boundary conditions can be exactly enforced for mesh points at the
boundary [Eva10]. However, it is very difficult to impose exact boundary conditions for a DNN
representation [WTP21; Che20; Liy+21]. Therefore, in the loss function, it is common to add a penalty
term in L2 norm which penalises the difference between the DNN representation on the boundary and
the exact boundary condition.

Our contribution in this Chapter is twofold. At first, we compare the solutions given for Poisson’s
equation on a L-shaped domain using the DGM and the DRM trained over a fixed OT mesh (quadrature
rule) and over fixed collocation points ("(�). In the second place, we seek the optimal values of the
penalty term to ensure a positive convergence rate and compare this with the performance of the SIP-dG
method shown in §4.5.1.3.

The remainder of this Chapter is as follows. Section 5.2 describes the components for training the
neural network, with details about the network structure, the loss function of the DGM and DRM, and
the optimisation procedure. Section 5.3 proposes numerical experiments for the solution of the Poisson

114

equation using the two neural networks. We draw our conclusions in §5.5.

5.2 Methodology

The usage of a DNN to solve a PDE problem comprises of three parts: the neural network structure used
to approximate the solution of the PDE, the loss function, and the way it is optimized over the parameter
space. We first illustrate the network structure used to approximate the PDE solution. Then we introduce
the DGM and DRM, the corresponding loss function and explain how boundary conditions are treated
using the penalty method. Finally, we describe the optimisation method used to update the parameters
of the DNN and find the approximate solution of the PDE.

5.2.1 Network structure

The basic component of the training of the DGM and DRM is a nonlinear transformation x ∈ R3 → R<,
where x is the usual spatial variable defined on the open bounded domain Ω ⊂ R3 . Each layer of the
network is made up of blocks stacked on each other. Each block consists of two linear transformations,
two activation functions and a residual connection. We follow the same notation as introduced in §2.4.1
of Chapter 2. Given ! blocks, we denote by W0 ∈ R<×3 , b0 ∈ R< the weight matrices and the bias
vectors for the first layer, with output D0

Θ
= W0x + b0. For a generic ;-th block, let D;

Θ
(x) ∈ R< be

the input, and let W;,1,W;,2 ∈ R<×<, b;,1, b;,2 ∈ R< be the weight matrices and the bias vectors. The
element-wise activation function is denoted by f(·), and D;+1

Θ
(x) is the output expressed as

D;+1
Θ
(x) = f

(
W;,2 ◦ f(W;,1D

;
Θ
(x) + b;,1) + b;,2

)
+ D;

Θ
(x). (5.2.1)

The final output is DΘ (x) = W!D
!
Θ
(x) + b! , where W! ∈ R<×3 and b! ∈ R<.

Skip Connections (or Shortcut Connections), as the name suggests, skips some of the layers in the
neural network and feeds the output of one layer as the input to the next layers. Skip Connections
were introduced to avoid the problem of vanishing gradients [Hoc98]. Additionally, the loss surface of
the neural network with skip connections is smoother and thus leading to faster convergence than the
network without any skip connections [Li+18].

For this type of architecture, possible choices of activation function are

• sigmoid(G) = 1
1+exp(−G) .

• swish(G) = G
1+exp(−G) .

• tanh(G).

115

• fB8= (G) = (sin (G))3.

Overall, the output DΘ (x) of the DNN is expressed as the composition

DΘ (x) = D!+1Θ ◦ · · · ◦ D0
Θ (x), (5.2.2)

whereΘ is the full set of all weight and bias parameters in the neural network, i.e. Θ = {W0, b0,W! , b!}∪
{W;,1,W;,2, b;,1, b;,2}!−1

;=1 . In each case of X the output DΘ (x) is a smooth function defined over all Ω
and can be exactly differentiated to all orders. In particular, DΘ (x) ∈ �∞ (Ω)< and cannot approximate
accurately functions with singularities, lying in low order Hilbert spaces.

Figure 5-1: Architecture of a deep Ritz network [WB18]. Two fully-connected (FC) layers and the
residual connection is described in eq. (5.2.1).

An illustrative example of the architecture is shown in Figure 5-1. We denote by H<
f (Θ, !) the set

of functions DΘ (x) ∈ R< given as output of the DNN with ! blocks, < nodes per hidden layer and
activation function f(·).

5.2.2 The deep Galerkin method and the deep Ritz method

Consider the following well-posed Poisson’s equation over a bounded domain Ω ⊂ R3

−ΔD(x) = 5 (x) in Ω,

D(x) = D� (x) on mΩ.
(5.2.3)

where 5 (x) is a given function and D� are Dirichlet boundary conditions in the input space.

116

It has been shown that DNNs are universal approximators, so that any continuous function can be
approximated up to arbitrary precision based on the network parameters [HSW89]. The DGM and DRM
uses a DNN to find an approximate solution DΘ (G) to the problem 5.2.3 [WB18; ML21].

For the problem (5.2.3), we define the strong-form residual A (DΘ (x)) and the boundary residual
A1 (DΘ (x)) by

A (DΘ (x)) = ΔD(x) + 5 (x) ∀x ∈ Ω,

A1 (DΘ (x)) = DΘ (x) − D� (x) ∀x ∈ mΩ.
(5.2.4)

Those residuals reflect how close the network output DΘ (x) is to the target function D(x). We compute
the weighted integrals of the residuals by projecting them onto chosen test functions E 9 ∈ V, where + is
a finite dimensional vector space with dim(V) = # , to obtain the variational forms

R 9 (DΘ) =
∫
Ω

A (DΘ (x))E 9 dx = 0,

R1, 9 (DΘ) =
∫
mΩ

A1 (DΘ (x))E 9 d((x) = 0, 9 = 1, . . . , #.
(5.2.5)

To solve the nonlinear system resulting from these equations, we define the general loss function:

I(DΘ (x), E) = FA
#A∑
9=1
R2
9 (DΘ (x)) + F1

#1∑
9=1
R2
1, 9 (DΘ (x)), (5.2.6)

where the parameters {FA , F1} denote the weight coefficients in the loss function. They are usually
tuned manually or automatically learned [WTP21].

Different choices of test functions E 9 correspond to different deep learning methods. For example, the
Delta dirac test functions E 9 (x) = X(x − x 9), for suitably chosen x 9 , correspond to the collocation
methods, also known as PINNs [RPK19].

The deep Galerkin method

The Deep Galerkin Method results from the choice of E8 = A (DΘ (x8))X(x − x8), 8 = 1, . . . , #A for the
interior of Ω, and E 9 = A (DΘ (x 9))X(x − x 9), 9 = 1, . . . , #1 for the boundary mΩ, such that

I��" (DΘ (x)) = FA
#A∑
8=1

(
ΔD(x8) + 5 (x8)

)2
+ F1

#1∑
9=1

(
DΘ (x 9) − D� (x 9)

)2
. (5.2.7)

The deep Ritz method

117

The variational formulation for the Deep Ritz method is based on the homonym introduced in §2.3.3 of
Chapter 2. The aim is to find D ∈ �1

0 (Ω) such that

∫
Ω

∇D(x) · ∇E dx =

∫
Ω

5 (G) · E(x) dx, E ∈ �1
0 (Ω), (5.2.8)

where the left hand side is given by integration by parts and homogeneous boundary conditions.

The corresponding objective function to be minimised for the DRM is obtained by choosing E = DΘ (x)
and enforcing the boundary condition of eq.(5.2.3):

I�'" (DΘ (x)) = FA
∫
Ω

[1
2∇DΘ (x) · ∇DΘ (x) − 5 (x) · DΘ (x)

]
dx + F1

∫
mΩ

(
DΘ (x) − D� (x)

)2
d((x).
(5.2.9)

The optimal approximation DΘ∗ (x) ∈ R< for the DGM and DRM is obtained by solving the following
optimization problem:

DΘ∗ (x) = arg min
DΘ (x) ∈H<f (Θ,!)

[I(DΘ (x))], (5.2.10)

whereH<
f (Θ, !) is the set of admissible functions given as output of the DNN.

5.2.3 The optimisation algorithm and the loss approximation

Using DNNs to solve PDEs has been restated as the minimisation problem (5.2.10). Even if the original
PDE is linear, the DNN representation (5.2.2) can be highly nonlinear in the parameters q due to the
successive composition of the nonlinear activation functions.

Quadrature schemes for the integrals in equation (5.2.9) are also required for a good accuracy of the
network output. Nonetheless, most of papers addressing PDEs via DNN approximate (5.2.7) using
a Monte-Carlo method, for both low and high dimensions [SS18; WB18; RPK19]. In this context,
stochastic gradient descent (SGD) and its variants, play a key role in deep learning training. It is a
first-order optimization method which naturally incorporates the idea of Monte-Carlo sampling. At each
iteration, SGD updates the network parameters by evaluating the gradient of the loss function only at a
batch of samples as

Θ:+1 = Θ: − [:∇Θ:"(� (I(Θ:)) , (5.2.11)

118

where

"(� (I��" (Θ:)) =
FA

#A

#A∑
8=1

(
ΔDΘ: (x8) + 5 (x8)

)2
+ F1
#1

#1∑
9=1

(
DΘ: (x 9) − 6(x 9)

)2
,

"(� (I�'" (Θ:)) =
FA

#A

#A∑
8=1

[1
2∇DΘ: (x8) · ∇DΘ: (x8) − 5 (x8) · DΘ: (x8)

]
+ F1
#1

#1∑
9=1

(
DΘ: (x 9) − 6(x 9)

)2
.

(5.2.12)

The set of parameters of the DNN at the :-th iteration is denoted by Θ: , and [: is the learning rate. In
general, the coordinates {x8}#A8=1 are randomly generated over Ω and mΩ [Che20; RCS05]. The gradient
of "(� (I(\:)) with respect to Θ: is computed via Automatic Differentiation (AD), which has been
described in §2.4.3 of Chapter 2.

The problem of this method is that neglects the geometric properties of the solution and does not
necessarily approximate well the loss integrals, especially if D(x) has a singularity. This issue can
be addressed by choosing collocation/quadrature and boundary points to compose a mesh. To ensure
good regularity properties, the set of mesh vertices {x8}#8=1 is then fixed and taken from a Delaunay
triangulation or an OT mesh. The loss integrals in (5.2.9) can be then approximated on that mesh with
any appropriate quadrature rule.

The network parameters are updated according to

Θ:+1 = Θ: − [:∇Θ:I(Θ:), (5.2.13)

Finally, as discussed in Chapter 2, we will use the Adam optimization algorithm in the numerical
experiments, whose flowchart (2) is in §2.4.2. This method computes individual adaptive learning rates
for different parameters from estimates of first and second moments of the gradients. The advantage of
Adam over the standard SGD is that the magnitudes of parameter updates are invariant to rescaling of
the gradient and the step sizes are approximately bounded by the corresponding meta-parameter [KB14;
Rud16]. The algorithm flowchart 2 in Chapter 2 provides additional implementation details.

5.3 Numerical Results - 1

In this section, we present the numerical results for the Poisson problem (5.2.3). The approximate
solution is computed via the DGM and DRM. As mentioned in §5.2.3, the second method approximates
the loss integrals with a quadrature rule on the OT mesh derived in §4.4.5 of Chapter 4. The error is
then evaluated on a Delaunay mesh constructed with mshr, the mesh generation component of FEniCS
[LW10]. In all experiments, the block-based DNN is implemented in PyTorch [Pas+19].

119

The network configuration and parameters are:

• max epochs = 50000.

• learning rate (lr) = 10−4.

• =◦ hidden nodes = 20.

• =◦ layers = 4.

• activation function f(·) = tanh(·).

The loss value and the L2 error is computed every 1000 epochs. The values for the above parameters
are set based on multiple code runs. We noticed that 4 layers and 20 hidden nodes represent a good
compromise between the accuracy of the numerical result and the CPU runtime. The tanh(·) activation
function has been used because it is continuously differentiable and takes real values, whereas the
sigmoid activation function takes only positive values. The learning rate of 10−4 ensures that the loss
function monotonically decreases such that after max epochs the error stagnates.

5.3.1 Poisson’s equation

We consider the Poisson problem with Dirichlet boundary condition as in equation (4.5.1) of Chapter
4. We use the two-dimensional radial coordinates (A, \) ∈ R+ × [0, 2c) to define the problem on the
L-shaped domain:

−ΔD(A, \) = 0 in Ω,

D� (A, \) = A2/3 sin (2\/3) on mΩ,
(5.3.1)

with Ω = (−1, 1) × (−1, 1)/([0, 1) × (−1, 0]). The solution D(A, \) = A2/3 sin (2\/3) exhibits a corner
singularity in {0}.

To account for the boundary condition, we train the network using the DGM with the loss defined by
(5.2.7), with DΘ ∈ H2 (Ω).

Similarly, the loss function for the DRM follows from equation (5.2.9) and takes the form

I�'" (DΘ) =
1
2

∫
Ω

|∇DΘ (x) |2 dx + F1
∫
mΩ

(
DΘ (x) − D� (x)

)2
d((x), (5.3.2)

with DΘ ∈ H1 (Ω).

120

(a) Solution of Poisson’s equation. (b) Delaunay mesh with # = 833.

Figure 5-2: Exact solution of equation (5.3.1) and Delaunay mesh with # = 833 on which the L2 error
is computed.

We will compute the relative L2 error, defined by

relative L2 error :=
‖D(x) − DΘ (x)‖L2 (Ω) + ‖D� (x) − DΘ (x)‖L2 (mΩ)

‖D(x)‖L2 (Ω) + ‖D� (x)‖L2 (mΩ)
, (5.3.3)

by evaluating the approximated solution on the Delaunay mesh, as shown in Figure 5-2. The number of
vertices # is the same as the number of collocation/quadrature points used to train the network with the
DGM/DRM method.

The neural network is fed with inputx ∈ Ω ⊂ R2 to compute the approximate solution D(A, \) of problem
(5.3.1). The training of the DNN stops when the loss function changes below a relative tolerance of
10−5 every 1000 epochs. In the cases where the desired tolerance is not achieved, the training stops at
max epochs. Finally, the penalty parameter F1 , which weights the importance of boundary residuals,
takes values in the set {1, 10, 100, 500}.

The main difference in accuracy is related to the location of the collocation/quadrature points, as shown
in Figure 5-3. We observe that the choice of fixed random collocation points leads to a poor solution
accuracy for both methods, with a sharp transition from low (blue) and high (red) function values on the
interior domain. The output obtained by the DRM is closer to the real solution (Figure 5-3c).

Concerning the OT points, we note that both DGM and DRM perform better than their counterparts with
random collocation points and the output looks very similar to the exact solution, as shown in Figure
2-10 of Chapter 2. We will compare the L2 error and loss of the two methods in the next sections. The
former is computed by using the trapezoidal quadrature rule over the Delaunay mesh in Figure 5-4.

121

(a) DGM: random points (b) DGM: OT quadrature points

(c) DRM: random points (d) DRM: OT quadrature points

Figure 5-3: Solution of Poisson’s equation with the DGM and DRM with uniformly sampled and OT
based collocation/quadrature points for # = 833 and F1 = 500.

122

(a) DGM: random points (b) DGM: OT quadrature points

(c) DRM: random points (d) DRM: OT quadrature points

Figure 5-4: Solution of Poisson’s equation with random collocation points and OT quadrature points
evaluated on the Delaunay mesh to compute the L2 error for F1 = 500.

123

5.3.2 Loss function

In this section, we show how the loss of the DGM 5.2.7 and of the DRM 5.2.9 decreases as a function
of the epochs. We evaluate loss integrals by using the "(� as in equation (5.2.12) with fixed randomly
sampled points and the trapezoidal quadrature rule over the OT mesh. The locations of the randomly
sampled and quadrature points are displayed in Figure 5-3.

103 104

10−4

10−2

100

epoch

lo
ss

;>BBA
;>BB1
;>BB

(a) DGM: Uniformly random sampled points

103 104

10−4

10−2

100

epoch

lo
ss

(b) DGM: OT quadrature points

103 104
10−6

10−3

100

epoch

lo
ss

;>BBA
;>BB1
;>BB

(c) DRM: Uniformly random sampled points

103 10410−5

10−3

10−1

epoch

lo
ss

(d) DRM: OT quadrature points

Figure 5-5: Loss function given as sum of residual loss (;>BBA) and boundary loss (F1 × ;>BB1) for the
DGM and DRM. The losses are evaluated on uniformly-sampled and OT based quadrature points for
= 833 and F1 = 500.

We note that the boundary loss (;>BB1) decreases more steadily than the internal loss (;>BBA), with the
latter contributing most to the total loss (;>BB), The random collocation points make the loss decrease
faster than using the quadrature rule for both the DGM and the DRM. Concerning those two methods,
we observe that the DGM loss keeps decreasing monotonically over all the training periods, whereas the
DRM stagnates towards the end of the training epochs, denoting that a minimum has been reached. In
general, the final loss value computed for the DGM is lower than the DRM loss value. We will see in
the next section whether this also leads to a lower L2 error for the DGM.

124

5.3.3 Error analysis

In this section, we compute the relative L2 error, defined in (5.3.3), for the DGM and the DRM. We
compare the results using random collocations points and quadrature points, as done in the previous
section. Furthermore, we will discuss the relationships between the losses in Figure 5-5 and the
corresponding errors.

103 104

10−1

epoch

re
la

tiv
e

L2
er

ro
r F1 = 1

F1 = 10
F1 = 100
F1 = 500

(a) DGM with random collocation points

103 104

10−1

epoch

re
la

tiv
e

L2
er

ro
r

(b) DGM with OT quadrature points

103 104

10−1

epoch

re
la

tiv
e

L2
er

ro
r F1 = 1

F1 = 10
F1 = 100
F1 = 500

(c) DRM with random collocation points

103 104

10−2

10−1

epoch

re
la

tiv
e

L2
er

ro
r

(d) DRM with OT quadrature points

Figure 5-6: Relative L2 error for the DGM and DRM with uniformly-sampled and OT quadrature points
for # = 833.

We evidence that with the DGM the error reaches a minimum after about 30000 epochs for F1 ∈
{100, 500}, but increases up to 10−1 at the end of the training process (Figure 5-6a). The choice of OT
quadrature points and other values of F1 lead to a worse performance, as the relative error trend looks
monotonically increasing (Figure 5-6b).

Concerning the DRM, we can distinguish clearly the error trend between collocation and OT quadrature
points. The latter yields a slight not-exponential decreasing trend for all values of F1 , except when
F1 = 500 (Figure 5-6b). In this case, the error is monotonically decreasing and stagnates towards the
end of the training process, with lowest values compared to the DGM.

This suggests that decrease of the loss value does not necessarily relate to an accurate approximate
solution.

125

5.3.4 Convergence rate analysis for DRM

As observed in the previous section, the DRM coupled with OT quadrature points is able to yield an
accurate network output with decreasing relative L2 error (Figure 5-6). Under this configuration, we
compare the error for different degrees of freedom (3> 5 B) under different values of F1 . Finally, we will
compute the convergence rate for the best F1 .

103 104

10−0.42

10−0.41

epoch

re
la

tiv
e

L2
er

ro
r

3> 5 B = 65
3> 5 B = 225
3> 5 B = 833
3> 5 B = 3201

(a) OT quadrature points with F1 = 1

103 104

10−0.8

10−0.6

10−0.4

epoch

re
la

tiv
e

L2
er

ro
r

(b) OT quadrature points with F1 = 10

103 104

10−1.5

10−1

10−0.5

epoch

re
la

tiv
e

L2
er

ro
r

3> 5 B = 65
3> 5 B = 225
3> 5 B = 833
3> 5 B = 3201

(c) OT quadrature points with F1 = 100

103 104

10−2

10−1

epoch

re
la

tiv
e

L2
er

ro
r

(d) OT quadrature points with F1 = 500

103 104

10−2

10−1

epoch

re
la

tiv
e

L2
er

ro
r

(e) OT quadrature points with F1 = 1000

102 103

10−2.4

10−2.2

10−2

dofs

re
la

tiv
e

L2
er

ro
r

(f) Error rate with F1 = 1000

Figure 5-7: Relative L2 error for DRM with OT quadrature points.

126

5.3.5 Comparison with SIP-dG method

Here, we compare the L2 error between the SIP-dG method described in §4.2.2 and the output of the
neural network trained and evaluated on the OT-mesh with F1 = 1000.

103 104 105

10−4

10−3

10−2

1.0

dofs

L2
er

ro
r

SIP-dG method
DRM F1 = 1000

Figure 5-8: L2 error comparison between SIP-dG solution and DGM on OT mesh.

In Figure 5-8 we observe that the SIP-dG method is only less accurate than the DRM up to 500 mesh
points. The convergence rate of the SIP-dG method is optimal as shown in Chapter 4, whereas it is almost
zero for the DNN method. This is not surprising, as the former method has been devised specifically
for solutions with singular behaviour [ZS02]. The neural network attempts to minimise the energy loss
functional of the Poisson problem, but the optimised parameters are not able to yield a solution for
higher-resolution meshes.

We performed a large number of numerical experiments where we tested different scaling factors of F1
for increasing dofs. These show the same outcome as in Figure 5-8.

We conclude from this result that PINNs might generally outperform standard numerical solvers for
linear PDEs, whose solution is sufficiently regular, but are not able to increase the resolution of the
network output with more training points. A careful tuning of the parameters is required for increasing
dofs.

The issue related to the convergence rate has not been addressed in the aforementioned cited papers
and is worth of further research, as this concept is essential to conduct any type of error analysis, as
discussed in §5.3.3 of Chapter 2.

127

5.4 Numerical Results - 2

In this section, we test the DGM and the DRM with a two-dimensional Poisson problem on a squared
domain:

−ΔD(G, H) = 5 (G, H) in Ω,

D� (G, H) = 0 on mΩ,
(5.4.1)

where Ω = [0, 1] × [0, 1] and 5 (G, H) = 2c2B8=(cG)B8=(cH), as it makes for the simple solution
D(G, H) = B8=(cG)B8=(cH).

(a) Exact solution

(b) DGM: random points (c) DGM: regularly spaced points

(d) DRM: random points (e) DRM: regularly spaced points

Figure 5-9: Solution of Poisson’s equation for the DGM and the DRM with uniformly sampled and
regularly spaced collocation/quadrature points with # = 784 and F1 = 500.

128

Figure 5-9 shows that both the DGM and the DRM are not able to capture the radial symmetry of
the exact solution. We conjecture that the solutions in Figure 5-9b–5-9d are not endowed with such
property because the accuracy is locally improved only over the collocation/quadrature points, but the
evaluation over the entire domain depends on the quality of the trained model. In Figure 5-9e, the
uniform distribution allows for a better training, and so for a more accurate evaluation on new test points.

We proceed by plotting the DGM and the DRM loss functions for fixed dofs to inspect the dependence
of the relative L2 error on the penalty parameter F1 .

103 104
10−5

100

epoch

lo
ss

;>BBA
;>BB1
;>BB

(a) DGM: Uniformly random sampled points

103 104
10−5

10−2

101

epoch

lo
ss

(b) DGM: Regularly spaced points

103 104

0

2

4

6

epoch

lo
ss

;>BBA
;>BB1
;>BB

(c) DRM: Uniformly random sampled points

103 104

−1

−0.5

0

epoch

lo
ss

(d) DRM: Regularly spaced points

Figure 5-10: Loss function given as sum of residual loss (;>BBA) and boundary loss (F1 × ;>BB1) for
the DGM and the DRM. The losses are evaluated on randomly-sampled points and on a regular grid for
= 784 and F1 = 500.

Concerning the DGM, the total loss is mainly dependent on the internal loss (Figure 5-10a–5-10b), and
it is not affected by the decrease of the boundary loss. On the contrary, the DRM total loss for regularly
spaced points is decreasing at the same rate as the internal loss, while the boundary loss does not change
significantly.

Since the DRM is based on the Euler-Lagrange argument, the minimum of the loss function is achieved
when

ΔD + 5 = 0 8= Ω,

D = 0 >= mΩ.
(5.4.2)

129

Let I(D) =
∫
Ω

[
1
2 |∇D(x) |

2 − 5 (x) · D(x)
]

dx+
∫
mΩ
D(x)2 d((x). The minimisation of this loss and the

enforcement of the boundary conditions leads to

I(D) =
∫
Ω

[1
2∇D · ∇D +

1
2DΔD −

1
2DΔD − 5 D

]
dx

= −
∫
Ω

[DΔD
2 + 5 D

]
dx

= −
∫
Ω

D
[
5 + ΔD

2
]

dx = −1
2

∫
Ω

D 5 dx,

(5.4.3)

where the first two terms in the first row integrate to zero. This follows from the divergence theorem and
the fact that D = 0 on the boundary.

So if D = B8=(cG)B8=(cH) and 5 = 2c2B8=(cG)B8=(cH) we obtain

I(D) = −c2
∫
Ω

B8=2 (cG)B8=2 (cH) dx = −c
2

4 . (5.4.4)

Since the neural network output has enough regularity due to the activation function and the skip
connection, we can assume that this argument holds for our experimental settings. The loss value at the
end of the DRM training for regularly spaced points is close to -1.36, whereas the value is close to 0 for
randomly sampled points. This explains why the former method yields a more accurate solution.

Finally, We remind that in Figure 5-5c–5-5d the internal loss is always positive as 5 = 0, so minI(D) = 0.

130

We plot below the relative L2 errors for fixed 3> 5 B and analyse them as done in §5.3.3.

103 104

0.35

0.4

0.45

epoch

re
la

tiv
e

L2
er

ro
r F1 = 1

F1 = 10
F1 = 100
F1 = 500

(a) DGM with random collocation points

103 104

0.3

0.35

0.4

epoch

re
la

tiv
e

L2
er

ro
r

(b) DGM with regularly spaced points

103 104

10−2

100

epoch

re
la

tiv
e

L2
er

ro
r F1 = 1

F1 = 10
F1 = 100
F1 = 500

(c) DRM with random collocation points

103 104

10−2

10−1

epoch

re
la

tiv
e

L2
er

ro
r

(d) DRM with regularly spaced points

Figure 5-11: Relative L2 error for the DGM and the DRM with uniformly-sampled and regularly spaced
quadrature points for # = 784.

We observe that the DRM is able to reduce the relative error as F1 increases (Figure 5-11c–5-11d). In
Figure 5-11a–5-11b, the DGM does not yield satisfactory results and the relative errors converge to the
same value, which are even higher compared to the first example (Figure 5-6). This might be explained
by the fact that the DGM attempts to reduce (unsuccessfully) the boundary loss (Figure 5-10a–5-10b),
but not the interior loss.

Finally, we compute the convergence rate for the DRM using regularly spaced training points.

In Figure 5-12, the order of convergence does not exceed 0.7, which is by far lower than the expected
convergence rate obtained with DG linear elements. As a result, we conclude that the neural network
framework may compete with the FEM only with a careful tuning of the configuration settings for
increasing 3> 5 B. Furthermore, the L2 error should be weighted by the CPU runtime required to solve
the problem by using either the FEM or a neural network.

131

103 104

10−2.7

10−2.82

0.66

dofs

L2
er

ro
r

DRM F1 = 1000

Figure 5-12: Convergence rate of L2 error using the DRM with regularly spaced points.

5.5 Summary

In this Chapter, we have trained a block-based deep neural network to solve Poisson’s equation on a
L-shaped domain with two methods. The deep Galerkin method (DGM) reflects the Galerkin method
in finite element to define the loss function as the integral of the PDE residual over the problem domain.
The deep Ritz method (DRM) is based on the Ritz method and defines a loss energy functional to be
minimised. In contrast to the first method, the DRM requires a less regular function approximation for
the network output. The discretisation of the loss functions is usually conducted by randomly sampling
collocation points inside the domain and at the boundary. Alternatively, the integral defining the loss
function can be approximated over a mesh. The OT mesh constructed in §4.4.5-Chapter 4 has been used
for both DGM and DRM in the numerical experiments, given the excellent properties in terms of quality
measure (Theorem 4.14-Chapter 4) and convergence rate. The relative L2 error has been computed
over a Delaunay triangulation. The numerical results show that the coupling of DRM and OT based
collocation points yields the most accurate solution. This suggests that the choice of the collocation
points and the loss function is crucial for a stable and efficient training of the network parameters.

For the DRM, we have observed how the increment of the penalty parameter F1 in equation (5.3.2)
improves the accuracy of the solution. However, the training of the network over the OT mesh with high
resolution does not provide the desired convergence rate as for the SIP-dG method treated in Chapter
4. The stagnation of the error might be due to the fact that for high-resolution meshes, the network
architecture might require more hidden units, layers, and a proper scaling of other meta-parameters,
such as the learning rate (which might be adaptive and decrease as a function of epochs) and the penalty
parameter F1 . A simpler Poisson problem does not show significant improvements, except for a higher
convergence rate with the DRM and regularly spaced quadrature points.

132

Chapter 6

Conclusion

In this thesis we analysed the application of adaptive mesh strategies for the solution of hyperbolic
and elliptic partial differential equations (PDEs). In Chapter 2 we first provided a general overview
of adaptive mesh techniques and their applications. We mentioned moving mesh PDEs (MMPDEs)
constructed from variational principles, and an Optimal Transport strategy, which has been then used in
Chapter 4 to drive the mesh adaptation. In terms of ℎ-refinement, we illustrated how the mesh can be
refined/coarsened based on some criteria, such as with the use of an a-posteriori error estimator based
on the Finite Element (FE) method. An example of such estimator has been shown in §5.3.3. We
expanded the topic of FE by introducing the Ritz and Galerkin method and by providing consistency
and well-posedness of a conforming FE discretisation using the Lax-Milgram Theorem. This has been
then used to derive convergence rates in §5.3.3. We also dedicated this Chapter to discuss the mesh
properties and quality measures in the context of ℎ- and A-adaptive strategies. Finally, we introduced the
deep learning framework to solve PDEs by training neural networks. We stated different approximation
theorems and discussed the limitations of those.

In Chapter 3 we solved the linear advection equation by employing Winslow’s moving mesh PDE as
A-adaptive strategy. The physical PDE has been discretised with an upwinding discontinuous Galerkin
(dG) method, while the MMPDE has been discretised with the finite element method with Lagrangian
elements. The two equations have then been solved in an alternative way with an intermediary step,
consisting of a data transfer operator by means of a supermesh.

In Chapter 4 we addressed Poisson’s equation on non-convex domains. We discretised the problem
with the symmetric-interior-penalty dG (SIP-dG) method. The main results are the derivation of an
a posteriori estimator in the L2 norm and the construction of an Optimal Transport (OT) mesh for
A-adaptivity. Numerical experiments evidence that both methods yield optimal convergence rates in L2

and L∞ norm. Furthermore, exploiting the radial symmetry of the solution near the re-entrant corner,
we have proved that the quality measure of the OT mesh elements are independent on their location and
number of total vertices. Finally, we shown a close link between the two adaptive strategies by providing

133

numerical evidence that the local a-posteriori estimates used for ℎ-refinement are equidistributed on the
OT mesh.

In Chapter 5 we solved the same problem by using the neural network framework, aiming to minimise
two loss functions, which resemble the standard Galerkin and Ritz finite element method introduced in
§2.3.3 of Chapter 2. The main contribution is related to the location of the training points used to train
the network. We used the vertices of the OT mesh derived in Chapter 4 to show that the network output
features higher accuracy than a network with training points chosen uniformly at random. Also, the
convex energy functional of the deep Ritz formulation guarantees a more stable optimisation procedure
for the network parameters compared to the deep Galerkin formulation. However, the final numerical
experiments shows that the network output is more accurate the SIP-dG method for low resolution, but
is unable to increase the accuracy of the approximate solution for higher resolution unless a different
configuration is employed. This is a major drawback that hinders the error analysis for the deep learning
framework.

In conclusion, we present several directions of future research for each Chapter presented in this thesis.

1. In Chapter 3 we provided a novel approach to ensure mass conservation for a linear advection
equation. This is not guaranteed in the standard rezoning approach as requires an interpolation
step, which adds artificial diffusion to the equation. Our numerical results show that the mass is
conserved at the cost of solving a quasilinear parabolic PDE at each time step. Possible ideas for
expanding this work will examine:

(a) The reduction in computational time of the ’inner loop’ moving mesh strategy to achieve
comparable accuracy with the (Algorithm 4).

(b) Scalability of the algorithm through parallelisation.

(c) The applicability of the method to more physical relevant problems, such as the shallow water
equations on the sphere [Wel+16]. These require tailored methods with good conservative
properties for long time simulations. In particular, for global atmospheric flows, the ability
of massive parallelisation is crucial.

2. In Chapter 4 we solved Poisson’s equation using the SIP-dG method and applied A- and ℎ-adaptivity.
We derived an L2 a-posteriori error estimate used for the latter strategy. The best A-adaptive mesh
in terms of accuracy and quality measures was obtained with an OT strategy. We evidenced
the optimal convergence for both methods and that the a-posteriori estimate is equidistributed on
the OT mesh in the area close to the re-entrant corner. In the view of the above considerations,
possible future research directions are:

(a) Application of the numerical scheme on polygons with multiple re-entrant corners.

(b) Derivation of a L2 a-posteriori estimate with time-dependency for relevant problems arising
in physics, such as the shallow water equations.

134

(c) Analysis of the relationship between different mesh quality measures, such as skewness and
shape regularity.

(d) Scalability of the OT generation algorithm through parallelisation.

(e) Theoretical proof of the equidistribution of the a-posteriori estimator on the OT mesh.

3. In Chapter 5 we solved Poisson’s equation on the L-shaped domain by using the deep learning
framework. We shown that the deep Ritz method with energy loss functional approximated
with quadrature rule over the OT mesh vertices derived in 4 yields the most accurate solution.
In contrast, the deep Galerkin method and uniformly random sampled points is not able to
approximate the target function with singular behaviour. We concluded the Chapter by highlighting
that the convergence rate of the neural network is not comparable to the finite element method and
requires a proper scaling of network parameters. There are several open questions that are worth
further investigation:

(a) Applicability of the deep Ritz method to solve time-dependent PDEs.

(b) Parallelisation of the training process by domain decomposition [KZK21].

(c) Analysis of the relationship between convergence rate and scaling network parameters, such
as number of hidden units, layers and other meta-parameters.

(d) Implementation of the rezoning approach to equidistribute the mesh (possibly based on a
MMPDE or OT based strategy) and to solve a PDE alternatively under the deep learning
framework.

135

136

Appendix A

Derivation of the optimal parameters
for OT-based mesh generation

In this appendix we prove the results stated in Lemma 4.13.

A.0.1 L∞ norm

Firstly, we derive the optimal value of the exponent W that equidistributes the L∞ linear interpolation
error norm

D − ?1,#

∞. We consider the function D(A) = AU, where U = c/l, and l is the interior

angle of the re-entrant corner. As U < 1 and D ∉ �2 ([0, 1]), we split the error analysis into two parts.

We split the interval [0, 1] into the partition {A 9 }#9=0, with A 9 =
(
9

#

)V
for 9 = 0, . . . , # , and define the

linear interpolant of D on those points by ?1,# . The prescribed parameter V specifies the level of grid
compression towards the origin. We can then write

D − ?1,#

∞, [0,1] = max

{ D − ?1,#

∞, [0,A1] ,

D − ?1,#

∞, [A1 ,A#]

}
.

For the first part, by the triangle inequality

D − ?1,#

∞, [0,A1] ≤ ‖D‖∞, [0,A1] +

?1,#

∞, [0,A1] = A

U
1 + ?1,# (A1) = 2

((
1
#

)V)U
= 2#−UV , (A.0.1)

using the fact that both D and ?1,# are increasing functions. We treat each interval [A 9−1, A 9] for 9 ≥ 2
separately. For ℎ 9 = A 9 − A 9−1, we have

137

D − ?1,#

∞, [A 9−1 ,A 9] ≤

1
8 ℎ

2
9

D′′
∞, [A 9−1 ,A 9]

,

with

D′′
∞, [A 9−1 ,A 9]

= sup
[A 9−1 ,A 9]

|D′′ | = |U(U − 1) |AU−2
9−1 = |U(U − 1) |

(
9 − 1
#

)V (U−2)
.

Using the mean-value theorem we have ℎ 9 = 1
#
V

(
C 9

#

)V−1
≤ V

#

(
9

#

)V−1
for any C 9 ∈ (9 − 1, 9).

We then obtain

D − ?1,#

∞, [A 9−1 ,A 9] ≤

|U(U − 1) |
8 V2#−UV

(
92(V−1)

(9 − 1)V (2−U)

)
. (A.0.2)

Finally, equations (A.0.1) and (A.0.2) give

D − ?1,#

∞, [0,1] ≤ max

9=1,...,#
{
D − ?1,#

∞, [A 9−1 ,A 9]} ≤ #

−UV max
9=2,...,#

{
2, |U(U − 1) |

8 V2 92(V−1)

(9 − 1)V (2−U)

}
.

By imposing 2(V − 1) = V(2− U) ⇒ V = 2/U we obtain that the order of convergence for the L∞ norm
is #−2.

If B is the computational variable in Ω2 then the L∞ norm is equidistributed with

A = BV

so that dA = VBV−1 dB. Hence we have <(A)BVVBV−1 dB = B dB ⇒ <(A) = 1/V(A1/V)2(1−V) = 2A−2W .
Thus

W = 1 − 1
V
= 1 − U2 = 1 − c

2l . (A.0.3)

For the L-shaped domain (l = 3c/2) we have W = 2/3, whereas for the crack domain (l = 2c) we have
W = 3/4. The results derived are in agreement with both Fig. 4-10b and Fig. 4-18b in §4.5.

138

A.0.2 L2 norm

We consider the image in the physical domain Ω of a uniform triangle ̂ in the computational domain
Ω2 , under the action of the OT map. It follows from the boundedness of the shape regularity of the
map as A ∼ 0 (Figure 4-7a–4-7b) that has no vanishingly small angles and is close to being a regular
triangle (as can be seen from the images of the generated meshes). If the original triangle ̂ has cell
diameter Δ then, from (4.4.11) it follows that the sides ℎ of the transformed triangle are proportional
to ℎ = ΔAW . Now consider a function of the form D(A, \) = AU 5 (\), where U = c/l < 1 and 5 (\) is
slowly varying. In this function, all A-partial derivatives will dominate \-partial derivatives as A → 0. It
follows from standard results that the L2 interpolation error �2, over is bounded by:

�2, < �ℎ2
 |D |H2 () ≈ �

(
Δ2A2W

)
ΔAW max |DAA | = �Δ3A3WA c/l−2 = �A3W+c/l−2,

where� is a constant independent of A . As in the case of the L∞ norm we need to consider the two cases
of when A = 0 lies in or not separately.

If does not include the point A = 0 then �2, is equidistributed when A3WA c/l−2 is constant.

Hence in this case

W =
2
3 −

c

3l . (A.0.4)

If does include the point A = 0 then we have by the triangle inequality

�2, <
?1,#

L2 () + ‖D‖L2 () .

For the first term we have

?1,#

L2 () ∼
(∫ A1

0

∫ \1

0
|?1,# |2A d\ dA

)1/2

<

(
�0 (\)A2

1

(∫ A1

0
A dA

))1/2

< �1 (\)A2
1 ,

where �0 (\), �1 (\) are two constants dependent on \. Similarly, the second term gives the bound

‖D‖L2 () <

(
�0 (\)

∫ A1

0
|AU |2A dA

)1/2

< �1 (\)AU1 A1 < �1 (\)A1+c/l
1 .

We first note that the term
?1,#

L2 () → 0 faster than the second term. We focus then on the

139

predominant part of the error, which is dependent on A1+c/l
1 .

Provided W < 1, the following inequality holds:

1 + c/l > 3W + c/l − 2

Thus, if the error is equidistributed over those elements not including the origin, it will be smaller on
the elements including the origin.

Hence we can take W as in (A.0.4) so that if l = 3c/2 (L-shaped domain) then W = 4/9 and if l = 2c
(crack domain) then W = 1/2. The results derived are consistent with both Fig. 4-10a and Fig. 4-18a in
§4.5.

140

Appendix B

Code

The code used to obtain the numerical results presented throughout the thesis are available on GitHub:

• Chapter 3

• Chapter 4

• Chapter 5

141

https://github.com/Zarasim/A-conservative-moving-mesh-method
https://github.com/Zarasim/Adaptive-Mesh-for-Poisson-Equation
https://github.com/Zarasim/Poisson_equation_2D_dGM_dRM

142

Bibliography

[AO97] M. Ainsworth and J.T. Oden. “A posteriori error estimation in finite element analysis”. In: Computer
Methods in Applied Mechanics and Engineering 142.1 (1997), pp. 1–88. issn: 0045-7825. doi:
https://doi.org/10.1016/S0045-7825(96)01107-3. url: https://www.sciencedirect.
com/science/article/pii/S0045782596011073.

[Ape13] T. Apel. Advanced Finite Element Methods and Applications. Ed. by O. Steinbach. 1st ed. 2013. Lec-
ture Notes in Applied and Computational Mechanics, Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, p. 376.

[Arn+00] D. Arnold et al. “Discontinuous Galerkin Methods”. In: vol. 11. Lecture Notes in Computational
Science and Engineering. Springer Berlin, Heidelberg, Jan. 2000, pp. 89–101. isbn: 978-3-642-
64098-8. doi: 10.1007/978-3-642-59721-3.

[Arn+02] D. Arnold et al. “Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems”. In:
SIAM J. Numer. Anal. 39 (Jan. 2002). doi: 10.1137/S0036142901384162.

[Arn82] D. Arnold. “An Interior Penalty Finite Element Method with Discontinuous Elements”. In: SIAM
Journal on Numerical Analysis 19.4 (1982), pp. 742–760. doi: 10.1137/0719052. eprint: https:
//doi.org/10.1137/0719052. url: https://doi.org/10.1137/0719052.

[ARW07] T. Apel, A. Rösch, and G. Winkler. “Optimal control in non-convex domains: A priori discretization
error estimates”. In: Calcolo 44 (Sept. 2007), pp. 137–158. doi: 10.1007/s10092-007-0133-0.

[AS98] M. Ainsworth and B. Senior. “An adaptive refinement strategy for hp-finite element computations”.
In: Applied Numerical Mathematics 26.1 (1998), pp. 165–178.

[Bab71] I. Babuka. “The Rate of Convergence for the Finite Element Method”. In: SIAM Journal on Numerical
Analysis 8.2 (1971), pp. 304–315. doi: 10.1137/0708031. eprint: https://doi.org/10.1137/
0708031. url: https://doi.org/10.1137/0708031.

[Bak97] T.J. Baker. “Mesh adaptation strategies for problems in fluid dynamics”. In: Finite Elements in
Analysis and Design 25.3 (1997). Adaptive Meshing, Part 2, pp. 243–273. issn: 0168-874X. doi:
https://doi.org/10.1016/S0168-874X(96)00032-7. url: https://www.sciencedirect.
com/science/article/pii/S0168874X96000327.

[Bay+18] A. Baydin et al. “Automatic differentiation in machine learning: A survey”. In: Journal of Machine
Learning Research 18 (Apr. 2018), pp. 1–43.

[BBO03] I. Babuska, U. Banerjee, and J. E. Osborn. “Survey of meshless and generalized finite element
methods: A unified approach”. In: Acta Numerica 12 (2003), pp. 1–125.

143

https://doi.org/https://doi.org/10.1016/S0045-7825(96)01107-3
https://www.sciencedirect.com/science/article/pii/S0045782596011073
https://www.sciencedirect.com/science/article/pii/S0045782596011073
https://doi.org/10.1007/978-3-642-59721-3
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/0719052
https://doi.org/10.1137/0719052
https://doi.org/10.1137/0719052
https://doi.org/10.1137/0719052
https://doi.org/10.1007/s10092-007-0133-0
https://doi.org/10.1137/0708031
https://doi.org/10.1137/0708031
https://doi.org/10.1137/0708031
https://doi.org/10.1137/0708031
https://doi.org/https://doi.org/10.1016/S0168-874X(96)00032-7
https://www.sciencedirect.com/science/article/pii/S0168874X96000327
https://www.sciencedirect.com/science/article/pii/S0168874X96000327

[BBO99] I. Babuka, C.E. Baumann, and J.T. Oden. “A discontinuous hp finite element method for diffusion
problems: 1-D analysis”. In: Computers & Mathematics with Applications 37.9 (1999), pp. 103–
122. issn: 0898-1221. doi: https://doi.org/10.1016/S0898-1221(99)00117-0. url:
https://www.sciencedirect.com/science/article/pii/S0898122199001170.

[BCW13] C.J. Budd, M.J.P. Cullen, and E.J. Walsh. “MongeAmpère based moving mesh methods for numerical
weather prediction, with applications to the Eady problem”. In: Journal of Computational Physics 236
(2013), pp. 247–270. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2012.11.014.
url: https://www.sciencedirect.com/science/article/pii/S0021999112006912.

[BG88] I. Babuka and B. Q. Guo. “Regularity of the Solution of Elliptic Problems with Piecewise Analytic
Data. Part I. Boundary Value Problems for Linear Elliptic Equation of Second Order”. In: SIAM
Journal on Mathematical Analysis 19.1 (1988), pp. 172–203. doi: 10.1137/0519014. eprint:
https://doi.org/10.1137/0519014. url: https://doi.org/10.1137/0519014.

[BG89] I. Babuka and B. Q. Guo. “Regularity of the Solution of Elliptic Problems with Piecewise Analytic
Data. II: The Trace Spaces and Application to the Boundary Value Problems with Nonhomogeneous
Boundary Conditions”. In: SIAM Journal on Mathematical Analysis 20.4 (1989), pp. 763–781. doi:
10.1137/0520054. eprint: https://doi.org/10.1137/0520054. url: https://doi.org/10.
1137/0520054.

[BG92] I. Babuka and B.Q. Guo. “The h, p and hp- version of the finite element method; basis theory and
applications”. In: Advances in Engineering Software 15.3 (1992), pp. 159–174. issn: 0965-9978. doi:
https://doi.org/10.1016/0965-9978(92)90097-Y. url: http://www.sciencedirect.
com/science/article/pii/096599789290097Y.

[BH74] J.R. Bunch and J.E. Hopcroft. “Triangular factorization and inversion by fast matrix multiplication”.
In: Math. Comp. 28 (1974), pp. 231–236.

[BHR09] C.J. Budd, W. Huang, and R.D. Russell. “Adaptivity with moving grids”. In: Acta Numerica 18
(2009), pp. 111–241.

[BHR96] C.J. Budd, W. Huang, and R.D. Russell. “Moving Mesh Methods for Problems with Blow-Up”. In:
SIAM Journal on Scientific Computing 17 (1996), pp. 305–327.

[Bis95] C. M. Bishop. Neural Networks for Pattern Recognition. USA: Oxford University Press, Inc., 1995.
isbn: 0198538642.

[BKP79] I. Babuka, R. B. Kellogg, and J. Pitkäranta. “Direct and Inverse Error Estimates for Finite Elements
with Mesh Refinements”. In: Numer. Math. 33.4 (1979), pp. 447–471. issn: 0029-599X. doi: 10.
1007/BF01399326. url: https://doi.org/10.1007/BF01399326.

[Boo73] Carl de Boor. “Spline Functions and Approximation Theory”. In: ed. by A. Meir and A. Sharma.
International Series of Numerical Mathematics. Birkhäuser Basel, 1973, pp. 57–72. isbn: 978-3-
0348-5979-0. doi: 10.1007/978-3-0348-5979-0_3. url: https://doi.org/10.1007/978-
3-0348-5979-0_3.

[BR14] C. Bedregal and M. Rivara. “Longest-edge algorithms for size-optimal refinement of triangulations”.
In: Computer-Aided Design 46 (Jan. 2014), pp. 246–251. doi: 10.1016/j.cad.2013.08.040.

[BR72] I. Babuka and M. B. Rosenzweig. “A Finite Element Scheme for Domains with Corners”. In: Numer.
Math. 20.1 (1972), pp. 1–21. issn: 0029-599X. doi: 10.1007/BF01436639. url: https://doi.
org/10.1007/BF01436639.

144

https://doi.org/https://doi.org/10.1016/S0898-1221(99)00117-0
https://www.sciencedirect.com/science/article/pii/S0898122199001170
https://doi.org/https://doi.org/10.1016/j.jcp.2012.11.014
https://www.sciencedirect.com/science/article/pii/S0021999112006912
https://doi.org/10.1137/0519014
https://doi.org/10.1137/0519014
https://doi.org/10.1137/0519014
https://doi.org/10.1137/0520054
https://doi.org/10.1137/0520054
https://doi.org/10.1137/0520054
https://doi.org/10.1137/0520054
https://doi.org/https://doi.org/10.1016/0965-9978(92)90097-Y
http://www.sciencedirect.com/science/article/pii/096599789290097Y
http://www.sciencedirect.com/science/article/pii/096599789290097Y
https://doi.org/10.1007/BF01399326
https://doi.org/10.1007/BF01399326
https://doi.org/10.1007/BF01399326
https://doi.org/10.1007/978-3-0348-5979-0_3
https://doi.org/10.1007/978-3-0348-5979-0_3
https://doi.org/10.1007/978-3-0348-5979-0_3
https://doi.org/10.1016/j.cad.2013.08.040
https://doi.org/10.1007/BF01436639
https://doi.org/10.1007/BF01436639
https://doi.org/10.1007/BF01436639

[Bre91] Y. Brenier. “Polar Factorization and Monotone Rearrangement of Vector-Valued Functions”. In:
Communications on Pure and Applied Mathematics 44 (1991), pp. 375–417.

[BRW15] C.J. Budd, R.D. Russell, and E. Walsh. “The geometry of r-adaptive meshes generated using optimal
transport methods”. In: Journal of Computational Physics 282 (2015), pp. 113–137. issn: 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2014.11.007. url: https://www.sciencedirect.
com/science/article/pii/S0021999114007591.

[BS08] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Vol. 15. Texts in
Applied Mathematics. Springer, 2008. isbn: 9780387759333. doi: 10.1007/978-0-387-75934-0.
url: http://dx.doi.org/10.1007/978-0-387-75934-0.

[BW06] C.J. Budd and J.F. Williams. “Parabolic MongeAmpère methods for blow-up problems in several
spatial dimensions”. In: Journal of Physics A: Mathematical and General 39 (Apr. 2006), p. 5425.
doi: 10.1088/0305-4470/39/19/S06.

[BW09] C.J. Budd and J.F. Williams. “Moving Mesh Generation using the Parabolic MongeAmpère Equation”.
In: SIAM Journal on Scientific Computing 31.5 (2009), pp. 3438–3465. doi: 10.1137/080716773.
eprint: https : / / doi . org / 10 . 1137 / 080716773. url: https : / / doi . org / 10 . 1137 /
080716773.

[BW10] C.J. Budd and J.F. Williams. “How to adaptively resolve evolutionary singularities in differential
equations with symmetry”. In: Journal of Engineering Mathematics 66 (Mar. 2010), pp. 217–236.
doi: 10.1007/s10665-009-9343-6.

[BWG04] C.J. Budd, J. F. Williams, and V. A. Galaktionov. “Self-Similar Blow-Up in Higher-Order Semilinear
Parabolic Equations”. In: SIAM Journal on Applied Mathematics 64.5 (2004), pp. 1775–1809. doi:
10.1137/S003613990241552X. eprint: https://doi.org/10.1137/S003613990241552X.
url: https://doi.org/10.1137/S003613990241552X.

[Caf90] L.A. Caffarelli. “Interior,2.? Estimates for Solutions of the Monge-Ampere Equation”. In: Annals
of Mathematics 131.1 (1990), pp. 135–150. issn: 0003486X. url: http://www.jstor.org/
stable/1971510 (visited on 06/17/2022).

[Caf96] L.A. Caffarelli. “Boundary Regularity of Maps with Convex Potentials–II”. In: Annals of Mathematics
144.3 (1996), pp. 453–496. issn: 0003486X. url: http://www.jstor.org/stable/2118564
(visited on 06/17/2022).

[CD02] Z. Chen and S. Dai. “On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with
Discontinuous Coefficients”. In: Industrial and Applied Mathematics 24 (Oct. 2002), pp. 443–462.
doi: 10.1137/S1064827501383713.

[CGH14] A. Cangiani, E. Georgoulis, and P. Houston. “hp-version discontinuous Galerkin methods on polygo-
nal and polyhedral meshes”. In: Mathematical Models and Methods in Applied Sciences 24.10 (2014),
pp. 2009–2041.

[Che20] J. Chen. “A Comparison Study of Deep Galerkin Method and Deep Ritz Method for Elliptic Problems
with Different Boundary Conditions”. In: Communications in Mathematical Research 36 (June 2020),
pp. 354–376. doi: 10.4208/cmr.2020-0051.

[CHR99] W. Cao, W. Huang, and R. D. Russell. “An r-Adaptive Finite Element Method Based upon Moving
Mesh PDEs”. In: Journal of Computational Physics 149.2 (1999), pp. 221–244. issn: 0021-9991.
doi: https://doi.org/10.1006/jcph.1998.6151. url: https://www.sciencedirect.
com/science/article/pii/S0021999198961514.

145

https://doi.org/https://doi.org/10.1016/j.jcp.2014.11.007
https://www.sciencedirect.com/science/article/pii/S0021999114007591
https://www.sciencedirect.com/science/article/pii/S0021999114007591
https://doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1088/0305-4470/39/19/S06
https://doi.org/10.1137/080716773
https://doi.org/10.1137/080716773
https://doi.org/10.1137/080716773
https://doi.org/10.1137/080716773
https://doi.org/10.1007/s10665-009-9343-6
https://doi.org/10.1137/S003613990241552X
https://doi.org/10.1137/S003613990241552X
https://doi.org/10.1137/S003613990241552X
http://www.jstor.org/stable/1971510
http://www.jstor.org/stable/1971510
http://www.jstor.org/stable/2118564
https://doi.org/10.1137/S1064827501383713
https://doi.org/10.4208/cmr.2020-0051
https://doi.org/https://doi.org/10.1006/jcph.1998.6151
https://www.sciencedirect.com/science/article/pii/S0021999198961514
https://www.sciencedirect.com/science/article/pii/S0021999198961514

[CKO00] L.A. Caffarelli, S. Kochengin, and V. Oliker. “On the Numerical Solution of the Problem of Reflector
Design with Given Far-Field Scattering Data”. In: Contemporary Mathematics 226 (Dec. 2000). doi:
10.1090/conm/226/03233.

[Coo+19] S. Cook et al. “Error estimates for semi-Lagrangian finite difference methods applied to Burgers’
equation in one dimension”. In: Applied Numerical Mathematics 145 (June 2019). doi: 10.1016/j.
apnum.2019.06.012.

[CRR15] B. Crestel, R.D. Russell, and S. Ruuth. “Moving Mesh Methods on Parametric Surfaces”. In: Procedia
Engineering 124 (Dec. 2015), pp. 148–160. doi: 10.1016/j.proeng.2015.10.129.

[Del+08] G.L. Delzanno et al. “An optimal robust equidistribution method for two-dimensional grid adaptation
based on MongeKantorovich optimization”. In: Journal of Computational Physics 227 (Dec. 2008),
pp. 9841–9864. doi: 10.1016/j.jcp.2008.07.020.

[DF11] G. De Philippis and A. Figalli. “,2,1 regularity for solutions of the Monge-Ampère equation”. In:
arXiv: Analysis of PDEs (2011).

[DG12] A. Demlow and E. H. Georgoulis. “Pointwise a Posteriori Error Control for Discontinuous Galerkin
Methods for Elliptic Problems”. In: SIAM Journal on Numerical Analysis 50.5 (2012), pp. 2159–
2181. doi: 10.1137/110846397. eprint: https://doi.org/10.1137/110846397. url: https:
//doi.org/10.1137/110846397.

[DS13] J. Danczyk and K. Suresh. “Finite element analysis over tangled simplicial meshes: Theory and
implementation”. In: Finite Elements in Analysis and Design 70 (2013), pp. 57–67.

[Dvi91] A.S. Dvinsky. “Adaptive Grid Generation from Harmonic Maps on Riemannian Manifolds”. In:
Journal of Computational Physics 95.2 (Aug. 1991), pp. 450–476. doi: 10.1016/0021-9991(91)
90285-S.

[Eis87] P.R. Eiseman. “Adaptive grid generation”. In: Computer Methods in Applied Mechanics and Engi-
neering 64.1 (1987), pp. 321–376.

[Eva10] L. C. Evans. Partial differential equations. American Mathematical Society, 2010. isbn: 9780821849743
0821849743.

[FDF11] C. Fischer, A. Düster, and W. Fricke. In: Conference: Proceedings of the 3rd International Conference
on Marine Structures. Mar. 2011, pp. 289–294. isbn: 978-0-415-67771-4. doi: 10.1201/b10771-34.

[Fel99] M. Feldman. “Growth of a sandpile around an obstacle”. In: Monge Ampère Equation: Applications to
Geometry and Optimization (Deerfield Beach, FL, 1997), number 226 in Contemp. Math. American
Mathematical Society, 1999, pp. 55–78.

[Fig07] A. Figalli. “Existence, Uniqueness, and Regularity of Optimal Transport Maps”. In: SIAM Journal
on Mathematical Analysis 39.1 (2007), pp. 126–137. doi: 10.1137/060665555. eprint: https:
//doi.org/10.1137/060665555. url: https://doi.org/10.1137/060665555.

[FM10] P. Farrell and J. Maddison. “Conservative interpolation between volume meshes by local Galerkin
projection”. In: Computer Methods in Applied Mechanics and Engineering 200 (2010), pp. 89–100.

[Gar77] A.B. Garth. “Finite element methods for elliptic equations using nonconforming elements”. In:
Mathematics of Computation 31 (1977), pp. 45–59.

[Gav+11] N. Gavish et al. “Curvature driven flow of bi-layer interfaces”. In: Physica D-nonlinear Phenomena
- PHYSICA D 240 (Mar. 2011), pp. 675–693. doi: 10.1016/j.physd.2010.11.016.

146

https://doi.org/10.1090/conm/226/03233
https://doi.org/10.1016/j.apnum.2019.06.012
https://doi.org/10.1016/j.apnum.2019.06.012
https://doi.org/10.1016/j.proeng.2015.10.129
https://doi.org/10.1016/j.jcp.2008.07.020
https://doi.org/10.1137/110846397
https://doi.org/10.1137/110846397
https://doi.org/10.1137/110846397
https://doi.org/10.1137/110846397
https://doi.org/10.1016/0021-9991(91)90285-S
https://doi.org/10.1016/0021-9991(91)90285-S
https://doi.org/10.1201/b10771-34
https://doi.org/10.1137/060665555
https://doi.org/10.1137/060665555
https://doi.org/10.1137/060665555
https://doi.org/10.1137/060665555
https://doi.org/10.1016/j.physd.2010.11.016

[GB05] T. Grätsch and K.J. Bathe. “A posteriori error estimation techniques in practical finite element
analysis”. In: Computers & Structures 83.4 (2005), pp. 235–265. issn: 0045-7949. doi: https:
//doi.org/10.1016/j.compstruc.2004.08.011. url: https://www.sciencedirect.com/
science/article/pii/S0045794904003165.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. url: http://www.
deeplearningbook.org.

[GGI] S. Gottlieb, Z.J. Grant, and L. Isherwood. Strong Stability Preserving Integrating Factor Runge-Kutta
Methods.

[GL13] K.B. Glasner and A.E. Lindsay. “The Stability and Evolution of Curved Domains Arising from
One-Dimensional Localized Patterns”. In: SIAM Journal on Applied Dynamical Systems 12.2 (2013),
pp. 650–673. doi: 10.1137/120893008. eprint: https://doi.org/10.1137/120893008. url:
https://doi.org/10.1137/120893008.

[GMP17] E. Georgoulis, C. Makridakis, and T. Pryer. “Babuka-Osborn techniques in discontinuous Galerkin
methods: !2-norm error estimates for unstructured meshes”. In: arXiv:1704.05238 (2017).

[Gri11] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Math-
ematics, 2011. doi: 10.1137/1.9781611972030. eprint: https://epubs.siam.org/doi/
pdf/10.1137/1.9781611972030. url: https://epubs.siam.org/doi/abs/10.1137/1.
9781611972030.

[GW08] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Second. USA: Society for Industrial and Applied Mathematics, 2008. isbn: 0898716594.

[Hag94] R. Hagmeijer. “Grid Adaption Based on Modified Anisotropic Diffusion Equations Formulated in
the Parametric Domain”. In: Journal of Computational Physics 115.1 (1994), pp. 169–183. issn:
0021-9991. doi: https : / / doi . org / 10 . 1006 / jcph . 1994 . 1185. url: https : / / www .
sciencedirect.com/science/article/pii/S0021999184711855.

[Har16] K. Hart. AABBTree. https://github.com/kip-hart/AABBTree. 2016.

[Her+13] C. Hertel et al. “Using a Moving Mesh PDE for Cell Centres to Adapt a Finite Volume Grid”. In:
Flow, Turbulence and Combustion 90.4 (2013), pp. 785–812.

[HK15a] W. Huang and L. Kamenski. “A geometric discretization and a simple implementation for variational
mesh generation and adaptation”. In: J. Comput. Phys. 301 (2015), pp. 322–337.

[HK15b] W. Huang and L. Kamenski. “On the mesh nonsingularity of the moving mesh PDE method”. In:
Mathematics of Computation 87 (2015).

[Hoc98] S. Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem
Solutions”. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (Apr.
1998), pp. 107–116. doi: 10.1142/S0218488598000094.

[HR11] W. Huang and R.D. Russell. Adaptive Moving Mesh Methods. Vol. 174. 2011.

[HR98a] W. Huang and R. D. Russell. “A high dimensional moving mesh strategy”. In: Applied Numerical
Mathematics 26.1 (1998), pp. 63–76. issn: 0168-9274. doi: https://doi.org/10.1016/S0168-
9274(97)00082-2. url: https://www.sciencedirect.com/science/article/pii/
S0168927497000822.

147

https://doi.org/https://doi.org/10.1016/j.compstruc.2004.08.011
https://doi.org/https://doi.org/10.1016/j.compstruc.2004.08.011
https://www.sciencedirect.com/science/article/pii/S0045794904003165
https://www.sciencedirect.com/science/article/pii/S0045794904003165
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1137/120893008
https://doi.org/10.1137/120893008
https://doi.org/10.1137/120893008
https://doi.org/10.1137/1.9781611972030
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972030
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972030
https://epubs.siam.org/doi/abs/10.1137/1.9781611972030
https://epubs.siam.org/doi/abs/10.1137/1.9781611972030
https://doi.org/https://doi.org/10.1006/jcph.1994.1185
https://www.sciencedirect.com/science/article/pii/S0021999184711855
https://www.sciencedirect.com/science/article/pii/S0021999184711855
https://doi.org/10.1142/S0218488598000094
https://doi.org/https://doi.org/10.1016/S0168-9274(97)00082-2
https://doi.org/https://doi.org/10.1016/S0168-9274(97)00082-2
https://www.sciencedirect.com/science/article/pii/S0168927497000822
https://www.sciencedirect.com/science/article/pii/S0168927497000822

[HR98b] W. Huang and R. D. Russell. “Moving Mesh Strategy Based on a Gradient Flow Equation for Two-
Dimensional Problems”. In: SIAM Journal on Scientific Computing 20.3 (1998), pp. 998–1015. doi:
10.1137/S1064827596315242. eprint: https://doi.org/10.1137/S1064827596315242.
url: https://doi.org/10.1137/S1064827596315242.

[HRR94a] W. Huang, Y. Ren, and R. D. Russell. “Moving Mesh Methods Based on Moving Mesh Partial Differ-
ential Equations”. In: Journal of Computational Physics 113.2 (1994), pp. 279–290. issn: 0021-9991.
doi: https://doi.org/10.1006/jcph.1994.1135. url: https://www.sciencedirect.
com/science/article/pii/S0021999184711351.

[HRR94b] W. Huang, Y. Ren, and R. D. Russell. “Moving Mesh Partial Differential Equations (MMPDES)
Based on the Equidistribution Principle”. In: SIAM Journal on Numerical Analysis 31.3 (1994),
pp. 709–730. doi: 10.1137/0731038. eprint: https://doi.org/10.1137/0731038. url:
https://doi.org/10.1137/0731038.

[HS03] W. Huang and W. Sun. “Variational Mesh Adaptation II: Error Estimates and Monitor Functions”.
In: J. Comput. Phys. 184.2 (2003), pp. 619–648.

[HSS02] P. Houston, C. Schwab, and E. Süli. “Discontinuous hp-Finite Element Methods for Advection-
Diffusion-Reaction Problems”. In: SIAM Journal on Numerical Analysis 39.6 (2002), pp. 2133–2163.
doi: 10.1137/S0036142900374111. eprint: https://doi.org/10.1137/S0036142900374111.
url: https://doi.org/10.1137/S0036142900374111.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks are universal approxi-
mators”. In: Neural Networks 2.5 (1989), pp. 359–366. issn: 0893-6080. doi: https://doi.org/
10.1016/0893-6080(89)90020-8. url: https://www.sciencedirect.com/science/
article/pii/0893608089900208.

[Hua15] W. Huang. “A Comparative Numerical Study of Meshing Functionals for Variational Mesh Adapta-
tion”. In: Journal of Mathematical Study 48.2 (2015), pp. 168–186.

[JHG18] A. Jacot, C. Hongler, and F. Gabriel. “Neural Tangent Kernel: Convergence and Generalization in
Neural Networks”. In: NeurIPS. 2018, pp. 8580–8589. url: http://dblp.uni-trier.de/db/
conf/nips/nips2018.html#JacotHG18.

[KB14] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: International Conference
on Learning Representations (Dec. 2014).

[KH10] K. Kwang-Yeon and L. Hyung-Chun. “A posteriori error estimators for nonconforming finite element
methods of the linear elasticity problem”. In: Journal of Computational and Applied Mathematics
235.1 (2010), pp. 186–202. issn: 0377-0427. doi: https://doi.org/10.1016/j.cam.2010.05.
032. url: https://www.sciencedirect.com/science/article/pii/S0377042710003080.

[KZK21] E. Kharazmi, Z. Zhang, and G.E. Karniadakis. “hp-VPINNs: Variational physics-informed neural
networks with domain decomposition”. In: Computer Methods in Applied Mechanics and Engineering
374 (2021), p. 113547. issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.2020.113547.
url: https://www.sciencedirect.com/science/article/pii/S0045782520307325.

[Li+18] H. Li et al. “Visualizing the Loss Landscape of Neural Nets”. In: Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems. NIPS’18. Montrèal, Canada: Curran
Associates Inc., 2018, pp. 6391–6401.

148

https://doi.org/10.1137/S1064827596315242
https://doi.org/10.1137/S1064827596315242
https://doi.org/10.1137/S1064827596315242
https://doi.org/https://doi.org/10.1006/jcph.1994.1135
https://www.sciencedirect.com/science/article/pii/S0021999184711351
https://www.sciencedirect.com/science/article/pii/S0021999184711351
https://doi.org/10.1137/0731038
https://doi.org/10.1137/0731038
https://doi.org/10.1137/0731038
https://doi.org/10.1137/S0036142900374111
https://doi.org/10.1137/S0036142900374111
https://doi.org/10.1137/S0036142900374111
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#JacotHG18
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#JacotHG18
https://doi.org/https://doi.org/10.1016/j.cam.2010.05.032
https://doi.org/https://doi.org/10.1016/j.cam.2010.05.032
https://www.sciencedirect.com/science/article/pii/S0377042710003080
https://doi.org/https://doi.org/10.1016/j.cma.2020.113547
https://www.sciencedirect.com/science/article/pii/S0045782520307325

[Liy+21] L. Liyao et al. “Enforcing Exact Boundary and Initial Conditions in the Deep Mixed Residual
Method”. In: CSIAM Transactions on Applied Mathematics 2.4 (2021), pp. 748–775. issn: 2708-
0579. doi: https://doi.org/10.4208/csiam-am.SO-2021-0011. url: http://global-
sci.org/intro/article_detail/csiam-am/19991.html.

[LLF98] I.E. Lagaris, A. Likas, and D.I. Fotiadis. “Artificial neural networks for solving ordinary and partial
differential equations”. In: IEEE transactions on neural networks 95 (1998), pp. 987–1000.

[Lon+18] Z. Long et al. PDE-Net: Learning PDEs from Data. Ed. by J. Dy and A. Krause. Oct. 2018. url:
https://proceedings.mlr.press/v80/long18a.html.

[LP96] S. Li and L. Petzold. “Stability of Moving Mesh Systems of Partial Differential Equations”. In: SIAM
Journal on Scientific Computing 20 (1996).

[LTZ01] R. Li, T. Tang, and P. Zhang. “Moving Mesh Methods in Multiple Dimensions Based on Harmonic
Maps”. In: Journal of Computational Physics 170.2 (2001), pp. 562–588. issn: 0021-9991. doi:
https://doi.org/10.1006/jcph.2001.6749. url: https://www.sciencedirect.com/
science/article/pii/S002199910196749X.

[LW10] A. Logg and G. N. Wells. “DOLFIN”. In: ACM Transactions on Mathematical Software 37.2 (Apr.
2010), pp. 1–28. issn: 1557-7295. doi: 10.1145/1731022.1731030. url: http://dx.doi.org/
10.1145/1731022.1731030.

[MCB18] A. T. T. McRae, C. J. Cotter, and C. J. Budd. “Optimal-Transport–Based Mesh Adaptivity on the
Plane and Sphere Using Finite Elements”. In: SIAM Journal on Scientific Computing 40.2 (2018),
A1121–A1148. doi: 10.1137/16M1109515. eprint: https://doi.org/10.1137/16M1109515.
url: https://doi.org/10.1137/16M1109515.

[Mei69] A.L.F. Meister. Generalia de genesi figurarum planarum et inde pendentibus earum affectionibus.
1769.

[MG90] Shepherd M. and Theodore G. “Symmetries, conservation laws, and Hamiltonian structure in geo-
physical fluid dynamics”. In: Advances in Geophysics. Vol. 32. Elsevier, 1990, pp. 287–338.

[MGO05] P. Müller, C. Garrett, and A. Osborne. “Rogue waves”. In: Oceanography 18.3 (2005), p. 66.

[ML21] Y. Ming and P. Liao. “Deep Nitsche Method: Deep Ritz Method with Essential Boundary Conditions”.
In: Communications in Computational Physics 29.5 (June 2021), pp. 1365–1384. issn: 1991-7120.
doi: 10.4208/cicp.oa-2020-0219. url: http://dx.doi.org/10.4208/cicp.OA-2020-
0219.

[MMN18] S. Mei, A. Montanari, and P.M. Nguyen. “A mean field view of the landscape of two-layer neural
networks”. In: Proceedings of the National Academy of Sciences 115.33 (2018), E7665–E7671. doi:
10.1073/pnas.1806579115.

[MNS00] P. Morin, R.H. Nochetto, and K. G. Siebert. “Data Oscillation and Convergence of Adaptive
FEM”. In: SIAM Journal on Numerical Analysis 38.2 (2000), pp. 466–488. doi: 10 . 1137 /
S0036142999360044. eprint: https://doi.org/10.1137/S0036142999360044. url: https:
//doi.org/10.1137/S0036142999360044.

[MW14] J. Melenk and T. Wihler. A Posteriori Error Analysis of ℎ?-FEM for singularly perturbed problems.
2014. doi: 10.48550/ARXIV.1408.6037. url: https://arxiv.org/abs/1408.6037.

149

https://doi.org/https://doi.org/10.4208/csiam-am.SO-2021-0011
http://global-sci.org/intro/article_detail/csiam-am/19991.html
http://global-sci.org/intro/article_detail/csiam-am/19991.html
https://proceedings.mlr.press/v80/long18a.html
https://doi.org/https://doi.org/10.1006/jcph.2001.6749
https://www.sciencedirect.com/science/article/pii/S002199910196749X
https://www.sciencedirect.com/science/article/pii/S002199910196749X
https://doi.org/10.1145/1731022.1731030
http://dx.doi.org/10.1145/1731022.1731030
http://dx.doi.org/10.1145/1731022.1731030
https://doi.org/10.1137/16M1109515
https://doi.org/10.1137/16M1109515
https://doi.org/10.1137/16M1109515
https://doi.org/10.4208/cicp.oa-2020-0219
http://dx.doi.org/10.4208/cicp.OA-2020-0219
http://dx.doi.org/10.4208/cicp.OA-2020-0219
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.1137/S0036142999360044
https://doi.org/10.1137/S0036142999360044
https://doi.org/10.1137/S0036142999360044
https://doi.org/10.1137/S0036142999360044
https://doi.org/10.1137/S0036142999360044
https://doi.org/10.48550/ARXIV.1408.6037
https://arxiv.org/abs/1408.6037

[Nwa+18] C. Nwankpa et al. Activation Functions: Comparison of trends in Practice and Research for Deep
Learning. 2018. doi: 10.48550/ARXIV.1811.03378. url: https://arxiv.org/abs/1811.
03378.

[OPS20] J. A. A. Opschoor, P. C. Petersen, and C. Schwab. “Deep ReLU networks and high-order finite
element methods”. In: Analysis and Applications 18.05 (2020), pp. 715–770. doi: 10 . 1142 /
S0219530519410136. eprint: https://doi.org/10.1142/S0219530519410136. url: https:
//doi.org/10.1142/S0219530519410136.

[OR68] L.A. Oganesyan and L.A. Rukhovets. “Variational-difference schemes for linear second-order elliptic
equations in a two-dimensional region with piecewise smooth boundary”. In: USSR Computational
Mathematics and Mathematical Physics 8.1 (1968), pp. 129–152. issn: 0041-5553. doi: https:
//doi.org/10.1016/0041-5553(68)90008-6. url: https://www.sciencedirect.com/
science/article/pii/0041555368900086.

[Pas+19] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates,
Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[PLW05] T. Plewa, T. Linde, and V.G. Weirs. Adaptive Mesh Refinement - Theory and Applications: Proceedings
of the Chicago Workshop on Adaptive Mesh Refinement Methods. Lecture Notes in Computational
Science and Engineering. Springer Berlin Heidelberg, 2005.

[Pry12] T. Pryer. Applications of nonvariational finite element methods to Monge–Ampère type equations.
2012. doi: 10.48550/ARXIV.1203.0660. url: https://arxiv.org/abs/1203.0660.

[Pry89] J. D. Pryce. “On the Convergence of Iterated Remeshing”. In: IMA Journal of Numerical Analysis
9.3 (July 1989), pp. 315–335. issn: 0272-4979. doi: 10.1093/imanum/9.3.315. eprint: https:
//academic.oup.com/imajna/article-pdf/9/3/315/2834314/9-3-315.pdf. url:
https://doi.org/10.1093/imanum/9.3.315.

[PV18] P. Petersen and F. Voigtlaender. “Optimal approximation of piecewise smooth functions using deep
ReLU neural networks”. In: Neural Networks 108 (2018), pp. 296–330. issn: 0893-6080. doi: https:
//doi.org/10.1016/j.neunet.2018.08.019. url: https://www.sciencedirect.com/
science/article/pii/S0893608018302454.

[QS07] S. Quan and D. P. Schmidt. “A moving mesh interface tracking method for 3D incompressible two-
phase flows”. In: Journal of Computational Physics 221.2 (2007), pp. 761–780. issn: 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2006.06.044. url: https://www.sciencedirect.
com/science/article/pii/S0021999106003159.

[RCS05] J. Ruichen, W. Chen, and A. Sudjianto. “An efficient algorithm for constructing optimal design of
computer experiments”. English (US). In: Journal of Statistical Planning and Inference 134.1 (Sept.
2005), pp. 268–287. issn: 0378-3758. doi: 10.1016/j.jspi.2004.02.014.

[Rem+00] J.F. Remacle et al. “Anisotropic adaptive simulation of transient Flows using Discontinuous Galerkin
methods”. In: International Journal for Numerical Methods in Engineering 00 (Jan. 2000), pp. 1–6.
doi: 10.1002/nme.1196.

150

https://doi.org/10.48550/ARXIV.1811.03378
https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1811.03378
https://doi.org/10.1142/S0219530519410136
https://doi.org/10.1142/S0219530519410136
https://doi.org/10.1142/S0219530519410136
https://doi.org/10.1142/S0219530519410136
https://doi.org/10.1142/S0219530519410136
https://doi.org/https://doi.org/10.1016/0041-5553(68)90008-6
https://doi.org/https://doi.org/10.1016/0041-5553(68)90008-6
https://www.sciencedirect.com/science/article/pii/0041555368900086
https://www.sciencedirect.com/science/article/pii/0041555368900086
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/ARXIV.1203.0660
https://arxiv.org/abs/1203.0660
https://doi.org/10.1093/imanum/9.3.315
https://academic.oup.com/imajna/article-pdf/9/3/315/2834314/9-3-315.pdf
https://academic.oup.com/imajna/article-pdf/9/3/315/2834314/9-3-315.pdf
https://doi.org/10.1093/imanum/9.3.315
https://doi.org/https://doi.org/10.1016/j.neunet.2018.08.019
https://doi.org/https://doi.org/10.1016/j.neunet.2018.08.019
https://www.sciencedirect.com/science/article/pii/S0893608018302454
https://www.sciencedirect.com/science/article/pii/S0893608018302454
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.044
https://www.sciencedirect.com/science/article/pii/S0021999106003159
https://www.sciencedirect.com/science/article/pii/S0021999106003159
https://doi.org/10.1016/j.jspi.2004.02.014
https://doi.org/10.1002/nme.1196

[RK18] M. Raissi and G.E. Karniadakis. “Hidden physics models: Machine learning of nonlinear partial
differential equations”. In: Journal of Computational Physics 357 (2018), pp. 125–141. issn: 0021-
9991. doi: 10.1016/j.jcp.2017.11.039. url: http://dx.doi.org/10.1016/j.jcp.2017.
11.039.

[RN94] I. Roulstone and J. Norbury. “A Hamiltonian structure with contact geometry for the semi-geostrophic
equations”. In: Journal of Fluid Mechanics 272 (1994), pp. 211–234.

[RPD06] W. Rachowicz, D. Pardo, and L. Demkowicz. “Fully automatic hp-adaptivity in three dimensions”.
In: Computer Methods in Applied Mechanics and Engineering 195.37 (2006), pp. 4816–4842. issn:
0045-7825. doi: https://doi.org/10.1016/j.cma.2005.08.022. url: https://www.
sciencedirect.com/science/article/pii/S0045782505005098.

[RPK19] M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations”. In: Journal of Computational Physics 378 (2019), pp. 686–707. issn: 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2018.10.045. url: https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

[Rud16] S. Ruder. “An overview of gradient descent optimization algorithms”. In: ArXiv abs/1609.04747
(2016).

[Sch98] C. Schwab. p-and hp-finite element methods: Theory and applications in solid and fluid mechanics.
Oxford University Press, 1998. url: http://www.jstor.org/stable/2698818.

[SH16] K. Seokchan and L. Hyung-Chun. “A finite element method for computing accurate solutions for
Poisson equations with corner singularities using the stress intensity factor”. In: Computers & Math-
ematics with Applications 71.11 (2016). Proceedings of the conference on Advances in Scientific
Computing and Applied Mathematics. A special issue in honor of Max Gunzburgers 70th birthday,
pp. 2330–2337. issn: 0898-1221. doi: https://doi.org/10.1016/j.camwa.2015.12.023.
url: http://www.sciencedirect.com/science/article/pii/S089812211500591X.

[SH74] I.E. Sutherland and G.W. Hodgman. “Reentrant Polygon Clipping”. In: Commun. ACM 17.1 (1974),
pp. 32–42.

[SKM21] A. Shevchenko, V. Kungurtsev, and M. Mondelli. “Mean-field Analysis of Piecewise Linear Solutions
for Wide ReLU Networks”. In: CoRR abs/2111.02278 (2021). arXiv: 2111.02278. url: https:
//arxiv.org/abs/2111.02278.

[Smi86] G. D. Smith. “Numerical Solution of Partial Differential Equations: Finite Difference Methods”. In:
Oxford University Press, U.S.A., 1986. isbn: 978-0198596509. url: https://wp.kntu.ac.ir/
ghoreishif/smith.pdf.

[SS18] J. Sirignano and K. Spiliopoulos. “DGM: A deep learning algorithm for solving partial differential
equations”. In: Journal of Computational Physics 375 (2018), pp. 1339–1364. issn: 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2018.08.029. url: https://www.sciencedirect.com/
science/article/pii/S0021999118305527.

[Str08] G. Strang. An analysis of the finite element method. eng. 2nd edition. Wellesley, MA: Wellesley-
Cambridge, 2008. isbn: 0980232708.

[SW05] S. Sun and M. Wheeler. “Discontinuous Galerkin methods for coupled flow and reactive transport
problems”. In: Applied Numerical Mathematics 52 (Feb. 2005), pp. 273–298. doi: 10.1016/j.
apnum.2004.08.035.

151

https://doi.org/10.1016/j.jcp.2017.11.039
http://dx.doi.org/10.1016/j.jcp.2017.11.039
http://dx.doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/https://doi.org/10.1016/j.cma.2005.08.022
https://www.sciencedirect.com/science/article/pii/S0045782505005098
https://www.sciencedirect.com/science/article/pii/S0045782505005098
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.jstor.org/stable/2698818
https://doi.org/https://doi.org/10.1016/j.camwa.2015.12.023
http://www.sciencedirect.com/science/article/pii/S089812211500591X
https://arxiv.org/abs/2111.02278
https://arxiv.org/abs/2111.02278
https://arxiv.org/abs/2111.02278
https://wp.kntu.ac.ir/ghoreishif/smith.pdf
https://wp.kntu.ac.ir/ghoreishif/smith.pdf
https://doi.org/https://doi.org/10.1016/j.jcp.2018.08.029
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://doi.org/10.1016/j.apnum.2004.08.035
https://doi.org/10.1016/j.apnum.2004.08.035

[Tan05] T. Tang. “Moving mesh methods for computational fluid dynamics”. In: Contemp. Math. 383 (Jan.
2005). doi: 10.1090/conm/383/07162.

[Ver94] R. Verfürth. “A posteriori error estimation and adaptive mesh-refinement techniques”. In: Journal
of Computational and Applied Mathematics 50.1 (1994), pp. 67–83. issn: 0377-0427. doi: https:
//doi.org/10.1016/0377-0427(94)90290-9. url: https://www.sciencedirect.com/
science/article/pii/0377042794902909.

[WB18] E. Weinan and Y. Bing. “The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for
Solving Variational Problems”. English (US). In: Communications in Mathematics and Statistics 6
(2018), pp. 1–12. issn: 2194-6701. doi: 10.1007/s40304-018-0127-z.

[Wel+16] H. Weller et al. “Mesh adaptation on the sphere using optimal transport and the numerical solution
of a Monge-Ampère type equation”. In: Journal of Computational Physics 308 (2016), pp. 102–123.

[Wih03] T. Wihler. “Discontinuous Galerkin FEM for elliptic problems in polygonal domains”. PhD thesis.
Apr. 2003.

[Win66] A.M. Winslow. “Numerical solution of the quasilinear poisson equation in a nonuniform triangle
mesh”. In: Journal of Computational Physics 1.2 (1966), pp. 149–172.

[WTP21] S. Wang, Y. Teng, and P. Perdikaris. “Understanding and mitigating gradient pathologies in physics-
informed neural networks”. In: SIAM J. Sci. Comput. 43 (2021), A3055–A3081.

[Xu+10] X. Xu et al. “Convergence of de Boor’s algorithm for the generation of equidistributing meshes”.
In: IMA Journal of Numerical Analysis 31.2 (Mar. 2010), pp. 580–596. issn: 0272-4979. doi:
10.1093/imanum/drp052. eprint: https://academic.oup.com/imajna/article-pdf/31/
2/580/1930467/drp052.pdf. url: https://doi.org/10.1093/imanum/drp052.

[Yar17] D. Yarotsky. “Error bounds for approximations with deep ReLU networks”. In: Neural Networks 94
(2017), pp. 103–114. issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.2017.07.
002. url: https://www.sciencedirect.com/science/article/pii/S0893608017301545.

[Yua06] Y.X. Yuan. “A new step-size for the Steepest Descent Method”. In: Journal of Computational Math-
ematics 24.2 (2006), pp. 149–156. issn: 02549409, 19917139. url: http://www.jstor.org/
stable/43694074 (visited on 06/19/2022).

[Zha+93] H. Zhang et al. “Discrete form of the GCL for moving meshes and its implementation in CFD
schemes”. In: Computers & Fluids 22.1 (1993), pp. 9–23. issn: 0045-7930. doi: https://doi.
org/10.1016/0045-7930(93)90003-R. url: https://www.sciencedirect.com/science/
article/pii/004579309390003R.

[Zha06] Z. Zhang. “Moving mesh method with conservative interpolation based on !2 projection”. In:
Communications in Computational Physics 1 (2006).

[ZHS09] J. Zou, Y. Han, and S.S. So. “Overview of Artificial Neural Networks”. In: Methods in molecular
biology (Clifton, N.J.) 458 (Jan. 2009), pp. 14–22. doi: 10.1007/978-1-60327-101-1_2.

[ZS02] C. Zhiqiang and K. Seokchan. “A Finite Element Method Using Singular Functions for the Poisson
Equation: Corner Singularities”. In: SIAM Journal on Numerical Analysis 39.1 (2002), pp. 286–299.
issn: 00361429. url: http://www.jstor.org/stable/3062090.

152

https://doi.org/10.1090/conm/383/07162
https://doi.org/https://doi.org/10.1016/0377-0427(94)90290-9
https://doi.org/https://doi.org/10.1016/0377-0427(94)90290-9
https://www.sciencedirect.com/science/article/pii/0377042794902909
https://www.sciencedirect.com/science/article/pii/0377042794902909
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1093/imanum/drp052
https://academic.oup.com/imajna/article-pdf/31/2/580/1930467/drp052.pdf
https://academic.oup.com/imajna/article-pdf/31/2/580/1930467/drp052.pdf
https://doi.org/10.1093/imanum/drp052
https://doi.org/https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/https://doi.org/10.1016/j.neunet.2017.07.002
https://www.sciencedirect.com/science/article/pii/S0893608017301545
http://www.jstor.org/stable/43694074
http://www.jstor.org/stable/43694074
https://doi.org/https://doi.org/10.1016/0045-7930(93)90003-R
https://doi.org/https://doi.org/10.1016/0045-7930(93)90003-R
https://www.sciencedirect.com/science/article/pii/004579309390003R
https://www.sciencedirect.com/science/article/pii/004579309390003R
https://doi.org/10.1007/978-1-60327-101-1_2
http://www.jstor.org/stable/3062090

[ZSG02] C. Zhiqiang, K. Seokchan, and W. Gyungsoo. “A finite element method using singular functions for the
Poisson equation: crack singularities”. In: Numerical Linear Algebra with Applications 9.67 (2002),
pp. 445–455. doi: https://doi.org/10.1002/nla.303. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/nla.303. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/nla.303.

153

https://doi.org/https://doi.org/10.1002/nla.303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.303
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.303
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.303

	Introduction
	Motivation for the thesis
	Achievements of the thesis
	Structure of the thesis

	Background material
	Moving meshes in 1D
	De Boor's algorithm
	The Boundary Value Problem method
	Moving Mesh PDEs

	Higher dimensional Moving Mesh methods
	Winslow's variational-based diffusion method
	Optimal Transport based mesh adaptation

	The Finite Element method
	Model Problem
	Functional setting
	The Ritz and Galerkin methods for elliptic problems
	Finite Element spaces
	Mesh and Quality measure
	Error analysis for FEM
	Non-convex domains

	Background on neural networks
	Network structure
	Training and Loss
	Automatic-Differentiation
	Approximation theorems

	An adaptive conservative moving mesh method
	Introduction
	Problem setup and discretisation
	Moving mesh methods
	Winslow's variational-based diffusion method

	Data transfer over timesteps
	Local Galerkin Projection

	Numerical Experiments
	Test 1 - Mesh adaptation to a scalar function
	Test 2 - Convergence on the adaptively generated grids
	Test 3 - Error accumulation in time
	Test 4 - Sensitivity of the MMPDE algorithm
	Test 5 - Asymptotic convergence rates

	Summary

	Optimal Transport and h-adaptive based mesh generation for Poisson's equation in non-convex domains
	Introduction
	Problem setup and discretisation
	The Poisson problem in 2D
	The variational formulation of Poisson's equation

	A-posteriori estimates for the SIP-dG method
	Derivation of the L2 a-posteriori error estimate

	r-adapted meshes
	Winslow's diffusion method
	Mesh generation using an OT strategy
	Local mesh scaling
	Solution of Monge-Ampère equation
	Computation of the final mesh
	Mesh Quality

	Numerical Results
	Results for the L-shaped domain
	h-refinement
	OT based meshes for different values of
	Comparison between the h-refinement and OT refinement methods

	Results for the crack domain

	Summary

	The Deep Galerkin and the deep Ritz method for Poisson's equation on the L-shaped domain
	Introduction
	Methodology
	Network structure
	The deep Galerkin method and the deep Ritz method
	The optimisation algorithm and the loss approximation

	Numerical Results - 1
	Poisson's equation
	Loss function
	Error analysis
	Convergence rate analysis for DRM
	Comparison with SIP-dG method

	Numerical Results - 2
	Summary

	Conclusion
	Derivation of the optimal parameters for OT-based mesh generation
	L norm
	L2 norm

	Code

