1,747 research outputs found

    Semantic Segmentation Network Stacking with Genetic Programming

    Get PDF
    Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2023). Semantic Segmentation Network Stacking with Genetic Programming. Genetic Programming And Evolvable Machines, 24(2 — Special Issue on Highlights of Genetic Programming 2022 Events), 1-37. [15]. https://doi.org/10.1007/s10710-023-09464-0---Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), AICE (DSAIPA/DS/0113/2019), UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS, and by the grant SFRH/BD/137277/2018.Semantic segmentation consists of classifying each pixel of an image and constitutes an essential step towards scene recognition and understanding. Deep convolutional encoder–decoder neural networks now constitute state-of-the-art methods in the field of semantic segmentation. The problem of street scenes’ segmentation for automotive applications constitutes an important application field of such networks and introduces a set of imperative exigencies. Since the models need to be executed on self-driving vehicles to make fast decisions in response to a constantly changing environment, they are not only expected to operate reliably but also to process the input images rapidly. In this paper, we explore genetic programming (GP) as a meta-model that combines four different efficiency-oriented networks for the analysis of urban scenes. Notably, we present and examine two approaches. In the first approach, we represent solutions as GP trees that combine networks’ outputs such that each output class’s prediction is obtained through the same meta-model. In the second approach, we propose representing solutions as lists of GP trees, each designed to provide a unique meta-model for a given target class. The main objective is to develop efficient and accurate combination models that could be easily interpreted, therefore allowing gathering some hints on how to improve the existing networks. The experiments performed on the Cityscapes dataset of urban scene images with semantic pixel-wise annotations confirm the effectiveness of the proposed approach. Specifically, our best-performing models improve systems’ generalization ability by approximately 5% compared to traditional ensembles, 30% for the less performing state-of-the-art CNN and show competitive results with respect to state-of-the-art ensembles. Additionally, they are small in size, allow interpretability, and use fewer features due to GP’s automatic feature selection.publishersversionepub_ahead_of_prin

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions
    • …
    corecore