2,064 research outputs found

    Method for finding metabolic properties based on the general growth law. Liver examples. A General framework for biological modeling

    Full text link
    We propose a method for finding metabolic parameters of cells, organs and whole organisms, which is based on the earlier discovered general growth law. Based on the obtained results and analysis of available biological models, we propose a general framework for modeling biological phenomena and discuss how it can be used in Virtual Liver Network project. The foundational idea of the study is that growth of cells, organs, systems and whole organisms, besides biomolecular machinery, is influenced by biophysical mechanisms acting at different scale levels. In particular, the general growth law uniquely defines distribution of nutritional resources between maintenance needs and biomass synthesis at each phase of growth and at each scale level. We exemplify the approach considering metabolic properties of growing human and dog livers and liver transplants. A procedure for verification of obtained results has been introduced too. We found that two examined dogs have high metabolic rates consuming about 0.62 and 1 gram of nutrients per cubic centimeter of liver per day, and verified this using the proposed verification procedure. We also evaluated consumption rate of nutrients in human livers, determining it to be about 0.088 gram of nutrients per cubic centimeter of liver per day for males, and about 0.098 for females. This noticeable difference can be explained by evolutionary development, which required females to have greater liver processing capacity to support pregnancy. We also found how much nutrients go to biomass synthesis and maintenance at each phase of liver and liver transplant growth. Obtained results demonstrate that the proposed approach can be used for finding metabolic characteristics of cells, organs, and whole organisms, which can further serve as important inputs for many applications in biology (protein expression), biotechnology (synthesis of substances), and medicine.Comment: 20 pages, 6 figures, 4 table

    Genomic analysis of macrophage gene signatures during idiopathic pulmonary fibrosis development

    Get PDF
    Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, irreversible lung disease. After diagnosis, the interstitial condition commonly presents 3-5 years of life expectancy if untreated. Despite the limited capacity of recapitulating IPF, animal models have been useful for identifying related pathways relevant for drug discovery and diagnostic tools development. Using these techniques, several immune-related mechanisms have been implicated to IPF. For instance, subpopulations of macrophages and monocytes-derived cells are recognized as centrally active in pulmonary immunological processes. One of the most used technologies is high-throughput gene expression analysis, which has been available for almost two decades now. The “omics” revolution has presented major impacts on macrophage and pulmonary fibrosis research. The present study aims to investigate macrophage dynamics within the context of IPF at the transcriptomic level. Using publicly available gene-expression data, we applied modern data science approaches to (1) understand longitudinal profiles within IPF models; (2) investigate correlation between macrophage genomic dynamics and IPF development; and (3) apply longitudinal profiles uncovered through multivariate data analysis to the development of new sets of predictors able to classify IPF and control samples accordingly. Principal Component Analysis and Hierarchical Clustering showed that our pipeline was able to construct a complex set of biomarker candidates that together outperformed gene expression alone in separating treatment groups in an IPF animal model dataset. We further assessed the predictive performance of our candidates on publicly available gene expression data from IPF patients. Once again, the constructed biomarker candidates were significantly differentiated between IPF and control samples. The data presented in this work strongly suggest that longitudinal data analysis holds major unappreciated potentials for translational medicine research

    Addressing the challenges of uncertainty in regression models for high dimensional and heterogeneous data from observational studies

    Get PDF
    The lack of replicability in research findings from different scientific disciplines has gained wide attention in the last few years and led to extensive discussions. In this `replication crisis', different types of uncertainty play an important role, which occur at different points of data collection and statistical analysis. Nevertheless, the consequences are often ignored in current research practices with the risk of low credibility and reliability of research findings. For the analysis and the development of solutions to this problem, we define measurement uncertainty, sampling uncertainty, data pre-processing uncertainty, method uncertainty, and model uncertainty, and investigate them in particular in the context of regression analyses. Therefore, we consider data from observational studies with the focus on high dimensionality and heterogeneous variables, which are characteristics of growing importance. High dimensional data, i.e., data with more variables than observations, play an important role in the area of medical research, where large amounts of molecular data (omics data) can be collected with ever decreasing expense and effort. Where several types of omics data are available, we are additionally faced with heterogeneity. Moreover, heterogeneous data can be found in many observational studies, where data originate from different sources, or where variables of different types are collected. This work comprises four contributions with different approaches to this topic and a different focus of investigation. Contribution 1 can be considered as a practical example to illustrate data pre-processing and method uncertainty in the context of prediction and variable selection from high dimensional and heterogeneous data. In the first part of this paper, we introduce the development of priority-Lasso, a hierarchical method for prediction using multi-omics data. Priority-Lasso is based on standard Lasso and assumes a pre-specified priority order of blocks of data. The idea is to successively fit Lasso models on these blocks of data and to take the linear predictor from every fit as an offset in the fit of the block with next lowest priority. In the second part, we apply this method in a current study of acute myeloid leukemia (AML) and compare its performance to standard Lasso. We illustrate data pre-processing and method uncertainty, caused by different choices of variable definitions and specifications of settings in the application of the method. These choices result in different effect estimates and thus different prediction performances and selected variables. In the second contribution, we compare method uncertainty with sampling uncertainty in the context of variable selection and ranking of omics biomarkers. For this purpose, we develop a user-friendly and versatile framework. We apply this framework on data from AML patients with high dimensional and heterogeneous characteristics and explore three different scenarios: First, variable selection in multivariable regression based on multi-omics data, second, variable ranking based on variable importance measures from random forests, and, third, identification of genes based on differential gene expression analysis. In contributions 3 and 4, we apply the vibration of effects framework, which was initially used to analyze model uncertainty in a large epidemiological study (NHANES), to assess and compare different types of uncertainty. The two contributions intensively address the methodological extension of this framework to different types of uncertainty. In contribution 3, we describe the extension of the vibration of effects framework to sampling and data pre-processing uncertainty. As a practical illustration, we take a large data set from psychological research with heterogeneous variable structure (SAPA-project), and examine sampling, model and data pre-processing uncertainty in the context of logistic regression for varying sample sizes. Beyond the comparison of single types of uncertainty, we introduce a strategy which allows quantifying cumulative model and data pre-processing uncertainty and analyzing their relative contributions to the total uncertainty with a variance decomposition. Finally, we extend the vibration of effects framework to measurement uncertainty in contribution 4. In a practical example, we conduct a comparison study between sampling, model and measurement uncertainty on the NHANES data set in the context of survival analysis. We focus on different scenarios of measurement uncertainty which differ in the choice of variables considered to be measured with error. Moreover, we analyze the behavior of different types of uncertainty with increasing sample sizes in a large simulation study

    Is the Cell Really a Machine?

    Get PDF
    It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction of novel experimental techniques capable of tracking individual molecules within cells in real time is leading to the rapid accumulation of data that are inconsistent with an engineering view of the cell. This paper examines four major domains of current research in which the challenges to the machine conception of the cell are particularly pronounced: cellular architecture, protein complexes, intracellular transport, and cellular behaviour. It argues that a new theoretical understanding of the cell is emerging from the study of these phenomena which emphasizes the dynamic, self-organizing nature of its constitution, the fluidity and plasticity of its components, and the stochasticity and non-linearity of its underlying processes

    Book of Abstracts XVIII Congreso de Biometría CEBMADRID

    Get PDF
    Abstracts of the XVIII Congreso de Biometría CEBMADRID held from 25 to 27 May in MadridInteractive modelling and prediction of patient evolution via multistate models / Leire Garmendia Bergés, Jordi Cortés Martínez and Guadalupe Gómez Melis : This research was funded by the Ministerio de Ciencia e Innovación (Spain) [PID2019104830RBI00]; and the Generalitat de Catalunya (Spain) [2017SGR622 and 2020PANDE00148].Operating characteristics of a model-based approach to incorporate non-concurrent controls in platform trials / Pavla Krotka, Martin Posch, Marta Bofill Roig : EU-PEARL (EU Patient-cEntric clinicAl tRial pLatforms) project has received funding from the Innovative Medicines Initiative (IMI) 2 Joint Undertaking (JU) under grant agreement No 853966. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and Children’s Tumor Foundation, Global Alliance for TB Drug Development non-profit organisation, Spring works Therapeutics Inc.Modeling COPD hospitalizations using variable domain functional regression / Pavel Hernández Amaro, María Durbán Reguera, María del Carmen Aguilera Morillo, Cristobal Esteban Gonzalez, Inma Arostegui : This work is supported by the grant ID2019-104901RB-I00 from the Spanish Ministry of Science, Innovation and Universities MCIN/AEI/10.13039/501100011033.Spatio-temporal quantile autoregression for detecting changes in daily temperature in northeastern Spain / Jorge Castillo-Mateo, Alan E. Gelfand, Jesús Asín, Ana C. Cebrián / Spatio-temporal quantile autoregression for detecting changes in daily temperature in northeastern Spain : This work was partially supported by the Ministerio de Ciencia e Innovación under Grant PID2020-116873GB-I00; Gobierno de Aragón under Research Group E46_20R: Modelos Estocásticos; and JC-M was supported by Gobierno de Aragón under Doctoral Scholarship ORDEN CUS/581/2020.Estimation of the area under the ROC curve with complex survey data / Amaia Iparragirre, Irantzu Barrio, Inmaculada Arostegui : This work was financially supported in part by IT1294-19, PID2020-115882RB-I00, KK-2020/00049. The work of AI was supported by PIF18/213.INLAMSM: Adjusting multivariate lattice models with R and INLA / Francisco Palmí Perales, Virgilio Gómez Rubio and Miguel Ángel Martínez Beneito : This work has been supported by grants PPIC-2014-001-P and SBPLY/17/180501/000491, funded by Consejería de Educación, Cultura y Deportes (Junta de Comunidades de Castilla-La Mancha, Spain) and FEDER, grant MTM2016-77501-P, funded by Ministerio de Economía y Competitividad (Spain), grant PID2019-106341GB-I00 from Ministerio de Ciencia e Innovación (Spain) and a grant to support research groups by the University of Castilla-La Mancha (Spain). F. Palmí-Perales has been supported by a Ph.D. scholarship awarded by the University of Castilla-La Mancha (Spain)

    Application and Extension of Weighted Quantile Sum Regression for the Development of a Clinical Risk Prediction Tool

    Get PDF
    In clinical settings, the diagnosis of medical conditions is often aided by measurement of various serum biomarkers through the use of laboratory tests. These biomarkers provide information about different aspects of a patient’s health and the overall function of different organs. In this dissertation, we develop and validate a weighted composite index that aggregates the information from a variety of health biomarkers covering multiple organ systems. The index can be used for predicting all-cause mortality and could also be used as a holistic measure of overall physiological health status. We refer to it as the Health Status Metric (HSM). Validation analysis shows that the HSM is predictive of long-term mortality risk and exhibits a robust association with concurrent chronic conditions, recent hospital utilization, and self-rated health. We develop the HSM using Weighted Quantile Sum (WQS) regression (Gennings et al., 2013; Carrico, 2013), a novel penalized regression technique that imposes nonnegativity and unit-sum constraints on the coefficients used to weight index components. In this dissertation, we develop a number of extensions to the WQS regression technique and apply them to the construction of the HSM. We introduce a new guided approach for the standardization of index components which accounts for potential nonlinear relationships with the outcome of interest. An extended version of the WQS that accommodates interaction effects among index components is also developed and implemented. In addition, we demonstrate that ensemble learning methods borrowed from the field of machine learning can be used to improve the predictive power of the WQS index. Specifically, we show that the use of techniques such as weighted bagging, the random subspace method and stacked generalization in conjunction with the WQS model can produce an index with substantially enhanced predictive accuracy. Finally, practical applications of the HSM are explored. A comparative study is performed to evaluate the feasibility and effectiveness of a number of ‘real-time’ imputation strategies in potential software applications for computing the HSM. In addition, the efficacy of the HSM as a predictor of hospital readmission is assessed in a cohort of emergency department patients

    PSA 2016

    Get PDF
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2016
    corecore