
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2014 

Application and Extension of Weighted Quantile Sum Regression Application and Extension of Weighted Quantile Sum Regression 

for the Development of a Clinical Risk Prediction Tool for the Development of a Clinical Risk Prediction Tool 

Ghalib Bello 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Biostatistics Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/608 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=scholarscompass.vcu.edu%2Fetd%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/608?utm_source=scholarscompass.vcu.edu%2Fetd%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


 

 

 

 

 

 

 

 

 

 

 

Copyright © 2014, Ghalib A Bello 

 All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 



 

Application and Extension of Weighted Quantile Sum Regression 

for the Development of a Clinical Risk Prediction Tool 

 

 

 

 

A dissertation submitted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy at Virginia Commonwealth University. 

 

 

 

 

 

 

 

 

 

By 

Ghalib A. Bello 

B.A. Whittier College, Whittier, CA 90608 

 

 

Director: Dr. Chris Gennings, Professor, Biostatistics 

 

 

Virginia Commonwealth University 

Richmond, Virginia 

May, 2014 



ii 
 

 

 

 

 

ACKNOWLEDGEMENTS 

 

        First and foremost I thank God, without whose will none of this would be possible. 

        I would like to express my deepest gratitude to my advisor, Dr. Chris Gennings, for her 

guidance, support, and excellent mentorship. Her insights and constructive feedback have guided 

and shaped this dissertation and her constant encouragement fueled my enthusiasm. It has been a 

great privilege and pleasure to work under her outstanding guidance. 

        My appreciation also goes to my committee members, Dr. Robert Johnson, Dr. Nitai 

Mukhopadhyay, Dr. Arun Sanyal and Dr. David Wheeler, for their time, their efforts in reading 

my oral exam and dissertation, and their valuable comments, suggestions and corrections. I owe 

special thanks to Dr. Johnson for his mentorship, advice and encouragement throughout my 

doctoral studies. I learned a great deal from him and I feel privileged to have worked with him. I 

am extremely thankful to Dr. Mukhopadhyay for his advice, assistance, and his steadfast support 

from my first statistics courses to the completion of my program. 

        I am also indebted to Dr. Roy Sabo for contributing to my growth as a statistician through 

his role as a supervisor and collaborator on multiple projects. He has been incredibly supportive 

of, and patient with me throughout our association. I have benefited greatly from my research 

assistantship in the VCU Department of Family Medicine and Population Health and I would 

like to thank all the people I had the pleasure of working with over the years. 

        Last but not least, I am deeply grateful to my family for their unwavering belief in me and 

their constant encouragement and patience throughout my long journey in academia. Without 

their love, sacrifices and prayers, I would never have made it to where I am today.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Table of Contents 
 

 

Acknowledgements .......................................................................................................................ii 

List of Figures ..............................................................................................................................vi 

List of Tables ……………………………………………………………………………..…......ix 

Abstract…………………………………………………………………………………...……...xi 

 

 

Chapter 1: Introduction and Prospectus ………………………………………………………1 

1.1 Introduction .............................................................................................................................. 1 

1.2 Prospectus …………………………………………………………………………...……..... 5 

 

 

Chapter 2: Development and Validation of a Clinical Risk-Assessment Tool Predictive of 

        All-cause Mortality ................................................................................................... 8 

 

2.1 Introduction .............................................................................................................................. 8 

2.2 Methods …………………………………………………………………………………….....8 

      2.2.1 Data Source & Risk Score Components ……………………………………………..…8  

      2.2.2 Weighted Quantile Sum (WQS) Regression ................................................................... 9  

      2.2.3 Health Status Metric (HSM) Construction ....................................................................12 

      2.2.4 Standardization of Biomarker Measurements ............................................................... 15 

      2.2.5 Validation ...................................................................................................................... 20 

 2.2.5.1 Assessing the HSM’s Predictive Accuracy for All-cause Mortality ....................21 

 2.2.5.2 Assessing the HSM’s Predictive Accuracy for Cause-specific Mortality ........... 25 

 2.2.5.3 Assessing association of HSM with indicators of concurrent health ....................25 

2.3 Results .................................................................................................................................... 27 

      2.3.1 Interpretation of HSM Score ......................................................................................... 31 

2.4 Conclusion and Discussion .....................................................................................................33 

      2.4.1 Study Limitations .......................................................................................................... 34 

 

 

 



iv 
 

 

 

Chapter 3: Extending the HSM to Accommodate Interaction Effects ..................................35 

 

3.1 Introduction ............................................................................................................................35 

3.2 Extending the HSM ................................................................................................................35 

3.3 Selecting Interaction Effects ...................................................................................................36 

3.4 Random Survival Forest Methodology .................................................................................. 40 

      3.4.1 Variable Importance Measures ......................................................................................42 

      3.4.2 Minimal Depth .............................................................................................................. 45 

3.5 Implementation of RSF Algorithm ........................................................................................ 51 

3.6 Results .................................................................................................................................... 53 

      3.6.1 Variable Importance (VIMP) ........................................................................................ 53 

      3.6.2 Minimal Depth .............................................................................................................. 57 

3.7 Discussion .............................................................................................................................. 61 

 

Chapter 4: Dealing with missing biomarker values in the implementation of tools for  

        computing the HSM ................................................................................................ 64 

 

4.1 Introduction: Missing Values ................................................................................................. 64 

4.2 Methods .................................................................................................................................. 66 

4.3 Comparison of imputation techniques via simulations .......................................................... 70 

4.4 Results .................................................................................................................................... 73 

4.5 Discussion .............................................................................................................................. 83 

      4.5.1 Computational Details .................................................................................................. 85 

 

Chapter 5: Ensemble Methods for improving predictive accuracy of the HSM ................. 88 

 

5.1 Introduction ............................................................................................................................ 88 

      5.1.1 HSM as a Predictor ....................................................................................................... 90 

      5.1.2 Stability in Learning Algorithms .................................................................................. 94 

      5.1.3 Ensemble Learning ....................................................................................................... 94 

5.2 Methods ................................................................................................................................. 98 

      5.2.1 Predictor Aggregation Approaches: Beyond Bagging ................................................. 98 



v 
 

      5.2.2 Random Subspace Method ......................................................................................... 106 

      5.2.3 Datasets ....................................................................................................................... 107 

5.3 Results .................................................................................................................................. 108 

5.4 Discussion ............................................................................................................................ 116 

 

Chapter 6: Application of HSM to External Clinical Dataset ............................................. 119 

 

6.1 Introduction .......................................................................................................................... 119 

6.2 Methods ................................................................................................................................ 120 

      6.2.1 Data Structure ............................................................................................................. 120 

      6.2.2 Missing Values ............................................................................................................ 120 

      6.2.3 Updated HSM ............................................................................................................. 121 

      6.2.4 Analysis ....................................................................................................................... 121 

6.3 Results .................................................................................................................................. 121 

6.4 Conclusion ........................................................................................................................... 124 

  

Chapter 7: Conclusions & Future work ................................................................................ 126 

 

7.1 Conclusions .......................................................................................................................... 126 

7.2 Future work .......................................................................................................................... 128 

 

 

Appendix I: Bibliography ....................................................................................................... 132 

 

Appendix II: Figures 2.4a-f: Age- and Gender-adjusted Kaplan-Meier curves for strata  

  defined by HSM range (NHANES III data)................................................... 141 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Figures 

 
 

Figure               Page 

Chapter 2 

 

2.1a Example of relative hazard partial prediction plot used for transformation of raw 

biomarker measurements onto the relative hazard scale: Bicarbonate---------------------19 

 

2.1b Example of relative hazard partial prediction plot used for transformation of raw 

biomarker measurements onto the relative hazard scale: Albumin -------------------------19 

 

2.1c Example of relative hazard partial prediction plot used for transformation of raw 

biomarker measurements onto the relative hazard scale: A1c -------------------------------19 

 

2.2 Plot of bootstrap-averaged weights used to construct the HSM------------------------------27 

 

2.3 Distribution of HSM in NHANES III population ---------------------------------------------28 

 

2.4e Kaplan-Meier curves plotted for various ranges of the HSM: Males in the 40-64 age 

group-------------------------------------------------------------------------------------------------28 

 

2.5a Age- and Gender-adjusted Relationship between HSM and Predicted 5-year mortality 

risk ---------------------------------------------------------------------------------------------------32 

 

2.5b Age- and Gender-adjusted Relationship between HSM and Predicted 10-year mortality 

risk ---------------------------------------------------------------------------------------------------32 

 

 

 

Chapter 3 

 

3.1 Simple tree structure illustrating the concept of depth----------------------------------------45 

 

3.2 Sample trees illustrating the concept of minimal depth---------------------------------------47 

 

3.3 Sample trees illustrating the concepts of ‘index node’ and ‘index subtree’----------------49 

 

3.4 Convergence of the error rate to a stable value over the 500 trees used to construct the 

Random Survival Forest---------------------------------------------------------------------------53 

 

3.5 Standardized Variable Importance measures for variables in the Random Survival  

Forest-------------------------------------------------------------------------------------------------54 

 



vii 
 

3.6 Estimated weights for extended HSM in which interaction effects were selected using 

VIMP-based thresholding-------------------------------------------------------------------------56 

 

3.7 Plot of minimal depths for demographic and biomarker variables used in the Random 

Survival Forest--------------------------------------------------------------------------------------58 

 

3.8 Estimated weights for extended HSM in which interactions effects were selected using 

minimal depth thresholding-----------------------------------------------------------------------60 

 

 

 

Chapter 4 

 

4.1 Schematic depicting a possible web-based or standalone application user-interface for  

an HSM Risk Calculator---------------------------------------------------------------------------64 

 

4.2 Distribution of the number of missing values for individuals in dataset (averaged across 

100 simulated datasets) ----------------------------------------------------------------------------74 

 

4.3 Distribution of the number of missing values for individuals in dataset (averaged across 

100 simulated datasets) ----------------------------------------------------------------------------74 

 

4.4 Plot depicting impact of parameter k (number of nearest neighbors) on predictive 

performance (as quantified by AUC) ------------------------------------------------------------75 

 

4.5a Distributions of RMSD values across 100 independent simulated datasets ----------------77 

 

4.5b Distributions of RMSD values across 100 independent simulated datasets ----------------78 

 

4.6a Distributions of Harrell’s C measures across 100 independent simulated datasets -------79 

 

4.6b Distributions of Harrell’s C measures across 100 independent simulated datasets -------80 

 

 

Chapter 5 

 

5.1 Boxplot showing the distribution of biomarker weight estimates across 1000 bootstrap 

samples----------------------------------------------------------------------------------------------94 

 

5.2 Schematic illustrating a typical Ensemble Learning procedure -----------------------------95 

 

5.3 Schematic illustrating the stacked generalization procedure -------------------------------101 

 

5.4 Meta-weight distributions for weighted bagging and stacked generalization ------------110 

 

5.5 Variation in Harrell’s C over different variable spaces --------------------------------------111 



viii 
 

 

5.6 Comparison of biomarker weights between original HSM and stacking-enhanced  

HSM ------------------------------------------------------------------------------------------------111 

 

Chapter 6 

 

6.1 Distribution of HSM (at baseline ED visit) in analytic dataset -----------------------------122 

 

6.2 Distribution of number of visits subsequent to baseline ED visit---------------------------124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 

 

Table               Page 

Chapter 2 

 

2.1 NHANES 2003-2008 selected questionnaire items and regression techniques used to 

model their relationship with the HSM ---------------------------------------------------------26 

 

2.2 Predictive Validity of HSM (as measured by p-value & covariate-adjusted odds ratios) 

for death caused by a variety of chronic ailments ---------------------------------------------30 

 

2.3 HSM relationship with self-reported hospital utilization and physician-diagnosed health 

conditions -------------------------------------------------------------------------------------------30 

 

2.4 Predictive accuracy of the HSM -----------------------------------------------------------------31 

 

 

 

Chapter 3 

 

3.2 Important interactions identified via VIMP-----------------------------------------------------55 

 

3.3 Harrell’s C for original and extended HSM-----------------------------------------------------57 

 

3.4 Univariate and joint normalized minimal depth for most important biomarkers ----------58 

 

3.5 Important interactions identified via minimal depth  ------------------------------------------59 

 

3.6 Harrell’s C for original and extended HSM ----------------------------------------------------61 

 

 

 

 

 

Chapter 4 

 

4.1 RMSD and Harrell’s C measures (averaged across 100 simulations) for each imputation 

technique --------------------------------------------------------------------------------------------81 

 

4.2 Mean squared difference (for RMSD) and mean difference (for Harrell’s C) between 

pairs of imputation techniques across simulated datasets ------------------------------------82 

 

 

 



x 
 

Chapter 5 

 

5.1 Predictive accuracy of HSM compared with that of the Intermountain Risk Score ------88 

 

5.2 Harrell’s C and AUC for aggregation techniques --------------------------------------------109 

 

 

 

Chapter 6 

 

6.1 Discharge dispositions of patients at baseline Emergency Department visit -------------122 

 

6.2 Summary statistics for HSM at baseline ED visit --------------------------------------------123 

 

6.3 Demographic summary for analytical dataset ------------------------------------------------123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

 

 

 

 

 

Abstract 

 

 

 

APPLICATION AND EXTENSION OF WEIGHTED QUANTILE SUM 

REGRESSION FOR THE DEVELOPMENT OF A CLINICAL RISK 

PREDICTION TOOL 

 
By Ghalib A. Bello, Ph.D. 

 
A dissertation submitted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy at Virginia Commonwealth University 

 

Virginia Commonwealth University, 2014 

 

Director: Dr. Chris Gennings, Professor, Biostatistics 

 

 

 
In clinical settings, the diagnosis of medical conditions is often aided by measurement of various 

serum biomarkers through the use of laboratory tests. These biomarkers provide information 

about different aspects of a patient’s health and the overall function of different organs. In this 

dissertation, we develop and validate a weighted composite index that aggregates the information 

from a variety of health biomarkers covering multiple organ systems. The index can be used for 

predicting all-cause mortality and could also be used as a holistic measure of overall 

physiological health status. We refer to it as the Health Status Metric (HSM). Validation analysis 

shows that the HSM is predictive of long-term mortality risk and exhibits a robust association 

with concurrent chronic conditions, recent hospital utilization, and self-rated health.  



xii 
 

We develop the HSM using Weighted Quantile Sum (WQS) regression (Gennings et al., 2013; 

Carrico, 2013), a novel penalized regression technique that imposes nonnegativity and unit-sum 

constraints on the coefficients used to weight index components. In this dissertation, we develop 

a number of extensions to the WQS regression technique and apply them to the construction of 

the HSM. We introduce a new guided approach for the standardization of index components 

which accounts for potential nonlinear relationships with the outcome of interest. An extended 

version of the WQS that accommodates interaction effects among index components is also 

developed and implemented. In addition, we demonstrate that ensemble learning methods 

borrowed from the field of machine learning can be used to improve the predictive power of the 

WQS index. Specifically, we show that the use of techniques such as weighted bagging, the 

random subspace method and stacked generalization in conjunction with the WQS model can 

produce an index with substantially enhanced predictive accuracy. Finally, practical applications 

of the HSM are explored. A comparative study is performed to evaluate the feasibility and 

effectiveness of a number of ‘real-time’ imputation strategies in potential software applications 

for computing the HSM. In addition, the efficacy of the HSM as a predictor of hospital 

readmission is assessed in a cohort of emergency department patients. 
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Chapter 1 

Introduction and Prospectus 

 

1.1   Introduction 

In the context of clinical/medical applications, a risk score is a diagnostic tool for 

gauging the health of a patient and/or predicting their prognosis for a particular condition. In the 

last few decades, clinical risk scores have become useful and indispensable tools for clinical 

diagnosis and medical decision making (Steyerberg, 2009). They generally combine various 

measures of health risk factors (e.g. cholesterol level, blood glucose, smoking status, 

demographics) into a composite score that is capable of predicting the risk of a certain 

endpoint/outcome.  

 Most clinical risk scores are developed to predict outcomes for a specific condition or 

population and therefore have limited usefulness outside the scope of their intended target. 

Some, for example, focus on prediction of risk for particular conditions, e.g. cardiovascular 

disease (Framingham Risk Score
 
(Wilson et al., 1998)), kidney disease (QKidney

® 
(Hippisley-

Cox et al., 2010)), diabetes (ADA Diabetes Questionnaires
 
(Heikes et al., 2008)), etc. Others focus 

on prediction of health outcomes for specific cohorts, e.g. pediatric patients (PRISM) and 

intensive care patients (APACHE
 
(Knaus et al., 1991)). Recent work (Horne et al., 2009; 

Gennings et al., 2012) has led to the development of risk scores with a more general scope of 

applicability. These are primarily intended to predict all-cause mortality for the general 

population, as opposed to specific cohorts. One such instrument is the Intermountain Risk Score 

(Horne et al., 2009), henceforth referred to as the IMRS. The IMRS includes test results from the 

Complete Blood Count (CBC) and the Basic Metabolic Profile (BMP), a panel of tests for 
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assessing metabolic health. It also includes age in its risk model, which is perhaps the strongest 

predictor of mortality. Therefore it is possible that the predictive power of this risk-assessment 

tool may, in large part, be due to the use of age as a component of the risk model.  

 In the following chapters, we detail the development, validation and extension of a new 

risk score for producing a holistic measure of overall health. This Health Status Metric (HSM) 

covers a wider range of tests than the IMRS. It includes results from the Complete Blood Count, 

the Lipid Panel, and the Comprehensive Metabolic Panel (CMP). The latter is an expanded 

version of the Basic Metabolic Panel which includes tests of liver function and provides a 

broader and more extensive assessment of the body’s chemical balance and metabolism. The 

Lipid Panel provides, among other things, assessment of cardiac risk, which is one of the most 

prevalent causes of mortality in the United States (Hoyert & Xu, 2012). In addition, the HSM 

also includes serum biomarkers like Hemoglobin A1c (a measure of blood glucose 

concentration), Phosphorus, and C-reactive protein which are known to be prognostic indicators 

of multiple health conditions (Black et al., 2004; Goldman & Schafer, 2011; Luk et al., 2013; 

Matsushita et al., 2010). The HSM also does not use demographic risk predictors (instead 

adjusting for them) and, with the exception of blood pressure, is composed entirely of 

biomarkers from common clinical laboratory tests. This index, with just clinical biomarkers, 

demonstrates strong predictive ability for all-cause mortality, and multiple endpoint-specific 

causes of mortality (liver disease, kidney disease, diabetes).  

Therefore the HSM could potentially be a useful tool in clinical settings for accurate 

quantification of mortality risk (life expectancy) in individuals with known health issues. The 

HSM also correlates strongly with current health status as assessed by self-rated health, 

concurrent chronic conditions and recent hospital utilization. It could therefore be used also as a 
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holistic measure of current health status.  Because of the HSM’s use of a wide range of 

biomarkers spanning multiple organ systems, it may serve as a particularly effective clinical tool 

for early identification of at-risk individuals that are asymptomatic at the time of measurement. 

The HSM is computed as a weighted sum of the standardized values of each biomarker 

measurement, where each biomarker is weighted according to its (empirically-determined) 

relative strength of association with mortality. In other words, higher weights are assigned to 

biomarkers demonstrating a strong association with mortality, although this trend does not 

generally hold when high correlations exist among biomarkers. However the biomarkers we used 

in this study do not exhibit high intercorrelation or multicollinearity therefore the magnitudes of 

the weights tend to reflect the associative strength of the corresponding biomarkers with 

mortality. The weights are computed using Weighted Quantile Sum (WQS) regression. WQS 

regression was introduced in Gennings et al. (2013) and characterized by Carrico (2013); it is a 

penalized regression technique that is particularly useful in variable selection problems where 

complex correlation patterns exist among the explanatory variables. WQS regression imposes a 

unit-interval and unit-sum penalty on the weights associated with the explanatory variables. This 

unique type of constraint has been shown to produce greater variable selection accuracy than 

more traditional penalized regression techniques (e.g. ridge regression) in scenarios where 

variables are highly collinear (Breiman, 1996a; Carrico, 2013).  Prior to this point, WQS has 

primarily been applied to variable selection problems involving environmental chemical 

mixtures (Gennings et al., 2013; Christensen et al., 2013) but our application of the technique in 

this study is geared towards prediction (of mortality risk), as opposed to variable selection. The 

WQS technique is particularly ideal for risk score development because it produces an easily 
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interpretable index with a fixed, standardized range that allows for uniform comparison within a 

general population.  

In constructing the HSM, we encountered unique challenges that required the 

development of a number of extensions to the Weighted Quantile Sum regression methodology. 

For example, in the original form of the WQS characterized in Carrico (2013), standardization of 

each component (e.g. environmental chemical exposure levels, biomarker levels) is carried out 

by dividing its range of measured values into quartiles. This is done primarily to dampen the 

disproportionate effect of extreme outliers on the results. However the use of quartiles (or other 

quantiles) to solve this problem is an ad hoc strategy that assumes the relationship between the 

components and the outcome/response is monotonic. In this thesis, we develop a more guided 

approach to standardizing biomarker measurements which does not involve the use of quantiles. 

We instead utilize spline-based Cox regression models that model possible non-monotonic 

relationships between each biomarker and the outcome (mortality).  

A second extension to the WQS regression methodology involves the modification of the 

WQS model to accommodate interaction effects. The original form of the WQS model is based 

on an additive assumption that the effects of the components on the outcome variable can be 

adequately modeled without accounting for interactions among them. Therefore the HSM 

constructed using this model is a simple weighted sum of standardized components; however we 

reasoned that interaction effects may exist among components and in order to test this, we 

developed an extended version of the WQS model which allows pairwise interactions among 

components and could possibly also include interactions between components and adjustment 

covariates (e.g. age, gender, etc.).  
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Another extension to WQS methodology involves the use of advanced ensemble methods 

(borrowed from statistical/machine learning) for reducing variability in the estimated weights. In 

its original form, the WQS method uses bootstrap aggregation to produce stable weights 

(Carrico, 2013). However, we found that the use of this method to construct the HSM produces 

low predictive accuracy compared to more advanced ensemble methods. We developed weighted 

bootstrap aggregation and tree-based stacked generalization methods that significantly improve 

the predictive accuracy of the HSM. 

 

1.2   Prospectus 

 

Chapter 2 of this thesis is written in manuscript form. It details the development and 

validation of the Health Status Metric. The data sources used for developing and testing the HSM 

are covered, followed by a description of the guided approach we developed to standardize 

biomarker measurements (presented with examples). The details of the WQS regression method 

are outlined, particularly the procedure by which the HSM component weights are estimated. 

Next, the validation analyses performed to test the HSM’s performance on independent datasets 

are covered. 

 

Chapter 3 introduces the extension to the WQS model that allows for inclusion of 

pairwise interactions among components. Since all possible pairwise interactions among the 24 

biomarkers (276 in total) could not be included in the HSM, we had to choose only a small 

subset of strong interactions. We identified a small set of potentially strong pairwise interactions 

using Random Survival Forests, a tree-based technique capable of modeling complex interaction 

effects in high-dimensional datasets. We explore 2 different thresholding techniques for selecting 
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‘significant’ interactions and present results for each. This is followed by an evaluation of the 

HSM’s predictive accuracy when interactions are included in the index. 

 

Chapter 4 addresses a significant concern regarding the practical use of the HSM as a 

clinical/diagnostic risk prediction tool. This is the issue of how to compute the HSM for 

individuals missing one or more biomarker values. In this chapter, we explore and compare a 

number of imputation techniques that can be used to tackle this problem. Using complete 

datasets with simulated missing values, the imputation techniques are compared on such metrics 

as general accuracy and impact of imputation on the predictive power of the HSM. 

 

In Chapter 5, the focus is on the HSM’s performance as a predictor, specifically, its 

predictive power for mortality. The WQS procedure used to construct the HSM involves the use 

of a form of bootstrap aggregation which entails fitting the WQS model (and estimating HSM 

weights) for a large number of bootstrap samples and then averaging estimated weights across 

the samples. In this chapter, we borrow techniques from the area of Machine/Statistical Learning, 

particularly ensemble methods. We begin by showing that the WQS procedure used to construct 

the HSM belongs to a common class of ensemble methods known as bagging, which makes the 

HSM a type of bagged predictor. We then experiment with more advanced ensemble methods 

(weighted bagging, stacked generalization) that could produce a new version of the HSM with 

higher predictive accuracy.  

 

In Chapter 6, we test the HSM on real-world data. We use data from the VCU Medical 

Center Emergency Department. Patients who visited the Emergency Department (ED) within a 

fixed time frame (first 2 months in 2011) were followed for a period of 2 years after the initial 



7 
 

visit (labeled the ‘baseline visit’). Subsequent hospital visits (and details on these visits) 

occurring during the 2 year period were recorded. The goal in this chapter is to use the data on 

this longitudinal cohort to demonstrate a specific application of the HSM: as a predictor of 

hospital readmission/utilization after emergency department visits. 

 

Chapter 7 concludes the thesis. This chapter contains a summary and discussion of the 

studies and results presented in this dissertation. Limitations of the current work are discussed, 

and future projects extending the ideas presented herein are proposed. 
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Chapter 2 

Development and Validation of a Clinical Risk-Assessment Tool Predictive of 

All-cause Mortality 

 

 

2.1   INTRODUCTION 

In this chapter, we will detail the components of the Health Status Metric (HSM), the 

procedure we developed for standardizing biomarker measurements, and the estimation of HSM 

component weights using Weighted Quantile Sum regression. This will be followed by a 

description of the various analyses performed to validate the HSM and to demonstrate its 

versatility as a general-purpose risk score. 

 

2.2   METHODS 

2.2.1   Data Source & Risk Score Components 

 The HSM was developed using the NHANES 1999-2002 (CDC 2002) dataset (n=3406) 

and validated using the NHANES 2003-2008 (CDC 2008) dataset (n=4670) and the NHANES 

III:1988-1994 (CDC 1994) dataset (n=10592). The endpoint/outcome of interest was survival 

data which was obtained from NDI/NHANES Linked Mortality Files. These files are the result 

of efforts by the NCHS to conduct a probabilistic linkage of NHANES data to death certificate 

data found in the National Death Index (NDI). The files provide information about the death 

status and survival times (up to December 31, 2006) of NHANES 1999-2002 and NHANES III 

participants. In addition, information about underlying cause of death is available in the Linked 

Mortality Files. Questionnaire data from the continuous NHANES 2003-2008 data was used to 

examine the relationship between the HSM and a number of self-reported variables: health 

status, hospital utilization and diagnoses of diabetes, heart, kidney and liver disease. 



9 
 

 A total of 24 biomarkers were used to develop the HSM. With the exception of blood 

pressure, all the biomarkers used are blood count/serum measurements most of which come from 

the Comprehensive Metabolic Panel, the Lipid Panel, and the Complete Blood Count (CBC), 

batteries of blood tests that are commonly performed in clinical settings for diagnostic purposes. 

Below is a list of the biomarkers classified by panel: 

 

 Blood Pressure 

 Comprehensive Metabolic Panel 

– Waste Products (Blood Urea Nitrogen [BUN], Creatinine) 

– Electrolytes (Sodium, Potassium, Chloride, Bicarbonate, Calcium) 

– Proteins (Albumin, Globulin) 

– Enzymes (Bilirubin, Alkaline Phosphatase [ALP], Aspartate Aminotransferase [AST], 

Alanine Aminotransferase [ALT]) 

 Lipid Panel 

– Triglycerides, HDL:Total cholesterol ratio 

 Complete Blood Count  

– White Blood Cell, Red Blood Cell, & Platelet count 

– Hemoglobin, Hematocrit 

 Miscellaneous 

– Hemoglobin A1c 

– Phosphorus 

– C-reactive protein 

 

 

2.2.2   Weighted Quantile Sum (WQS) Regression 

 
 To construct the Health Status Metric (HSM), we use the Weighted Quantile Sum (WQS) 

methodology outlined in Carrico (2013) and Gennings et al. (2013). The WQS method is a 

penalized regression technique for multicollinear data. It was originally developed to handle 

environmental chemical mixture data where the variables (environmental chemical exposure 
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levels) exhibit complex intercorrelation patterns and can be logically grouped into a composite 

index. Traditional regression techniques typically fail in the presence of severe multicollinearity, 

therefore WQS regression presents a viable alternative. Briefly, it involves creating a weighted 

sum of all variables of interest (standardized onto the same scale) and using the resulting 

composite as a single variable in a regression model. The weights are unknown model 

parameters that are constrained to be between 0 and 1 and to sum to 1.   

 We will now outline the setup for the WQS model. Consider a set of p variables which 

can be logically combined into an index (e.g. a set of environmental chemical exposures, 

biomarkers, or gene expression levels). These variables might have different units of 

measurement so we ‘standardize’ them so that they are all on the same scale. This is typically 

done by scoring them into quantiles (e.g. tertiles, quartiles) however we will introduce a new 

standardization approach later in the chapter. Further, consider a separate set of k potentially 

confounding variables that we would like to adjust for (e.g. age, sex). Suppose the distribution of 

the outcome/response of interest belongs to the exponential family (although other outcomes 

[e.g. time-to-event] can be used). Then the general WQS model is given by:  

          

In Equation (2.1), g(·) is the familiar link function for generalized linear models. The quantity in 

the parentheses is the index, the weighted sum of the p variables (each denoted by qi) referred to 

earlier. The weights {wi} are unknown parameters that are estimated by fitting the model under 

Index 
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the defined constraints. The other unknown parameters are β0 (intercept term), β1 (coefficient of 

the index), and the {αj} (coefficients of the demographic variables zj).  

 Studies (e.g. Carrico, 2013; Gennings et al., 2013) have shown that if a set of variables 

are highly inter-correlated, then the WQS approach of combining them into an index resolves 

many of the problems associated with multicollinearity. While the WQS model in Equation (2.1) 

might resemble the typical regression model, the keen observer will notice a key difference: 

since the weights {wi} and the β1 coefficient are unknown parameters, this model is non-linear in 

its parameters, therefore it is a non-linear model. The parameters are estimated using non-linear 

estimation techniques which will be described in more detail in a subsequent section. 

 To guarantee stable estimates of the weight parameters {wi}, a bootstrap aggregation 

technique introduced in Carrico (2013) is used, and the procedure is as follows: Let Ntr be the 

number of subjects in the training set. A large number B of bootstrap samples each of size Ntr are 

drawn (with replacement) from the training dataset. For each bootstrap sample, the model in 

Equation (2.1) is fit to obtain estimates of the weights. Therefore for each of the b=1 to B 

bootstrap samples, we obtain a set of p estimated weights   ̂ ( )    
 

 and use them to compute an 

estimate of the index (i.e. a weighted quantile score) specific for that bootstrap sample: 

( ) ( )

1

(2.2)ˆ ˆ
p

b i b i

i

WQS w q


      

These WQS estimates are then averaged over the B bootstrap samples to derive the overall 

weighted quantile score: 

( )

1

(2.3)
1 ˆ

B

b

b

WQS WQS
B 

      
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Notice that plugging Equation (2.2) into Equation (2.3) allows us to obtain an alternate 

expression for the overall WQS that is in the form of a weighted sum: 

( )

1 1

(2.4)
1

ˆ, where
p B

i i i i b

i b

WQS w q w w
B 

        

This shows that the overall WQS index is just a weighted sum of the p variables, where the 

weights are estimates averaged over a large number of bootstrap samples. 

 Note that in practice, for each bootstrap sample b, the estimated weights    ̂ ( )    
 

 are 

tested to determine if the index they produce (  ̂ ( )) is significantly associated with the 

outcome/response. Using the data in each bootstrap sample b, the significance of   ̂ ( ) is 

tested with the following model: 

0 1 ( )

1

ˆ( )
g

j j b

j b

g z WQS   


    

If    ̂ ( ) is not statistically significant then this is an indicator of the low ‘signal strength’ of 

the weight estimates derived from this particular bootstrap sample, therefore it is not included in 

the computation of the overall WQS estimate given in Equation (2.3). Note that the above model 

is fitted to the data in bootstrap sample b. However, the subset of the training dataset not selected 

to be in bootstrap sample b (i.e. the ‘out-of-bag’ data [see Chapter 5]) could be used instead. 

 

2.2.3   Health Status Metric (HSM) Construction 
 

The HSM is constructed using the WQS methodology outlined above. In Equation (2.1) the 

WQS model is in the form of a generalized linear model but as mentioned, other response types 

can be used. The HSM is constructed using NHANES 1999-2002 linked mortality files as the 

training data. The outcome is therefore survival time so a Weibull Accelerated Failure Time 
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model was used a basis model for the WQS technique. The Weibull parameterization was chosen 

due to its demonstrated superior tradeoff  between parsimony and goodness-of-fit in the training 

dataset. The model is given below:    

  

 

 Notice that the index in this model is the HSM. The ri denote the standardized values for 

the biomarkers. Standardization of explanatory variables is an integral part of the WQS 

methodology and will be discussed in careful detail in a subsequent section. Tk denotes the 

random variable associated with the survival time of the k
th

 individual, β is the unknown 

coefficient of the HSM index, and μ and σ are parameters of the Weibull distribution, the {zj} 

represent the demographic covariates (age, gender, race, etc.) and the {j} are their unknown 

coefficients.  

 As mentioned earlier, the WQS has a non-linear form so fitting the model in Equation 

(2.5) requires non-linear optimization techniques. In Equation (2.5), Ψk is a random variable 

used to model the random deviation of log Tk from its expected value according to the model 

(Collett, 2003). The equation can be solved to produce an expression for a realization ψk of this 

random variable: 

                                                      logk k j j i i

j i

t z w r    
 

    
 

    

  The log-likelihood for the Weibull AFT model can then be expressed in terms of ψ
k
: 

                                                     log ( log ) ,k

k k

k

L e
      

where δk is a censoring indicator for the k
th

 individual (0 = assumed alive,  1 = deceased). This 

log-likelihood function is maximized to obtain estimates for the parameters (particularly the 

 

HSM 
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weights). Let us denote the vector of unknown parameters as   with dimensions (c × 1), where c 

is the total number of parameters in the model: 

( 1)
{ } { }

T

j i
c

w   


     

Then the log-likelihood is maximized and estimates of the parameters are obtained. In 

Lagrangian formulation, we have: 

ˆ arg max log ( ; , ) 1i

i

L w
  

    
  




  r z  

 The maximization of this log-likelihood function (subject to the specified constraints) is 

essentially a linearly-constrained nonlinear optimization problem which was solved numerically 

using the Non-Linear Programming procedure (PROC NLP) in SAS 9.3 (SAS Institute, Cary, 

NC). The Trust Region algorithm (Moré & Sorensen, 1983; Celis, Dennis & Tapia, 1984) was 

used with initial values for the weights corresponding to a uniform distribution across all 24 

biomarkers used in the analysis (i.e. wi = 1/24, for all i). We also tried other sets of starting 

values in order to assess convergence stability. Using a Dirichlet distribution, we generated 

different sets of initial values for the weights: 1 1 2~ ( ,..., ), 1.p pDirichlet         w  

For each set, the optimization was carried out and the model converged to the same final set of 

estimates, indicating a lack of sensitivity to initial conditions.  

 As discussed in the previous section, a large number of bootstrap samples are generated 

from the training set and the model fitting process described above is repeated on each sample to 

obtain estimates of the weights; these estimates are then averaged across all bootstrap samples to 

obtain the HSM: 

24

( )

1 1

(2.6)
1

ˆ, where
B

i i i i b

i b

HSM w r w w
B 

        
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2.2.4   Standardization of biomarker measurements 

 
 As discussed earlier, in the WQS technique, biomarker measurements (or any other 

variable type, e.g. environmental chemical exposures) are first converted into a common ordinal 

scale before fitting the model. We have made references to this procedure in earlier sections 

using the term ‘standardization’. This term, as used in this thesis, is not to be confused with the 

familiar process of standardizing normally-distributed variables to produce a variable with a 

mean of 0 and a standard deviation of 1. Instead, we use the term in a more general sense, to 

refer to a procedure for converting a number of variables with different units of measurement 

onto the same scale. This process is particularly relevant to our study because the biomarkers 

being combined to form the HSM have a variety of units and, as such, exist on different scales. 

In order to combine biomarkers of varying units into one unidimensional composite index, it is 

useful to first convert them all to the same scale.  

 Another reason for using a common standardized unit for all biomarkers is that the 

distribution of most of the biomarkers measured in the NHANES dataset is skewed, with some 

extreme outliers present. These extreme outliers exert a disproportionate effect on the results and 

therefore to dampen their effects, standardization is used. The WQS methodology, in its original 

form, requires standardizing biomarker measurements (or measurements of any other variable 

type) by ‘scoring’ the range of measurements into quantiles (e.g. quartiles, quintiles). If, for 

example, quartiles are used, each biomarker measurement (regardless of its original unit) is 

assigned a standardized value of 0, 1, 2 or 3 depending on which quartile it falls into, e.g. if it 

falls into the 1
st
 quartile, it is assigned a value of 0, and so on. It is straightforward to see that this 

simple, ad hoc approach solves the two problems mentioned above, i.e. all biomarkers 
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(regardless of original unit of measurements) will end up on the same ordinal quantile-based 

scale and extreme outliers will naturally fall into one of the quantiles. 

 However, for our particular application, there are a number of disadvantages to using 

quantiles for standardization. The HSM is designed to be a risk score for which higher values 

indicate higher mortality risk (or poorer health status) and lower values indicate low risk. Thus 

the HSM in its final form should have a positive, monotonic relationship with mortality. Since 

the HSM is a weighted sum (with nonnegative weights) of the standardized biomarker levels, the 

latter have to demonstrate the same relationship with mortality, i.e. a positive monotonic 

relationship. Therefore for constructing the HSM, a standardization procedure is needed that 

converts raw biomarker levels into a standardized scale that has a positive, monotonic 

association with mortality. However, certain biomarkers in their original (unstandardized) scale 

show a different relationship with mortality, e.g. some show a negative monotonic relationship 

while others may have a non-monotonic, convex (U-shaped) association (see Figures 2.1a-c 

below). Therefore a standardization procedure is needed which can convert biomarkers that have 

a variety of functional relationships to mortality onto a uniform, standardized scale with a 

positive monotonic association with mortality. The default quantile-based standardization used in 

WQS regression is not appropriate for this purpose since it tends to preserve the shape of the 

relationship between each biomarker and mortality. To account for possible non-linear 

associations between certain biomarkers and mortality, we used a more guided approach to 

standardize the biomarker measurements.  

 First, each biomarker’s range of measurements is transformed onto a relative hazard scale 

in the following way: Cox proportional hazards regression models with smoothing splines 

(Therneau & Grambsch, 2000) are used to plot the relationship between each biomarker’s levels 
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and mortality (quantified as relative hazard) after adjusting for age, gender and  race (see 

examples of these plots in Figures 2.1a-c). The equation below shows the model used for any 

particular biomarker x
i
 : 

 

0 (2.7)ln ( ) ln ( ) ( )
is r a x ih t h t sex race age f x         

 

 In the equation above, the function fxi  
is the smoothing spline function for biomarker x

i
. 

This spline function has internal parameters that determine its shape, and these parameters are 

estimated when the model is fit. Once all parameters in the model above are estimated, one can 

compute the estimate of the relative hazard, which we are defining here as the hazard relative to 

the training dataset sample average. The portion of this quantity attributable to the biomarker 

effect can then be plotted against biomarker levels (see Figures 2.1a-c). We will refer to these 

plots as partial prediction plots, on account of their similarity to plots of the same name used in 

generalized additive models (e.g. see Christensen & White, 2011). The use of smoothing splines 

to generate these plots allows any non-linear or non-monotonic relationships that may exist 

between a biomarker and mortality to be modeled. These plots therefore allow the range of raw 

measurements (in original units) for each biomarker to be mapped onto the relative hazard scale. 

We divide this scale into 10 equal-sized intervals (strata), representing discrete levels of risk. The 

lowest stratum is assigned a value of 0 (indicating the lowest risk level) and the highest a value 

of 9 (highest risk level). This standardization procedure facilitates the transformation of a set of 

raw biomarker measurements (with a variety of units) into a uniform, ordinal scale of 0-9, with 

each transformation allowed to be monotonic or non-monotonic depending on the nature of the 

association between the corresponding biomarker and mortality.  
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 The resulting standardized ordinal values have an intuitive appeal because, for all 

biomarkers, higher standardized values will indicate less desirable biomarker levels and lower 

values will indicate healthier biomarker levels. For example, in Figure 2.1a below, a Bicarbonate 

level of, say, 10 mmol/L falls into the highest relative hazard stratum and thus gets assigned a 

standardized value of 9, representing the highest level of risk relative to the population baseline. 

A higher Bicarbonate level of, say, 25 mmol/L falls into the lowest stratum of risk and thus gets 

assigned a standardized value of 0. But an even higher Bicarbonate level of, say, 37 mmol/L falls 

into the highest risk stratum and thus gets assigned a standardized value of 9. This clearly 

demonstrates the non-monotonic relationship between Bicarbonate level and mortality, with 

Bicarbonate levels that are too high or too low being ‘unhealthy’, and the healthy range (lowest 

stratum of risk) being somewhere between 21 and 30 mmol/L, according to the plot in Figure 

2.1a. It is worthwhile noting that this range matches with the clinical/laboratory reference range 

for ‘Normal’ levels of serum bicarbonate, which is 23-29 mmol/L (Goldman & Schafer, 2011). 

Thus the lowest stratum of risk observed in our plot corresponds closely to what is clinically 

considered to be the ‘Normal’ range. We noticed this trend for some of the other biomarkers we 

used.  We also observed that many biomarkers demonstrate the same type of ‘U-shaped’ 

relationship with mortality that Bicarbonate does, i.e. where ‘medium’ levels of the biomarker 

are associated with lower mortality risk and extremely low or high levels of the biomarker are 

associated with higher mortality risk.  

 The benefit of this new, guided approach to standardization is in allowing these non-

monotonic associations to be implicitly accounted for in constructing the HSM. Note that the 

training dataset (NHANES 1999-2002) was used to fit the smoothing spline-based Cox 

proportional hazards models described above. The population in this training dataset is large and 
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diverse enough that the relative hazard partial prediction plots generated may be considered 

robust approximations of the true relationship between each biomarker’s levels and mortality in 

the general population. 

 

     

 

 

 

 

 

 

 
 

Figure 2.1a-c: Examples of relative hazard partial prediction plots used for transformation of raw 

biomarker measurements onto the relative hazard scale. Each plot represents the multivariate 

adjusted spline-smoothed partial relative hazard estimates as a function of biomarker level. 

Figure 2.1a Figure 2.1b 

Figure 2.1c 
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 After standardization using the new approach described above, each biomarker ends up 

on an ordinal scale ranging from 0-9. Because the standardized biomarker values range from 0-9 

and the weights add up to 1 and are constrained between 0 and 1, the HSM ends up having a 

range of 0-9. Thus an individual with an HSM score equal to 0 is one who falls into the lowest 

risk (‘healthiest’) stratum on all biomarker measurements, and an individual with an HSM score 

equal to 9 is one who falls within the highest risk stratum on all biomarkers measured. HSM 

scores between 0 and 9 indicate health risk levels falling between these two extremes, with 

higher scores indicating greater mortality risk. 

 

2.2.5   Validation 

 The NHANES III dataset was used as a test/validation set to assess the predictive 

accuracy of the HSM composite. The population in this dataset shares no overlap with the 

NHANES 1999-2002 population (training set) used to generate the weights for the HSM. These 

weights were used to compute HSM scores for individuals in the NHANES III dataset. The 

standardization of the biomarker measurements for NHANES III individuals was carried out 

using the relative hazard partial prediction plots computed for the NHANES 1999-2002 

population (examples of which are plotted in Figures 2.1a-c), rather than recomputing new 

relative hazard functions specifically for the NHANES III dataset. The rationale behind reusing 

the NHANES 1999-2002 relative hazard functions is that the eventual goal of this project is to be 

able to compute the HSM for individual patients without requiring any information about the 

distribution of biomarker measurements in the populations they belong to. As discussed earlier, 

due to the large sample size and diversity of the NHANES 1999-2002 dataset, the relative hazard 

functions computed using this population are robust estimates of the true underlying biomarker-
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mortality relationships, and are thus suitable for use in the standardization of biomarker 

measurements of individuals in other datasets.  

 

2.2.5.1   Assessing the HSM’s predictive accuracy for all-cause mortality 

To test the predictive power of the HSM on survival time in the NHANES III dataset, we will 

use two approaches: 

I. A Weibull AFT (Accelerated Failure Time) model will be used to model the association 

between HSM and mortality, adjusting for the potentially confounding variables: age, gender, 

race, BMI, and Poverty Income Ratio. In this validation model, the statistical significance and 

sign of the HSM coefficient would be used as indicators of the strength and accuracy of the HSM 

variable as a predictor for survival time. In particular, since the HSM is constructed in such a 

way that higher values signify worse survival outcomes, a negative and statistically significant 

HSM coefficient in the validation model would imply that the HSM is a strong predictor of 

mortality in the test/validation dataset. 

II. C-statistics: These are commonly used in clinical risk score development to test predictive 

discrimination. In fact, they are considered the standard tool for quantifying the predictive 

accuracy of risk scores designed to predict binary outcomes (Steyerberg, 2009). To test a binary 

classifier, Receiver Operating Characteristic (ROC) curves are typically generated to provide a 

graphical depiction of the variation in sensitivity and specificity of a binary classifier as the 

threshold settings are varied (Hosmer & Lemeshow, 2000). The area under the ROC curve 

(termed AUC) can be seen as a measure of the ability of a binary classifier to discriminate 

between ‘positive’ and ‘negative’ cases. A more interesting interpretation of the AUC is as a type 

of concordance index. Let T be a binary classifier that, for an individual i, assigns a score  ̂  
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based on the values of individual i‘s explanatory variables (x
i
). Further, let this score be such that 

a higher value signifies a higher probability of being ‘positive’ on the binary outcome of interest, 

e.g. having a disease or health condition. We will henceforth refer to ‘positive’ individuals as 

cases and the ‘negative’ ones as controls. For any arbitrary pairing of case and control, the 

probability that T assigns a higher score to the case can be interpreted as a measure of 

concordance/agreement between prediction and observed response. For a particular case-control 

pair (denoted by i and j), define the occurrence of concordance as a random variable Uij where: 

ˆ ˆ1, if  

ˆ ˆ0.5, if  

ˆ ˆ0, if  

i j

ij i j

i j

S S

U S S

S S

 



 




 

The probability of concordance for any arbitrary case-control pair can then be estimated from the 

sample as  

,

1
ij

i jp

U
N
 , 

where Np is the total number of all unique case-control pairs (i,j) in the dataset. This is known as 

the concordance index and it turns out to be equivalent to the AUC (Steyerberg et al., 2010). 

Thus a useful statistical interpretation of the AUC is as a type of concordance statistic, or ‘C-

statistic’ for short. The relationship to the rank correlation measure, Kendall’s Tau, is worth 

noting here, as is the direct equivalence to the Mann-Whitney U-statistic. 

 A similar type of concordance index can be defined in situations where the predicted 

outcome of interest is a right-censored survival outcome. In (Harrell et al., 1982), a concordance 

index for right-censored survival outcomes was introduced. Referred to as Harrell’s C, this 

statistic is defined in a similar manner to the definition of the AUC given above, but the 
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computation is of course complicated by the presence of censored outcomes. Let H be a predictor 

for a survival outcome which, for an individual i, assigns a score h
i
 based on individual i’s 

covariates (x
i
). And let h

i
 be such that higher values signify a worse outcome/prognosis. Then for 

each individual or observation i let (T
i
, δ

i
, h

i
) represent the observed time, binary censoring 

indicator (where 0 indicates censorship) and computed risk score. For a pair of individuals (i, j), 

define this pair as informative if it is possible to know which individual survived longer. Thus a 

pair (i, j) is informative if any one of the following cases is true:  

 1i j    

 1, 0,i j i jT T      

 0, 1,i j i jT T     

 The Harrell’s C-statistic is then the proportion of informative pairs (i, j) exhibiting 

concordance between the prediction score (h
i
, h

j
) and the observed survival times (T

i
, T

j
), i.e. 

either (h
i
 < h

j
) & (T

i
 > T

j
), or (h

i
 > h

j
) & (T

i
 < T

j
). In words, concordance is defined as the case 

whereby the individual with the higher (worse) score has the shorter survival time and vice versa. 

Harrell’s C thus represents an empirical estimate of the probability of concordance of any 

randomly selected pair. If we denote this probability by c, Harrell’s concordance index can be 

formally expressed as:  

( ) ( ) ( 1) ( ) ( ) ( 1)

ˆ
( ) ( 1) ( ) ( 1)

i j i j i j i j i j

i j

i j i j i j

i j

I T T I h h I I T T I h h I

c
I T T I I T T I

 

 





      


      




 

 In the expression above, I(·) denotes an indicator function that evaluates to 1 when its 

argument is true. Additional minor modifications can be made to account for ties in the scores 
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and/or survival times; for details on this we refer the interested reader to Harrell et al.  (1982) 

and Harrell, Lee & Mark (1996). 

 

 Both AUC and Harrell’s C have a range of 0 to 1, with 0.5 indicating a predictor with no 

discriminative power and increasing values indicating better discriminative power. A value of 1 

indicates a predictor with perfect performance. To assess the predictive power of the HSM, we 

will first compute Harrell’s C which is a natural measure to use in this study since our outcome is 

a survival outcome. In order to use the AUC, we would need to dichotomize the survival 

outcomes to create binary outcomes. We do this by defining some clinically relevant time point 

for life expectancy (e.g. 5 years or 10 years) and then defining a binary outcome as follows: Let 

tbin be the clinically-relevant time point measured in years. Then for an individual i with 

observed survival time T
i
, a binary outcome Y

i
 representing life-expectancy for tbin years can be 

defined as: 

and1  1

0 >

ii bin

i

i bin

if T t
Y

if T t

 
 


 

Note that Yi is undefined when Ti ≤ tbin and δi = 0.  

 As an example illustrating this definition, if the time point of interest (tbin) is chosen to be 

5 years, then the binary variable representing 5-year life expectancy would be defined so that 

those who were known to have died 5 or fewer years after their participation in NHANES would 

be assigned a value of 1 and those who were known to have lived past the 5-year point would be 

assigned a value of 0. Using this binary outcome, we can compute the AUC for the HSM. In 

section 2.3.1, we will discuss the special relevance of this life-expectancy binary outcome to 

interpreting HSM scores. 
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 2.2.5.2   Assessing the HSM’s predictive accuracy for cause-specific mortality 

 As mentioned earlier, the NHANES III Linked Mortality files also contain information 

about cause of death (stored in variable UCOD_113). This information was used to test the 

ability of the HSM to predict mortality arising from specific chronic illnesses such as 

cardiovascular disease (codes 053-075), liver disease (codes 093-095), kidney disease (codes 

097-101) and diabetes (code 046). Logistic regression (with Firth’s bias-correction (Firth, 1993) 

for low-prevalence outcomes) was used to test the predictive power of HSM for mortality due to 

each of these conditions. Age, gender, race, Poverty Income Ratio (PIR) and BMI were adjusted 

for. 

 

2.2.5.3   Assessing association of HSM with indicators of concurrent health 

 Questionnaire data from participants in NHANES between 2003 and 2008 was used to 

test the relationship between HSM score and the following self-reported variables: health status, 

hospital utilization and diagnoses of Diabetes, heart, kidney and liver disease. Table 2.1 below 

summarizes the questionnaire items used. Note that the items corresponding to self-reported 

diagnosis of various heart conditions (Items MCQ160B-MCQ160F) were condensed into one 

variable indicating whether or not a respondent had been notified by their doctor of at least one 

of these conditions. For the questionnaire variables with binary (Yes/No) responses, logistic 

regression was used to model each variable’s relationship with HSM whilst adjusting for age, 

gender, race, Poverty Income Ratio (PIR) and BMI. Analysis of the relationship between HSM 

and questionnaire variables with more than 2 response categories was carried out using either 

linear or Poisson regression (see Table 2.1 for summary) depending on which provided a better 

fit to the model (as determined by the Akaike Information Criterion). 
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Table 2.1: NHANES 2003-2008 selected questionnaire items and 

regression techniques used to model their relationship with HSM 

Variable 

Name 

Questionnaire 

Item 

# of 

response 

categories 

Analysis Technique 

HUQ010 Self-rated health 5 Linear Regression 

HUQ050 

# of times 

healthcare 

received over past 

year 

6 Poisson Regression 

HUQ080 

# of times over 

past year 

respondent was 

overnight hospital 

patient 

6 Poisson Regression 

DIQ010 

Doctor ever told 

respondent they 

have Diabetes? 

2 (Yes/No) Logistic Regression 

MCQ160L 

Doctor ever told 

respondent they 

have liver 

condition? 

2 (Yes/No) Logistic Regression 

KIQ020 

Doctor ever told 

respondent they 

have weak/failing 

kidneys? 

2 (Yes/No) Logistic Regression 

MCQ160B-

MCQ160F 

Doctor ever told 

respondent they 

have Congestive 

Heart Failure, 

Coronary Heart 

Disease, Angina, 

Heart Attack, 

Stroke 

2 (Yes/No) Logistic Regression 
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2.3   RESULTS 

 To estimate the weights for the HSM, we used B=1000 bootstrap samples and the 

computed bootstrap-averaged weight estimates  ̅  corresponding to each biomarker are plotted 

below in Figure 2.2. The plot indicates that Phosphorus has, by a significant margin, the largest 

weight of any biomarker while Red Blood Cell count and Sodium levels appear to be down-

weighted to zero or near-zero values. 

 
 

Fig. 2.2: Bootstrap-averaged weights used to construct the HSM 

  

 Figure 2.3 below shows the distribution of HSM scores in the NHANES III 

test/validation population. The HSM demonstrated strong predictive ability (p < .0001, 

 ̂    negative) for all-cause mortality in this validation set. Figures 2.4a-f (see Appendix II) 
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show a series of Kaplan-Meier curves (adjusted for age and gender) plotted for different HSM 

ranges. We have included one of the plots below (Figure 2.4e) to illustrate the effect of HSM on 

survival for a particular age group and gender combination. A logrank test indicates significant 

difference (p<.0001) in survival trends among the strata.  

 
Fig. 2.3: Distribution of HSM in NHANES III population 

 
 

 

Figure 2.4e: Kaplan-Meier curves plotted for  

various ranges of HSM for Males in 40-64 age group 
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 For cause-specific mortality, the HSM demonstrated high predictive validity (see Table 

2.2 below). The cause-of-death analyses indicated that a 1-unit increase in HSM increases risk of 

death from liver disease by a factor of ~4, kidney disease by a factor of 2.3, and diabetes by a 

factor of 2.2. 

 The analysis of items in the NHANES 2003-2008 questionnaire data reveals a robust 

association between an individual’s HSM score and their current health status as assessed by 

self-rated health, self-reported hospital utilization (in the months prior to NHANES 

participation), and the following self-reported physician-diagnosed health conditions: heart 

disease, liver disease, kidney disease, and diabetes (see Table 2.3 below). The results indicate 

that higher HSM scores are associated with lower self-rated health and more frequent hospital 

visits. The odds ratio estimates suggest that a 1-unit increase in an individual’s HSM score is 

associated with a 3-fold increase in the odds of having been diagnosed with diabetes, a 2.1-fold 

increase in the odds of having been diagnosed with a liver condition, a 4.7-fold increase in the 

odds of having been diagnosed with weak/failing kidneys, and 2.2-fold increase in the odds of 

having been diagnosed with one or more of the following cardiovascular diseases: congestive 

heart failure, coronary heart disease, angina, heart attack and stroke.  

 These results should be interpreted with caution. It is tempting to interpret them to mean 

that increased HSM in any individual is indicative of elevated risk of diabetes, liver, kidney, and 

cardiovascular disease. However this would be an incorrect interpretation of the results since 

they are simply statistical associations observed at the population level. In other words, a 

particular individual with a relatively high HSM score may not necessarily be at elevated risk for 

all the aforementioned conditions. The specific conditions (if any) that an individual is at risk of 

due to relatively high HSM score would depend on their particular biomarker profile. The HSM 
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score should be seen as a predictor of general mortality, not as a predictor of particular illnesses 

and health conditions. 

 

 

 

 
 

 

 

         
 

 

 

 

 

 

Table 2.2: Predictive Validity of HSM (as measured by p-value 

& Odds Ratios [covariate-adjusted]) for death caused by a 

variety of chronic ailments.  

Cause of Death p-value 
Odds Ratio      

(95% CI) 

Cardiovascular Disease 0.5 0.9 (0.8-1.1) 

Liver Disease <.0001 3.7 (2.3-6.0) 

Kidney Disease 0.004 2.2 (1.3-3.7) 

Diabetes      <.0001 2.3 (1.6-3.4) 

 

Table 2.3: HSM relationship with self-reported hospital utiliz-ation and physician-

diagnosed health conditions 

Questionnaire Item p-value 
Odds 

Ratio 

(95% CI) 

Self-rated health <.0001 N/A 

# of times healthcare received 

over past year 
<.0001 N/A 

# of times over past year 

respondent was overnight 

hospital patient 

0.003 N/A 

Doctor ever told respondent 

they have Diabetes? 
<.0001 3.0 (2.3-4) 

Doctor ever told respondent 

they have liver condition? 
<.0001 2.1(1.5-3) 

Doctor ever told respondent 

they have weak/failing 

kidneys? 

<.0001 4.7(3.2-7) 

Doctor ever told respondent 

they have congestive heart 

failure, coronary heart 

disease, Angina, heart attack, 

or stroke 

<.0001 2.2(1.6-3) 
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 For all-cause mortality, we assessed the predictive power of the HSM using the measures 

(Harrell’s C and AUC) described in sub-section 2.2.5.1. The results are summarized in Table 2.4 

below. 

 

Table 2.4:  Predictive accuracy of HSM  

Measure Estimate 

Harrell's C 0.7 

AUC
1-year

 0.78 

AUC
5-year

 0.74 

 

As the results indicate, the HSM exhibits reasonable predictive power for all-cause mortality in 

the validation dataset.  

 

2.3.1   Interpretation of HSM Score 

 HSM scores can be directly translated into projected mortality risk at certain time points 

in the future. The plots in Figures 2.5a-b below illustrate the relationship between HSM score 

and probability of mortality 5 years and 10 years after HSM score determination. These plots are 

adjusted for age group and gender, so they can be used to determine an individual’s age- and 

gender-adjusted 5- and 10-year life expectancy based on their present HSM score. Mortality risk 

at alternate time points can also be easily computed for specific HSM scores. 
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Figure 2.5a: Age- and Gender-adjusted Relationship between HSM and Predicted 5-year mortality risk 

 

Figure 2.5b: Age- and Gender-adjusted Relationship between HSM and Predicted 10-year mortality 

risk 
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2.4   CONCLUSION AND DISCUSSION 

 Using biomarker and survival data, we have developed and validated a composite score 

which serves a dual purpose as a fairly comprehensive measure of overall health and a 

prognostic tool capable of predicting mortality risk for the general population. 

 To construct the HSM, we used Weighted Quantile Sum (WQS) regression. A key step in 

this technique is the standardization of variables to be combined into an index. We extended the 

WQS methodology by introducing a new, guided approach for standardizing variables. The 

original method of standardization was an ad hoc approach that involved scoring each variable 

into pre-defined quantiles. This unguided approach does not account for possible non-monotonic 

or non-linear relationships between biomarker levels and mortality. To address this issue, we 

introduced a novel standardization technique that allows standardized values to reflect any non-

monotonic relationships that may exist between biomarker measurement levels and mortality. 

 Validation analysis of the HSM demonstrated that it is both a reasonably accurate gauge 

of current health status and a reliable predictor of life expectancy. Higher HSM scores tend to be 

linked with lower self-rated health, higher frequency of hospitalization, higher likelihood of 

chronic health conditions (in the present and in the future) and decreased life expectancy.  

 Nearly all the biomarkers used in constructing the index can be obtained from common 

laboratory tests (Comprehensive Metabolic Panel, Lipid Panel, Complete Blood Count) 

performed on patients as part of the diagnosis process or routine checkups. The HSM provides a 

straightforward way to combine all these markers of various aspects of health into a single score 

that serves as a numerical estimate of current overall health and future mortality risk. 

 This makes it potentially useful as a tool for prediction of general risk (with mortality as 

an endpoint). The HSM would provide clinicians who use it with an evidence-based, data-driven 
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assessment of general mortality risk that could aid decision-making. And unlike some risk scores 

which predict mortality only for individuals with a particular disease, the HSM is a general-

purpose risk score that could be used to predict mortality for individuals with a wide range of 

conditions.  

 The HSM could also be used as a measure for tracking a patient’s general health over 

time. Certain longitudinal clinical studies that follow overall health status over time may benefit 

from the use of a validated, general-purpose risk score like the HSM.  

 In healthcare quality assessment studies, the HSM could be adapted for use as a metric 

for comparing patient overall health among different health care providers. As an example of 

such an application, the HSM could be used to obtain estimates of age- and gender-adjusted 5-

year life expectancy for patients seen by individual or institutional health care providers. These 

estimates provide a way to make standardized comparisons of patient health outcomes among 

multiple healthcare providers. 

 

2.4.1   Study Limitations 

 A limitation of the current method of computing the HSM is the reliance on a large 

number of biomarkers (24). While these biomarkers are routinely measured in clinical settings, 

individual patient health records might be missing one or more components. Techniques for 

solving this problem will be discussed in Chapter 4.  

 While the HSM incorporates a wide range of biomarkers spanning multiple organ 

systems, this range is by no means exhaustive. Certain aspects of physiological health (e.g. 

reproductive health, gastrointestinal health, endocrine function) are not evaluated in a direct 

manner by the HSM. 
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Chapter 3 

Extending the HSM to accommodate interaction effects 

 

3.1   Introduction 

The HSM is constructed based on an additive assumption that the effect of the 

biomarkers on mortality can be adequately modeled without accounting for interactions that may 

exist among biomarkers. In this chapter, the validity of this assumption will be examined. We 

will develop a version of the HSM that includes interaction effects among biomarkers. This will 

be accomplished by making a simple modification to the WQS regression technique that allows 

for inclusion of between-component interactions and computation of the corresponding weights. 

A small subset of all the possible pairwise interactions among the 24 biomarkers will be chosen 

for inclusion in the extended HSM. The selection of the candidate interactions will be based on 

strength of association with mortality, and will be carried out using Random Survival Forests. 

After developing the extended HSM, we will perform tests to compare it to the original HSM 

(which does not account for interactions).  

 

3.2   Extending the HSM 

The HSM in its original form is a weighted linear index of biomarkers given by: ∑      . 

We now consider incorporating pairwise interaction effects among the biomarkers. Higher order 

interactions will not be considered at this time. An extended version of the HSM that allows for 

inclusion of interaction effects is given below: 

inter

( , )  

3.1 ( )i i jk j k

i j k H

HSM w x w x x


      
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In the above equation, the HSM is divided into an additive component and an interaction 

component. In the interaction component, H is the set of all pairwise interactions under 

consideration. Each pairwise interaction effect has one corresponding weight (given by wjk 

above). The   
  and    

  are scaled versions of standardized biomarker values in each pairwise 

interaction. The scaling is done so that the extended HSM (denoted HSMinter) has the same range 

as the original (additive) HSM.  

To estimate weights for the extended HSM in equation (3.1), we propose the following 

simple modification to the original form of the WQS technique used to derive the HSM in 

Chapter 2: 

1

( , )  

log   +  (3.2)l l i i jk j k

l i j k H

T z w x w x x   


 
       

 
    

This formulation incorporates the interaction component into the index portion of the model. 

Constraints on the weight parameters are given by: 

,

( , )  

 1, 0 1, 0 1i jk i j k

i j k H

w w w w


        

 

3.3    Selecting Interaction effects 

As mentioned earlier, the term H in Equations (3.1) & (3.2) above is the set of all pairwise 

interactions under consideration. Without a priori knowledge of what interactions are important 

to include, all possible pairwise interactions would have to be included in the HSM and the WQS 

model used to derive its weights. For 24 biomarkers, the number of unique pairwise interactions 

is (  
 
) = 276. Combined with the demographic variables {z

l
}, the total number of variables in 

the WQS model defined in equation (3.2) would sum up to over 300. It is natural to ask whether 
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the WQS technique is capable of handling such a large model. Studies utilizing this technique in 

the past have focused on small-to-moderate sized models (e.g. on the order of dozens of 

variables) and the technique has not been applied to ‘large p’ data such as the type encountered 

in microarray analysis, for example. WQS-based models are fit using nonlinear optimization 

routines such as Trust Region, Newton-Raphson Ridge Optimization, Conjugate Gradient, etc. 

These are iterative techniques that use quadratic approximations of nonlinear objective functions 

and require repeated computation of first-order and (sometimes) second-order partial derivatives. 

Most cannot handle optimizations with a large number of variables (e.g. on the order of 100s or 

1000s). Out of all the optimization techniques available in the SAS-based NLP procedure (SAS 

Institute, Cary NC) we used in our studies, the Conjugate Gradient technique is the only one 

capable of handling very large optimization problems. However our attempts to use this 

optimization technique for large models with hundreds of variables have so far been confounded 

by problems with unstable convergence. Therefore including all possible pairwise interactions in 

the WQS model in Equation (3.2) was not a feasible option. 

One solution is to use suitable alternative techniques to search the space of all possible 

pairwise interactions to identify a select few important interactions that can be included in our 

WQS model. The problem of detecting important interaction effects (especially bivariate 

interactions) in high-dimensional data is one that has been studied in multiple fields, particular in 

Genomics. For example, an important aspect of genome-wide association studies (GWAS) is the 

detection of gene-gene interactions that may manifest as statistically detectable effects on one or 

more outcomes. In such studies, the simple approach of testing for individual pairwise 

interactions (i.e. marginal tests for association) is often used, however more recent studies have 
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proposed advanced techniques for identifying interactions in a more holistic fashion (see Cordell 

(2009) and  Wu et al. (2010) ).  

One particularly promising approach is the use of Random Forests (Breiman, 2001), a 

popular machine learning technique commonly used for prediction. Random Forests may be seen 

as an extension to Classification and Regression Trees [CART] (Breiman et al., 1984) in that 

they combine a large number of ‘randomized’ decision trees to form an ensemble predictor (i.e. a 

forest) that typically has greater predictive accuracy than its individual components. Random 

forests have several desirable properties that have made them a popular tool particularly in areas 

requiring the analysis of high-dimensional data. Random Forests remain relatively robust for 

problems with a large number of variables (which in some cases can exceed the number of 

samples) and their underlying tree-based structure provides a completely nonparametric 

approach for adequately modeling complex interactions and correlations that may exist among 

variables in high-dimensional data. Also, the strategic use of sampling/resampling and 

randomization in tree construction produces forests with low generalization/prediction error 

(Breiman, 2001).  

A particularly appealing feature of Random Forests (RF) is the ability to adaptively 

discover interaction effects among several variables. This makes it an ideal technique for the 

problem of selecting the most significant interaction effects of a large set of such potential 

effects. It has been applied in a number of genomic studies as a tool for exploring and detecting 

gene-gene and epistatic interactions (Jiang et al., 2009; Liu, Ackerman & Carulli, 2011; Winham 

et al., 2012; Pan et al., 2013; Staiano, Di Taranto & Bloise, 2013).  
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In the present study, RF methodology will be used to nonparametrically model the 

complex interaction networks among the biomarker variables and to identify a select few for 

inclusion in our WQS model.  

Our WQS model (see Equation (3.2)) uses a censored survival response (observed survival 

time and censoring indicator), however, the original and commonly-used implementations of 

Random Forests only handle binary and continuous (as for regression) responses. Binary 

responses are predicted by building a forest from classification trees while continuous responses 

require regression trees. Since the introduction of the Random Forests algorithm for 

classification and regression, multiple attempts have been made to adapt this methodology for 

censored survival outcomes, beginning with Breiman (2002) who outlined instructions for a 

software to handle survival data; however no formal description of its underlying algorithm was 

published. Different ad hoc techniques have since then been proposed. Most of these are off-the-

shelf techniques which avoid dealing directly with the survival times but instead transform them 

into a variable type that could be handled by conventional Random Forests algorithms. For 

example, Hothorn et al. (2006) introduced a technique in which the survival times are first log-

transformed then analyzed using regression trees weighted to account for censoring. However 

Ishwaran et al. (2008) introduced, to our knowledge, the first full extension of Random Forests 

methodology to time-to-event data. This implementation (termed Random Surival Forests) deals 

directly with the survival outcomes and does not require transforming them. We chose to use this 

implementation in our study. Random Survival Forests (RSFs) share most of the desirable 

features of Random Forests and have been applied in multiple clinical and genomics studies 

utilizing survival data of varying dimensionality (Chen, Wang & Ishwaran, 2010; Hsich et al., 

2010; Rice et al., 2010; Rizk et al., 2010; Gorodeski et al., 2011; Chen & Ishwaran, 2013). 
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3.4   Random Survival Forest methodology 

The basic unit (base learner) of an RSF is a random survival tree. These are identical in 

structure to the randomized classification/regression trees used in Random Forests. Just like 

classification/regression trees, survival trees are grown by recursively partitioning data into 

subsets of increasing homogeneity. In fact, the core algorithms used to construct random survival 

forests and random forests are quite similar (Ishwaran et al., 2008). The RSF algorithm is 

outlined below: 

1. Draw B bootstrap samples from the learning set. Each bootstrap sample will almost always 

contain only a subset of the unique datapoints in the learning set (~63.2% on average), the 

other unselected  ~36.8% is referred to as out-of-bag (OOB) data. 

2. For each bootstrap sample, beginning with the root node which contains all the sample data, 

grow a randomized survival tree by using the following procedure: out of the p total variables 

in the data, randomly select a candidate subset of size m; split the node using the candidate 

variable that maximizes survival difference between the two resulting nodes (termed 

daughter nodes). Survival difference is measured using the log-rank test, therefore the node is 

split using the variable that maximizes the log-rank statistic (among all m candidate 

variables). 

3. Recursively carry out Step 2 on every new node created, thereby growing a tree structure. A 

node can no longer be split when doing so will create at least one daughter node with less 

than d
o
 unique deaths, where d

o
 (>0) is a preset parameter representing the minimum 

allowable number of deaths in each node. Continue growing the tree until no nodes exist 

which can be split. The unsplit nodes are referred to as terminal nodes. Unlike CART, no 

pruning is performed on trees once they are complete.  
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4. To assign predictions to each terminal node h in a survival tree, the failure times and 

censoring status of all individuals in the node are used to construct a nonparametric estimate 

of the cumulative hazard function (CHF) via the Nelson-Aalen estimator. For a terminal node 

h, let N(h) be the number of distinct event times. Denote these by 1, 2, ( ),h h N h ht t t    . 

Let dl,h and Yl,h respectively denote the numbers of deaths and individuals at risk at time tl,h . 

Then the Nelson Aalen-estimator of the CHF for node h is given by: 

,

,

,

ˆ ( )
l h

l h

h

t t l h

d
H t

Y

   

All individuals in h are assigned the same CHF. Note that if a new test case/individual (with 

known covariates x
i
 ) is dropped down a tree Tb (i.e. a tree grown from the bth bootstrap sample) 

and allowed to propagate from node to node based on the splitting rules of each node, they will 

end up at a particular terminal node h’ and the CHF prediction for such an individual would thus 

be  ( |  )   ̂
  

( ). This defines the CHF for the particular tree Tb. 

5. Average the CHF for each tree to obtain the ensemble CHF 

6. For the OOB data, calculate the prediction error for the ensemble CHF. For RSFs, the 

prediction error is computed as 1-C where C is Harrell’s concordance index, an extension of 

the AUC (area under the ROC curve) concept used for binary classifiers to survival data. As 

discussed in Chapter 2, Harrell’s C provides a measure of the concordance between predicted 

survival and observed survival time. 
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3.4.1   Variable Importance Measures 

Variable selection using random survival forests relies on the use of Variable Importance 

(VIMP) measures to rank variables by order of their “importance” in the model. The 

“importance” in this context is the contribution of each variable to the predictive power of the 

random forest predictor. An important and influential variable is one whose exclusion from the 

training data has a relatively large deleterious effect on prediction accuracy.  

In formal notation, variable importance is defined as follows (Ishwaran 2007; Ishwaran et 

al., 2008): 

(3.3)v vVIMP PE PE    

The above equation defines the VIMP for a variable v as the difference between the 

prediction error obtained when v is “noised up” (given by PEv above) versus the prediction error 

(PE) otherwise. Noising up a variable v in a random survival forest involves the use of a 

randomization procedure (see Ishwaran (2007)) that has the effect of lessening or ‘dampening’ 

the contribution of v to the forest’s prediction. To ‘noise up’ a variable v in the forest, in Step 6 

of the RSF algorithm outlined above, for each OOB case dropped through trees, at each node 

split by variable v, rather than follow the splitting rule defined for the node, the left or right 

daughter node is chosen at random (with equal probability) and this process is continued for 

every subsequent node encountered downstream. This process is called random daughter 

assignment and when carried out for variable v in every tree in the forest, it effectively 

‘scrambles’ any relationship that variable v has with the response and the resulting forest’s 

predictions are no longer influenced by v’s contribution. Therefore if v is actually an important 

and predictive variable, the new random survival forest produced when v is noised up would be 

expected to have a higher prediction error than the former; thus its VIMP would be a large 
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positive number. Conversely, ‘noising up’ a non-influential variable should not adversely affect 

the prediction accuracy of the forest. In fact in some cases, ‘noising up’ a variable actually 

slightly improves the forests predictive accuracy. 

The VIMPs for all variables in a large model can be computed in the manner described 

above and ranked in descending order of importance. The resulting ranked list provides valuable 

insights as to which variables are the most important and facilitates variable selection. 

A measure of association between two variables v and w can also be created using a similar 

process. The association measure is defined below (Ishwaran, 2007): 

, , (3.4)( )v w v w v wA        

As the equation above implies, the association measure (given by Av,w in the above equation) for 

a pair of variables (v,w) is the difference between the prediction error obtained when v and w are 

jointly noised up (∆v,w  [referred to as the paired VIMP]) versus the sum of the prediction errors 

obtained from separately noising up each of the variables (∆v +∆w). An association measure 

(Av,w) that is close to zero indicates that the two variables v and w have a weak or non-existent 

interaction effect. In other words the prediction error arising from jointly noising up variables v 

and w can be closely approximated by summing the prediction errors arising from individually 

noising up each variable separately. In contrast, an association measure that deviates 

significantly from zero (in either direction) is evidence of an interaction effect between the 

variables involved. The association measure can be used to select interaction effects that are 

important for prediction. The random survival forest technique is able to handle a large number 

of variables and interactions among those variables are naturally and intuitively modelled by the 

tree structure. Association measures can be computed for all unique pairs of variables. Ranking 
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the interactions in descending order of the absolute value of association measures will provide 

insight as to which interactions are more important than others.  

The VIMP (univariate or joint) in its commonly-used form does not have a statistical 

threshold that can be used as a cutoff for variable selection. This is because the way the VIMP is 

defined makes it difficult to find a closed form null distribution for it. A few attempts have been 

made to find a rigorously-defined statistical threshold of significance for VIMP measures (van 

der Laan, 2006; Molinaro et al., 2011) but the methods proposed have either been too 

computationally intensive or difficult to implement.  

Studies that have used VIMP measures for variable selection usually adopt an ad hoc rule 

to define the selection threshold. For example some select the top k ranked variables, where k 

depends on the total number of variables but it usually relatively small in comparison (see 

Winham et al. (2012)). A few studies that have used RSF methodology have defined the 

threshold of significance as 5% of the maximum VIMP (Rice et al., 2010; Rizk et al., 2010). 

Therefore if a standardized VIMP is defined by dividing all VIMPs by the maximum observed 

VIMP, the resulting standardized VIMPs will range from 0 to 1 across all variables and any 

variable with a standardized VIMP above 0.05 is chosen as ‘important’. We adopted this rule in 

our studies and defined a variable as important if its univariate standardized VIMP exceeded the 

0.05. On the other hand, for the joint (interaction) VIMP, there are no set-in-stone rules and in 

our studies we used the top 10% of joint/interaction VIMPs as the importance threshold.  
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3.4.2   Minimal Depth 

Recently, a new measure of variable importance called minimal depth has been proposed 

(Ishwaran et al., 2010a). Its main advantage over the traditional VIMP discussed above is that a 

closed form distribution can be obtained for it. This enables the derivation of a statistically 

rigorous threshold that can be used for variable selection.  

The main idea behind the minimal depth is that important (highly predictive) variables tend 

to be used to split tree nodes earlier in the tree construction process, i.e. they tend to be closer to, 

or at the top of the tree (root node) (Strobl et al., 2007). Less predictive variables tend to be used 

for splitting nodes later in the tree construction process (i.e. they are lower in the tree structure) 

or never used at all.  

 

Figure 3.1: Simple tree structure illustrating the concept  

of depth. The number within each node represents its depth  

within the tree. [Image adapted from Ishwaran  (2010a)] 

 

Developing this idea further requires defining an important notion, the notion of ‘depth’. 

The depth at a particular point in a tree is the number of levels/degrees of separation between the 

root node and that point. The root node itself is designated a depth of 0, each of its two daughters 

are designated a depth of 1, any daughters of those are designated a depth of 2, and so on. Figure 
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3.1 above illustrates this concept for a sample tree. The numbers within each node represent the 

depth of that node in the tree. In the figure, the square-shaped nodes are terminal nodes while 

non-terminal nodes are circular.  

In a tree T, the depth can therefore be an integer ranging from 0 to D(T), where D(T) is the 

maximum ‘distance’ between the root node and the most remote terminal node, i.e. the terminal 

node with the largest number of degrees of separation from the root node. In Figure 3.1 above, 

the depicted tree has a maximum depth D(T) of 3 since the remotest terminal nodes are all 3 

degrees of separation from the root node.  

Note that the term ‘depth’ can apply either to nodes in a tree or the variables used to split 

those nodes. We can see now that important variables which tend to be higher up in the tree 

structure will have smaller values for depth. The minimal depth for a variable in a tree is 

therefore defined as the depth of the node in which the variable was first used for splitting in the 

tree. For example, if a variable is used to split the root node of a tree then its minimal depth in 

that tree would be 0 since its first use during tree construction is in splitting the root node. Figure 

3.2 below provides a visual illustration of this idea using a number of example trees. 
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In the figure above, the letters within the circular (non-terminal) nodes represent the 

variables used to split those nodes. The terminal (square) nodes are unlabeled since, by 

definition, they are not split by any variables. In Tree 1 of Figure 3.2, the minimal depth of 

variables v and z would be 0 and 1 respectively. In Tree 2, the minimal depth for variables a and 

w would be 0 and 1 respectively, and for variable v it will be 1. Notice that even though variable 

v is used twice in Tree 2, the first time it is used (i.e. the highest node in which it’s used) is the 

node at depth 1, thus the minimal depth of v will be 1. And for Tree 3, the minimal depths of 

variables z, r, v and w would be 0, 1, 1 and 2 respectively. Again, notice that in Tree 3, the 

variable v is used twice, however its minimal depth is defined by the depth of the node it was 

first used to split. 

For a tree T, the minimal depth D
v
 for any particular variable v would be a random 

nonnegative integer in the range 0 to D(T). If v was not used to split any nodes in tree T then, by 

convention, its minimal depth is set to D(T), the depth of the most remote terminal node, i.e. the 

Tree 1 Tree 2 

 

Tree 3 

Figure 3.2: Sample trees illustrating the concept of minimal depth. Each non-terminal node is 

labelled by the variable used to split it. The minimal depth for each variable is the first node in 

the tree (counting from the root node) that is split using that variable  

[Images adapted from Ishwaran (2010a)] 
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one with the largest number of degrees of separation from the root node. The value of D
v
 in any 

particular tree will depend on how high up in the tree structure v was first used to split a node 

and the expected minimal depth of an important/predictive variable will be smaller than that of a 

much less predictive one. In general, if D
v
 = d then it means that the first use of variable v for 

splitting in the tree was for a node at depth d.  

An approximation to the distribution of the random variable D
v
 was derived in Ishwaran et 

al. (2010a) and is given by: 

( ) 1 ( )

3.5
1 1

{ is a weak variable} 1 1 1 ( )

l d l d

vP D = d |v 
p p

     
        

     

 

In Equation (3.5) above, p is the total number of variables in the model and l(d) is the 

number of nodes existing at depth d. Note that the distribution of D
v
 is conditioned on v being a 

weak/non-predictive variable. Therefore the mean of D
v
 can be used as a threshold for 

partitioning the set of variables into strongly predictive and weakly predictive, thus it can be used 

for variable selection. If the minimal depth of each variable for each tree in the forest is averaged 

across all trees, we get the forest-averaged minimal depth for each variable. Variables with 

forest-averaged minimal depth falling above the threshold (the mean of the above distribution) 

are considered weak variables. Variables with forest-averaged minimal depth falling below this 

threshold would be considered important and the farther below the threshold a variable’s 

minimal depth falls, the more predictive it is considered; recall that when it comes to minimal 

depth, lower is better, the closer a variable’s minimal depth is to 0 (the depth of the root node), 

the more influential it is. 
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The notion of minimal depth can also be applied to the identification of interactions. To do 

so, consider a variable v with a minimal depth of d in a tree T. This means that the first node in T 

that was split using v was located at a depth d. Let us denote this particular node as the index 

node for v and denote the subtree formed by splitting this node (and the resulting subsequent 

daughter nodes) as the index subtree of v. Therefore, the index node of v is the root node of the 

index subtree of v. Figure 3.3 below illustrates this idea more clearly.  

 

 

 

 

In the two trees depicted in Figure 3.3, the index subtree of variable v is depicted in red. In 

Tree 2, v is used for the first time in a node that exists at a depth of 1, therefore this node is the 

index node of v (and the minimal depth of v is 1) and the portion of the tree highlighted in red is 

the index subtree of v. In Tree 1, since v is used to split the root node, its minimal depth is 0, its 

index node is the root node, and the entire tree is an index subtree of v.  

Within the index subtree of v, the variables that are closest to its root node (i.e. index node 

of v) can be regarded as having potential interactions with v. The reasoning behind this has been 

articulated in different forms in Breiman (2003), Bureau et al. (2005) and Winham et al. (2012). 

Tree 1 Tree 2 

Figure 3.3: Sample trees illustrating the concepts of ‘index node’ and ‘index subtree’. The 

portions of each tree colored in red are the index subtrees of variable v, and the root node 

of each index subtree is defined as the index node of v. 

[Images adapted from Ishwaran (2010a)] 
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The fundamental idea is that when variables tend to occur close together in many trees in a 

forest, they can be thought of as having potential interactions. In particular, commonly co-

occurring pairs of variables can arise when splitting a node using one of the variables makes a 

subsequent split with the second variable more likely. This idea can be used to identify pairs of 

variables that may potentially interact. Therefore for a pair of variables (v,w), if w has a low 

forest-averaged minimal depth within the index subtree of v (or vice versa), the two can be 

considered as interacting. Unlike the univariate case, there is no threshold for defining exactly 

how low the minimal depth of one variable (within the index subtree of the other) has to be for 

both variables to be identified as having an interactive effect. We used an ad hoc rule that is 

defined in the next section. 

As mentioned earlier, minimal-depth thresholding has the advantage of being based on a 

rigorously-defined statistical threshold (at least for the univariate case). Also, unlike the VIMP, 

defining minimal depth does not require the use of a measure of prediction error. Recall that the 

VIMP uses 1-C (where C is Harrell’s C-index) as the prediction error, however other measures 

of prediction error can be used (e.g. Brier score (Gerds & Schumacher, 2006)); the choice of 

prediction error used in computing VIMP has been shown to influence which variables are 

deemed important, and this is not an ideal property for a variable selection method to have. This 

problem can be circumvented by using minimal depth thresholding which is not tied to any 

specific measure of error but is instead based on a simple order statistic defined solely using tree 

structure.  

The main downside of minimal depth-thresholding is that it is not as well-established or 

well-vetted as the VIMP. It has only been used on experimental/simulation datasets and applied 

in a small number of studies (see Ishwaran et al. (2011), Chen & Ishwaran (2012, 2013)). 
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However it has been shown in these studies to outperform the VIMP. Therefore we will use both 

methods to find interactions and develop/test two separate models based on the sets of interaction 

effects found through both methods. 

 

 

3.5   Implementation of RSF algorithm 

In our studies, we used the package RF-SRC [Random Forests for Survival, Regression 

and Classification] developed by Ishwaran & Kogalur (2013) and implemented in the R 

programming language (R Development Core Team, 2010). To build the RSF, we used the 

rfsrc function of this package. The forests were constructed using 500 trees and the parameter 

m (see Step 2 of the RSF algorithm outlined in Section 3.4) was set to the default value of 

ceiling(  ), where p is the total number of explanatory/input variables in our model. As 

mentioned earlier, the splitting rule used was the log-rank statistic.  

The learning set used in the algorithm was the NHANES 1999-2002 dataset we have 

discussed in earlier chapters. We used a total of 31 variables: 2 response/outcome variables 

(survival time, censoring indicator), and 29 input/explanatory variables. The latter consisted of 5 

demographic/body measure variables (age, gender, race, PIR and BMI) and 24 biomarker 

variables. The standardized versions of the biomarkers were used in the RSF algorithm because 

this is also how they appear in our WQS model. The output of the rfsrc function is an RSF 

‘object’, a type of R data structure which stores information about features of the forest and each 

individual tree used to construct it. 

After constructing the survival forests, we computed interactions among all pairs of 

variables ((  
 
) = 406 in total) using the find.interaction function in this package. This 
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function calculates the univariate VIMP for each variable and also the association measures for 

all specified pairs of variables. In addition to the VIMP measure, the find.interaction 

function produces a p × p matrix whose diagonal elements are the normalized minimal depths for 

each variable, i.e. entry [i][i] corresponds to the normalized minimal depth of variable [i] relative 

to the root node (normalized with respect to the size of the tree). Entries [i][j] correspond to the 

normalized minimal depth of a variable [j] with respect to the index subtree of variable [i] 

(normalized with respect to the size of [i]’s index subtree). The instructions for the function 

stipulate that the correct way to read and interpret the matrix is by scanning each row (i = 1 to p) 

for small entries. Small [i][i] entries also having small [i][j] entries are a sign of interaction 

between variables [i] and [j]. The explanation for this is as follows: recall that small [i][i] entries 

imply that variable [i] is closer to the root node and thus more important. Small [i][j] entries 

indicate that variables [i] and [j] tend to occur together more frequently than would be expected 

by chance, indicating that a potential interaction may exist between them. Therefore in selecting 

small [i][i] entries also having small [i][j] entries, we are limiting our search for interacting 

variables to those with strong marginal effects. 
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3.6   RESULTS 

 The average OOB prediction error rate of the constructed random survival forest was 17.28%. 

The figure below shows the convergence of the error rate towards a stable value over the 500 

trees used to construct the forest.  

           

 

                                              Figure 3.4: Convergence of the error rate to a stable value over  

the 500 trees used to construct the Random Survival Forest. Details 

on the construction of the RSF are given in Section 3.5 

 

3.6.1   Variable Importance (VIMP) 

The plot in Figure 3.5 below shows the Standardized VIMP for each variable used in the 

RSF. As discussed earlier, the standardized VIMP was computed by dividing the VIMP for each 

variable by the maximum VIMP (0.0779 [age]). We see that age is the strongest predictor, 

followed by creatinine, globulin, BUN (Blood Urea Nitrogen), etc. That age is the strongest 

predictor is not unanticipated especially for survival outcomes. Notice that 7 of the biomarkers 

and the demographic variable race have values of zero. Some of these values are actually 
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negative. Negative VIMP is possible and occurs when ‘noising up’ a variable in a forest actually 

causes the forest’s prediction error to improve (usually only slightly). Zero and negative VIMP 

values indicate a variable is not predictive. Thus for ease of visualization, we set the negative 

VIMPs to zero in the plot in Figure 3.5. 

The dashed red line in Figure 3.5 below indicates the 5% importance threshold discussed above. 

The following biomarkers fell above this threshold: C-reactive protein, ALP, Chloride, AST 

(Aspartate Aminotransferase), A1c, Platelet count, Phosphorus, BUN, Globulin and Creatinine.  

 

 
Figure 3.5: Standardized Variable Importance measures for variables in the Random Survival Forest. The dashed 

red line indicates the 5% importance threshold used to select variables. 
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Identifying interaction effects 

As discussed earlier, the association measures for all pairs of variables in our model was 

computed. An interaction between a pair of variables is considered relatively important if their 

association measure is high as well as the univariate VIMPs of the individual variables. This rule 

requires setting thresholds to determine ‘high’ univariate VIMPs and ‘high’ association 

measures. For the univariate VIMP, we use the ‘5% rule’ discussed earlier, designating as 

important any variable whose standardized univariate VIMP exceeds 0.05. However, applying 

this rule to association measures results in too many interactions being selected which 

complicates our WQS model and pushes the limits of the optimization algorithms used to fit the 

WQS model. We therefore chose to use the top 10
th

 percentile of association measures as the 

threshold above which an interaction was deemed important. Using this combination of rules we 

were able to select the following 22 interactions: 

Table 3.2: Important Interactions (identified via VIMP) 

Creatinine × Globulin BUN × Phosphorus 

Creatinine × BUN BUN × ALP 

Creatinine × Phosphorus BUN × C-reactive protein 

Creatinine × A1c Phosphorus × Platelets 

Creatinine × Platelets Phosphorus × A1c 

Creatinine × C-reactive protein Phosphorus × C-reactive protein 

Creatinine × ALP ALP × C-reactive protein 

Creatinine × AST  

Globulin × BUN  

Globulin × Phosphorus  

Globulin × A1c  

Globulin × C-reactive protein  

Globulin × Platelets  

Globulin × ALP  

Globulin × Chloride  

 

Table 3.2 above indicates that more than two-thirds of the interactions involve creatinine and 

globulin, the two biomarkers with the highest VIMPs.  
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We included these 22 interaction effects in the extended WQS model given in equation 

(3.2). Added to the 24 univariate biomarker variables, this made 46 biomarker-related (non-

demographic variabels). We then fitted the model on the training dataset (NHANES 1999-2002 

cohort) using the Trust Region nonlinear optimization algorithm (Dennis, Gay & Welsch, 1981) 

to obtain estimates of the model parameters, with particular interest in the HSM weights. For 20 

of the 46 biomarker-related variables, the estimated HSM weights were zero. The non-zero 

weights are shown in the plot below. 

 

 

Figure 3.6: Estimated weights for extended HSM. Interactions selected using VIMP-based thresholding 

 

The bars highlighted in orange represent weights associated with interaction effects. It can 

be observed that the weights associated with interactions are the highest and, at the high end, 

decisively dominate the weights for univariate effects. Out of 22 interaction effects included in 

the model, only 11 had non-zero estimated weights. Focusing on the univariate effects, we see 

that phosphorus has the highest weight of any univariate effect, though this weight is relatively 

low compared with those of some of the interaction effects. Notice as well that nearly half (3 out 
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of 7) of the interaction effects whose weights exceed that of phosphorus involve phosphorus 

itself. 

To test the predictive accuracy of the extended HSM constructed using these estimated 

weights, we used an independent validation set (NHANES III). The extended HSM was 

computed for all individuals with complete data in the NHANES III validation set and Harrell’s 

C-index was used to measure the degree of concordance between HSM predictions and observed 

survival times. Harrell’s C for the extended HSM was compared to that of the regular HSM (with 

no interactions). The results are summarized in the table below: 

Table 3.3: Harrell’s C for original & extended HSM 

Risk score 
Harrell’s C-

index 
95% CI 

HSM  0.7 [0.690, 0.713] 
HSMextended 0.685 [0.674, 0.697] 

 

The Harrell’s C-statistic for the extended HSM is nominally lower than that of the regular HSM 

with no interactions. Thus including the interactions does not provide any significant 

improvement to the predictive accuracy of the HSM, and therefore in the interest of parsimony, 

the simpler HSM is a better option. 

 

3.6.2   Minimal Depth 

The plot below shows the ranking of variables based on minimal depth. The dashed red 

line is the statistical threshold based on the distribution of the minimal depth random variable. 

The minimal depth threshold was found to be 5.68. Recall that the smaller a variable’s minimal 

depth, the more predictive it is. Figure 3.7 below shows that age*, BMI, PIR (poverty income 

ratio), BUN*, creatinine*, globulin*, blood pressure, ALP*, platelets*, white blood cell count 

and triglycerides all fall below the importance threshold and thus can be deemed significant in 
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the current context. The asterisked variables in the preceding list are those that were also 

identified as important by the VIMP method (using the ad hoc threshold we defined). 

Figure 3.7: Plot of minimal depths for demographic and biomarker variables used in random survival forest 

 

The table below shows the univariate and joint minimal depth (just for the biomarker variables). 

 

Table 3.4: Univariate and joint normalized minimal depth for most important biomarkers 

  BUN* Creatinine Globulin BP* ALP* Platelets WBC* Triglyc 

BUN* 0.2 0.68 0.54 0.53 0.47 0.53 0.47 0.52 

Creatinine 0.56 0.2 0.46 0.47 0.39 0.47 0.37 0.44 

Globulin 0.63 0.72 0.2 0.49 0.42 0.49 0.38 0.46 

BP* 0.62 0.69 0.51 0.21 0.4 0.44 0.35 0.45 

ALP* 0.71 0.81 0.59 0.55 0.23 0.58 0.43 0.5 

Platelets 0.69 0.75 0.59 0.58 0.47 0.23 0.42 0.52 

WBC* 0.76 0.87 0.63 0.57 0.45 0.53 0.25 0.47 

Triglyc 0.72 0.81 0.63 0.58 0.47 0.57 0.41 0.26 
*BUN=Blood Urea Nitrogen, BP=Blood Pressure, ALP=Alkaline Phosphatase, WBC=White Blood Cell count 

 

The highlighted diagonal entries represent the normalized minimal depth of the corresponding 

variable. Notice the table only includes variables whose univariate minimal depth fell below the 

threshold. As mentioned earlier, we do this because we only consider interactions among 
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variables with strong marginal effects. The off-diagonal entries represent the normalized minimal 

depth of variable [j] with respect to the index subtree of variable [i]. As discussed earlier, ‘small’ 

[i][j] entries indicate a higher likelihood of potential interaction between variables [i] and [j]. To 

define the threshold for what a ‘small’ value is, we used an arbitrary cut-off that seemed 

reasonable based on observing the relative sizes of entries in the table. For each diagonal entry 

[i][i], we defined [i][j] as ‘significant’ if it fell below twice the value of [i][i]. Using this ad hoc 

threshold, we were able to select a number of variable pairs for inclusion in our set of candidate 

interactions. These are shown in Table 3.4 above as highlighted [i][j] (off-diagonal) entries. They 

are listed in the table below: 

 
Table 3.5: Important interactions (identified via minimal depth) 

Creatinine × ALP† 

Creatinine × White Blood Cells 

Globulin × White Blood Cells 

Blood pressure × ALP 

Blood pressure × White Blood Cells 

 

Platelets × White Blood Cells 

White Blood Cells × ALP 

White Blood Cells × Triglycerides 

Triglycerides × ALP 

    † Interactions also identified as important via the VIMP approach 
 

Note that out of the 9 interactions selected via minimal depth thresholding, only 1 

(Creatinine × ALP) was among the set of 22 interactions selected using the VIMP approach. 

Also, two-thirds of the selected interactions involve White Blood Cell count. While this 

particular variable does not have the strongest marginal effect, it appears to have relatively 

strong interaction effects with all but one (Blood Urea Nitrogen) of the other strong predictors.  

We included this set of candidate interactions in our extended WQS model given in equation 

(3.2) and fitted the model using the Trust Region nonlinear optimization algorithm and the 

training dataset (NHANES 1999-2002 cohort).  
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The plot below displays the relative magnitudes of the estimated weights. Only non-zero weights 

are shown. 

Figure 3.8: Estimated weights for extended HSM. Interactions selected using minimal depth thresholding 

 

The bars highlighted in orange represent weights associated with interaction effects.  Among all 

univariate and interaction effects, the one with the largest weight is the interaction White Blood 

Cells × Creatinine. Out of 9 interaction effects included in the model, only 3 had non-zero 

estimated weights. Focusing on the univariate effects, we see that Phosphorus has the highest 

weight of any univariate effect, and this weight is comparable to that of White Blood Cells × 

Creatinine. To test the predictive accuracy of the extended HSM constructed using these 

estimated weights, this version of the HSM was computed for all individuals with complete data 

in the NHANES III validation set and Harrell’s C-index was used to measure the degree of 

concordance between HSM predictions and observed survival times. Harrell’s C for the extended 

HSM was compared to that of the regular HSM (with no interactions). The results are 

summarized in the table below: 
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Table 3.6: Harrell’s C for original and extended HSM 

Risk score 
Harrell’s C-

index 
95% CI 

HSM  0.7 [0.690, 0.713] 
HSMextended 0.697 [0.686, 0.708] 

 

Just as in the case of the extended HSM created from including interactions identified through 

VIMP, we find again that the Harrell’s C-index of this extended HSM is actually (nominally) 

lower than that of the original HSM with no interactions. 

 

3.7   Discusssion 

We have developed an extended version of the HSM that accommodates interaction 

effects. To restrict our focus to just a few important interaction effects, we used random survival 

forests to identify pairs of variables that potentially interact. We used two different importance 

measures to select candidate interaction effects and each produced a different set of interactions. 

There was little overlap between both sets. Each set of interactions was (separately) used to 

produce an extended HSM. The extended WQS model was used (with the training set [NHANES 

1999-2002]) to estimate weights for the univariate and interaction effects for these extended 

HSMs.  However both had lower predictive accuracy than the original HSM (with no 

interactions) when tested on the NHANES III validation set. A possible cause of this somewhat 

counterintuitive effect is overfitting. The poor performance of the extended HSM could be 

because, while the identified interactions were ‘important’ in the training set, they were not so in 

the validation set; hence by including interactions, we may have been overfitting the HSM to the 

training set and consequently reducing its generalization accuracy for other (independent) 

datasets. To test this conjecture, we ran the random survival forest algorithm on the validation set 

and found 46 candidate interactions (using minimal depth thresholding). Only 2 of these 
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overlapped with the set of candidate interactions identified using the training set. This lends 

support to the idea that the interactions identified in the training set (and used to construct the 

extended HSM) were highly specific to that dataset and this is one probable reason for the 

underperformance of the extended HSM when applied to the validation set. 

It must be mentioned that several alternatives exist to the particular procedure we used for 

identifying interactions in this chapter. For example, rather than testing all possible interactions 

in the same model, a more guided approach such as forward selection could have been used. The 

variable importance measures used for ranking and selecting interaction effects are based on out-

of-bag prediction errors. A possible alternative would be to base the prediction errors on a 

separate test dataset that shares no overlap with the training set. This particular approach could 

potentially mitigate the overfitting we observed since the selection of important interactions 

would be based solely on data that was not used for training the algorithm. Additionally, there 

may be room for improvement in the overall accuracy of the random survival forest predictions 

we obtained. Random forest parameters such as the number of trees, the number of variables 

randomly sampled at each split, terminal node size, and choice of splitting rule could be varied 

(e.g. the number of trees could be increased) in order to find optimal settings that produce 

uniformly lower prediction errors.  

While this study failed to demonstrate any improvement in HSM prediction accuracy due 

to inclusion of interactions, it contributed a useful and simple modification to the WQS model 

that can be used in other applications of the WQS regression technique. Recall that WQS 

regression is ideal for modeling data with highly correlated variables (components) that can be 

logically grouped into an index. If interest is centered on accounting for interactions among these 

index components, then the simple extension introduced in this chapter may be used. The 
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extension can also be easily generalized to allow for other types of interactions, e.g. interactions 

between demographic covariates and index components. For example, in order to incorporate 

interactions between a set of index components {qi} and a discrete/categorical demographic 

covariate (e.g. race, gender) with K categories, the formulation given below can be used: 
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Note that the formulation given in Equation (3.6) uses a generalized linear form that 

encompasses many of the commonly used regression models, thus g(·) is the familiar link 

function. Alternatively, a survival model (parametric or semi-parametric) could be used. In 

Equation (3.6), the quantity in parentheses is the new form of the index and Ik is a ‘dummy’ 

indicator variable representing the k
th

 level of the categorical covariate. 

To include interactions between a set of components {qi} and a continuous demographic 

covariate zr we propose the following formulation: 
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In Equation (3.7), the expression in parentheses represents the extended index (extended to 

include interactions). Also, z’
r
 is the unit-scaled version of z

r
 , i.e. standardized so that it has a 

range of [0,1]. The unit-scaling of z
r
 is done so that the range of the extended index is the same 

as that of the original (without interactions).  
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Chapter 4 

Dealing with missing biomarker values in the implementation of 

tools for computing the HSM 
 

 

4.1   Introduction: Missing Values 

The HSM is constructed from 24 biomarkers. While most of these are routinely measured 

in clinical settings, the typical patient/individual is generally unlikely to have the full set of 

biomarkers. This raises the question of how to compute the HSM risk score for individuals with 

missing biomarkers. This question is particularly relevant to the feasibility of implementing a 

tool for computing the HSM. Such a tool could conceivably take the form of a standalone 

software/app for use in clinical settings or a publicly-accessible web interface for individuals to 

use, similar to those available for some of the popular risk scores (e.g. QRISK, Framingham Risk 

Score, MELD, Reynolds Risk Score). Below is a preliminary schematic of a possible interface: 

 

              
Figure 4.1: Schematic depicting a possible web-based or standalone application user-interface for an 

HSM Risk Calculator 
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 In the form of a clinical software application, it can be utilized by healthcare providers to 

compute the HSM for individual patients using information from their medical records. In the 

form of a web interface, it could be used by the general public in the same way that other popular 

risk scores are currently used. In either application, the output of the program will be the 

computed HSM and also 1- and 5-year life expectancy estimates adjusted for the provided age 

and gender.  

 Many of the risk scores developed for a variety of conditions have been made available 

online for members of the general public interested in computing their scores. None of the 

interfaces we have explored allow or accommodate missing values of risk score components. For 

example, the Framingham Risk Score web-based calculator hosted by the National Institutes of 

Health [URL: http://cvdrisk.nhlbi.nih.gov/] will not compute a score for an individual unless 

they enter all required components (i.e. age, gender, total cholesterol, HDL cholesterol, smoking 

status and blood pressure).  

Therefore a major goal of this project is to explore methods suitable for handling the 

problem of missing values during routine use of an HSM calculator interface. Ideally, an 

individual or healthcare provider interested in using the interface to compute HSM but who is 

unable to fill in all the required components should still (in most cases) be able to obtain an HSM 

score. 

  

 

 

http://cvdrisk.nhlbi.nih.gov/
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4.2   Methods 

 To equip the interface with the capability to handle missing values in real-time, we will 

explore different imputation techniques. The problem of carrying out real-time imputations for 

individual cases (as opposed to a full dataset) is a unique one that has not been extensively 

studied (Janssen et al., 2009; Kappen et al., 2012). Imputation is typically used to replace 

missing values in datasets with multiple observations, rather than for replacing missing values in 

an individual observation/case; therefore some traditional techniques for dealing with missing 

values (e.g. multiple imputation (Rubin, 1987), EM algorithm (Dempster, Laird & Rubin, 1977)) 

would be unsuitable for single-case imputation. In addition, a software application with the 

capability to compute the HSM in the presence of missing values would require an imputation 

technique that is fast and simple enough to be carried out on-the-fly. In other words, such an 

imputation technique cannot be computationally intensive and ideally should be non-iterative. 

The following are a couple of examples of classes of imputation techniques that meet these 

criteria: measure-of-center-based imputation techniques (e.g. mean imputation, median 

imputation) and matching-based imputation techniques (e.g. k-nearest neighbors imputation 

(Hastie et al., 1999; Troyanskaya et al., 2001)).  

In this chapter, we will use simulated missing data to assess the feasibility and compare 

the performance of three particular imputation techniques: median imputation, subgroup median 

imputation, and k-nearest neighbors imputation. As implemented in this study, all three 

techniques use a ‘donor’ set, i.e. a relatively large external dataset with complete biomarker data 

(i.e. all 24 biomarkers). We will henceforth refer to this set as the donor set. The donor set we 

used in this study is the NHANES 2003-2008 biomarker data with a sample size of n=4986.  

What follows are definitions and descriptions of the imputation techniques we tested: 
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Median imputation: As discussed in earlier chapters, the standardized measurements for each 

biomarker range from 0-9. For most biomarkers, the distribution of the standardized values is 

highly skewed; therefore an appropriate measure of center would be the median. This imputation 

technique involves simply replacing all missing values of a particular biomarker variable with 

the computed median of observed values of that biomarker in the donor set. Thus for an 

individual i missing the value of a particular biomarker v, we use the median value of v in the 

donor set to replace vi. 

Subgroup median imputation: This method is a more refined version of median imputation. 

For an individual i missing the value of a particular biomarker v, rather than replacing this 

missing value with the overall median value of v in the donor set, the median value within the 

individual’s demographic subgroup is used instead. The demographic subgroup can be defined in 

different ways; in our case we use age group and gender. Six demographic subgroups are defined 

from a combination of gender and 3 age groups (18-39, 40-64, ≥65).  

k-nearest neighbors imputation: This is a more advanced donor-based imputation technique 

which has been used in a variety of applications and has been shown to demonstrate performance 

superior or comparable to other imputation techniques (see Troyanskaya et al. (2001) and 

Schwender (2012)). Details on the adaptation of this technique for our specific purposes are 

described below:  

As discussed earlier, the donor set consists of a large number of individuals with a complete 

set of the 24 biomarkers required to compute the HSM. Define set P as the full set of 24 

biomarkers. Denote an individual using the HSM calculator interface as i. Let K be the set of 

biomarkers that individual i is able to provide (K   P), e.g. if this subject only provides values 
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for Albumin, Bilirubin, Bicarbonate and Calcium then these 4 biomarkers would constitute set K. 

The set of biomarkers that the individual is missing values on is therefore given by K 
c
. The basic 

idea behind this method is that individual i’s values of biomarkers constituting set K can be 

compared to the corresponding values for each case/individual in the donor set. Donor set cases 

which match closely on these biomarkers are considered ‘nearest neighbors’ to i in the variable 

subspace defined by K.  Once these nearest neighbors have been identified, their values of the 

biomarkers individual i is missing (i.e. set K 
c
) can then be used to impute for i.  

The next issue is how to define nearest neighbors, i.e. how to quantify the ‘nearness’ of 

individual i’s observed values to the corresponding values in the donor set. This is done using a 

suitable distance metric. For every case j in the donor set, we define the distance to subject i as: 
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In Equation 4.1, K as defined earlier is the set of observed (non-missing) biomarkers for 

subject i. Set H in Equation 4.1 above denotes the set of continuous demographic variables (e.g. 

age) and set G denotes the set of categorical demographic variables (e.g. gender, race). The 

variables x, z and y thus represent values of the biomarker variables, continuous demographic 

variables, and categorical demographic variables, respectively. The biomarker variables (as well 

as the continuous demographic variables) have different scales/units of measurement, so in order 
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to guarantee that differences in each variable contribute equally to the overall distance, we 

normalize/standardize the difference for each variable by dividing by the variable’s observed 

range in the donor set. The terms rk and rh therefore represent the observed ranges for each 

biomarker x
(k)

 and continuous demographic variable z
(h)

 in the donor set. These values are used to 

standardize/normalize the differences so that the variables with larger-valued units of 

measurement do not dominate the computed distance metric. The reason that demographic 

variables are used in computing the distance metric d(i, j) will become clear in the next 

paragraph. 

Having defined the components of the expression in Equation (4.1), it is straightforward to 

see that the total distance d(i, j) between a case j in the donor set and an individual i is defined as 

the sum of the range-standardized Euclidean distance for the observed biomarker variables, the 

range-standardized Euclidean distance for observed continuous demographics variables and the 

‘matching distance’ for categorical demographic variables. The matching distance is a simple 

distance measure that is implemented as an indicator function which evaluates to 0 if the values 

of two categorical variables match and 1 otherwise. For example, a match in gender between an 

individual i and a donor set case j would evaluate to 0 under this definition, and a mismatch 

would evaluate to 1. The choice of which values (0 or 1) are assigned to matches and mismatches 

can be rationalized as follows: a mismatch (e.g. in gender) indicates dissimilarity between 

individual i and case j (in the donor set) and is therefore penalized by assigning a higher value of 

1 which increases the magnitude of the distance metric d(i, j). On the other hand a match, which 

evaluates to a value of 0, produces no increase in the distance metric. The levels of several 

biomarkers of health are known to vary by age group and gender and it is reasonable to assume 

that individuals in the same gender and/or age group would be similar on at least some 
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biomarkers. Therefore matching on age and gender (and also BMI) could plausibly improve 

matching. And since these demographic variables are straightforward for users of the HSM 

calculator interface to provide, they will rarely be missing and the information contained in these 

variables can be leveraged to increase matching accuracy.  

The distance metric d(i, j) is computed for all cases j in the donor set and the cases with the 

k smallest distances are selected as the k nearest neighbors to individual i (in the subspace 

defined by biomarkers in K). Denote the set of these nearest neighbors by C
KNN

. Then the 

biomarkers missing for individual i can be imputed by taking a weighted average of the values of 

the corresponding biomarkers of the nearest neighbors: 

1

1
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x
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In the above expression,  ̂   is our k-nearest neighbors-based estimate of the missing 

biomarkers for individual i and     are the (known) values of the corresponding biomarkers for 

the nearest neighbors selected from the donor set. In this weighted average, the weights are the 

inverse of ( , )d i j , meaning that more similar donor set cases contribute more to the weighted 

average. The number of nearest neighbors (k) is determined empirically by testing the 

performance of a range of k values. 

 

4.3   Comparison of imputation techniques via simulations: 

Simulations were used to compare the imputation techniques described above. Starting 

with a complete dataset with no missing biomarker values (a complete subset [n=10000] of the 

NHANES III validation dataset), missingness was randomly induced to create an ‘artificial’ 
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dataset with missing values. Each imputation technique was then used to ‘recover’ the missing 

values in this artificial dataset and different measures were used to judge the quality of the 

imputations produced by each technique. Two methods were used for randomly inducing 

missingness in the complete dataset.  

The first method allows for the number of missing values per individual to cover an 

exhaustive range (i.e. as few as 1 missing value to as many as p-1 [p=total # of biomarkers]). It 

also gives each biomarker an equal probability of being missing. This method was implemented 

using the following procedure: For each individual i in the dataset, the number of missing 

biomarkers k
i was randomly selected from a discrete uniform distribution with range [1, p-1]. 

Next, k
i
 distinct biomarkers were randomly selected to be missing. Therefore, each individual 

could have as few as 1 missing biomarker and as many as p-1, with each biomarker having an 

equal chance of being among the missing set for each individual. Using this method, the 

expected percentage of missing data would be 50%. This method is useful for testing each 

imputation technique for any number of missing values; however, the assumptions underlying it 

may not be realistic. We would expect that in practical situations certain biomarkers would be 

more likely to be missing than others, given that some (e.g. blood pressure) are measured far 

more often than others.  

The second method addresses this concern by basing the missingness probability of each 

biomarker on their observed frequency of measurement in a database of patient medical records 

obtained from the Virginia Commonwealth University Medical Center. Starting with the 

complete dataset, missingness is randomly induced using the following procedure: for an 

individual i and biomarker j, the probability that j is missing is given by its overall missingness 

frequency in the patient dataset.  
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Using the 2 methods described above (henceforth referred to as the ‘equal-probability’ and 

the ‘data-guided’ approaches), missing values were randomly introduced into the complete 

dataset. Then each imputation technique was used to impute the artificially induced missing 

values. So each imputation technique produced one imputed dataset. The accuracy of each 

imputation technique was assessed in 2 ways: 

I. Computing the Root Mean Square Deviation (RMSD), a measure of the total deviation of the 

imputed values from their corresponding true values. This quantity is computed as follows:  

 
2
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t t
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imp

q q
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N
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
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In the expression above,   
     and    

   
 are (respectively) the true and imputed standardized 

biomarker measurements for the t
th

 imputed value and Nimp is the total number of imputed values 

in the dataset. As the definition implies, more accurate imputation techniques will have lower 

RMSDs than less accurate ones and the closer to zero the RMSD is, the better. 

 

II. Secondly, the HSMs calculated for individuals in each imputed dataset were tested for 

accuracy in predicting mortality. Harrell’s C-index was used to quantify the concordance 

between HSMs predicted using imputed data and observed survival time.    

 

The entire procedure outlined above was repeated 100 times, i.e. we ran 100 independent 

rounds of simulating missing values in the full dataset (using the 2 methods described above), 

imputing them using each technique, then computing RMSD and Harrell’s C. We did this to 

reduce bias in the estimates of RMSD and predictive measures obtained from the artificial 
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datasets. Thus to compare the RMSDs and the Harrell’s C-indices among the different 

techniques, we compare the distributions of their values across the 100 simulations using basic 

hypothesis tests. 

 

4.4   Results 

As mentioned earlier, the base (complete) set in which missing values were simulated 

was the NHANES III validation dataset with 10000 individuals each with a complete set of the 

24 biomarkers we use in this study. The missingness patterns generated by the two approaches 

we used for randomly inducing missing values are discussed below. 

 

Method 1: Equal-probability approach 

Figure 4.2 below shows the distribution of the number of missing biomarkers across 

individuals (averaged across the 100 simulations). It confirms that each individual in the dataset 

could have anywhere from 1 to 23 (of a total of 24) biomarkers missing, and each number is 

equally possible. Also, on average, each biomarker was missing for close to half the individuals 

in the dataset.  

 

Method 2: Data-guided approach 

Figure 4.3 below shows the distribution of the number of missing biomarkers across 

individuals (averaged across 100 replications). We see that using the observed frequencies as a 

guide in randomly introducing missing values produces a dataset with roughly 80% of data 

missing on average. It can also be observed from the figure that the most common number of 

missing biomarker values for individuals is 20 (roughly 80% of the 24 total biomarkers).  
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Figure 4.2: Distribution of the number of missing values for individuals in dataset (averaged across 100 simulated 

datasets) 

 

 

 

        

Figure 4.3: Distribution of the number of missing values for individuals in dataset (averaged across 100 simulated 

datasets) 
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Performance of Imputation Techniques: As mentioned earlier, the following techniques were 

used for imputing the missing values simulated in the base set: k-nearest neighbors, median 

imputation and subgroup median imputation. Studies have shown that the performance of the k-

nearest neighbors technique varies depending on the choice of number of neighbors (k). Using 

the artificial dataset we tested the performance of KNN for a range of values of k: 5, 15, 25, 30, 

35, 50 and 65. The performance did not vary significantly over this range but k=25 had 

nominally higher performance than the other choices of k, therefore this value was chosen. The 

results are summarized in the figure below: 

 
Figure 4.4: Plot depicting impact of parameter k (number of nearest 

 neighbors) on predictive performance (as quantified by AUC) 

 

As mentioned earlier, the entire process of simulating missing values in the complete 

dataset (using the 2 approaches discussed above), imputing the missing values, and computing 

performance measures for each imputation technique was repeated 100 times in order to obtain 

unbiased estimates of the performance measures. Therefore, in the remainder of this chapter, the 
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results shown for the RMSD and Harrell’s C are averaged across the 100 independent rounds of 

simulations.  

 

The RMSD is an aggregate measure of the overall deviation of imputed values (using 

each imputation technique) from the known true values in the dataset. A value of 0 indicates an 

imputation technique with 100% recovery accuracy. To determine whether the RMSD estimates 

for each imputation technique differ significantly from 0, we used a t-test to compare the 

distribution of computed RMSD values over the 100 independent rounds to the null value of 0. 

The figures below show plots of the distributions of RMSD values across the 100 independent 

rounds for each imputation technique and each approach to simulating missingness. 
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Figure 4.5a: Distribution of RMSD values across 100 independent simulated datasets. All simulated datasets are 

generated starting from the same full dataset and randomly inducing missingness using equal-probability’ method. 

RMSD values closer to zero indicate greater imputation accuracy. 
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Figure 4.5b: Distributions of RMSD values across 100 independent simulated datasets. All simulated datasets are 

generated starting from the same full dataset and randomly inducing missingness using ‘data-guided’ approach. 

RMSD values closer to zero indicate greater imputation accuracy. 
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The figures below show plots of the distributions of Harrell’s C values across the 100 

independent rounds for each imputation technique and each approach for simulating missingness. 

 

 

Figure 4.6a: Distributions of Harrell’s C measures across 100 independent simulated datasets. All simulated 

datasets are generated starting from the same full dataset and randomly inducing missingness using ‘equal-

probability’ approach. Harrell’s C values closer to 1 indicate greater predictive accuracy. 
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Figure 4.6b: Distributions of Harrell’s C measures across 100 independent simulated datasets. All simulated 

datasets are generated starting from the same full dataset and randomly inducing missingness using ‘data-guided’ 

approach. Harrell’s C values closer to 1 indicate greater predictive accuracy. 

 

For each imputation technique, we compared the Harrell’s C of the HSM computed from 

imputed data to that of the HSM computed from the full (complete) data. We used a 1-sample t-

test to compare the distribution of imputation-based C values (over 100 rounds) to the null value 

(Harrell’s C for the HSM computed from the full/complete data). This allowed us to test for a 

significant difference between the Harrell’s C measures of HSMs computed from full/complete 
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data and those computed from imputed data. This process was repeated for each method used to 

simulate missingness (i.e. ‘equal probability’ and ‘data-guided’).  

The results summarized in the table below show (for each missingness generation 

method) the RMSDs and Harrell’s C measures (averaged over the 100 independent rounds) for 

the different imputation techniques we used. The standard deviations over the 100 rounds are 

also given in parentheses. The asterisked values indicate significant deviation from the null 

(full/complete data case) based on the statistical tests described in the previous paragraph. 

 

Table 4.1: RMSD and Harrell’s C measures (averaged across 100 simulations) for each imputation 

technique. 

  Equal Prob. Missingness 
 

Data-guided missingness 

  RMSD Harrell's C   RMSD Harrell's C 

Original 0          0.703 
 

0 0.703 

KNN (k=25) 1.426(.008)* 0.673(.004)* 
 

1.430(.004)* 0.680(.004)* 

Median 1.455(.007)* 0.631(.005)* 
 

1.456(.003)* 0.602(.005)* 

Subgroup Median 1.453(.007)* 0.652(.005)* 
 

1.455(.003)* 0.668(.005)* 
1
Quantities in parentheses represent standard deviation over 100 rounds 

*Asterisks for RMSD values indicate statistically significant deviation from 0. Asterisks for Harrell’s C indicate that 

the estimate of predictive accuracy was (statistically) significantly different (at the 5% level) from that of the 

original HSM computed with the true values. Statistical significance was assessed by t-tests comparing averaged 

estimates to null values. 

 

As the results indicate, the RMSDs for all imputation techniques differ significantly from 

0. And in all cases, the predictive accuracy (as measured by Harrell’s C) for HSMs computed 

from imputed data tends to be significantly worse than that of the HSM computed from 

full/complete data.  

We also compared the imputation techniques to one another based on performance. 

Specifically, we carried out pairwise comparisons of imputation techniques on RMSD and the 

Harrell’s C measure. To compare RMSD measures for a pair of imputation techniques (denoted 
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below by a and b), we computed the following statistic for each of the 100 simulated datasets 

(each denoted below by h): 

2 2

, ,a h b hRMSD RMSD  

We then use a 1-sample t-test to compare the distribution of this statistic to the null value of 0. 

We use a similar procedure for the Harrell’s C measure (using the statistic Ca,h  Cb,h).  

The results indicate that when we compare the imputation techniques to one another, the 

k-nearest neighbors technique emerges as significantly better on both performance measures. In 

the artificial datasets produced using the ‘equal-probability’ and ‘data-guided’ approaches to 

inducing missingness, the k-nearest neighbors technique demonstrates superior performance on 

all three performance measures. 

 

Difference RMSD Harrell’s  C 

Equal Probability Missingness 

[kNN] – [Subgroup Median] -0.0796 (<.0001) 0.0203 (<.0001) 

[kNN] – [Median] -0.0846 (<.0001) 0.0415 (<.0001) 

[Subgroup Median] – [Median] -0.00499 (<.0001) 0.0212 (<.0001) 

Data-guided Missingness 

[kNN] – [Subgroup Median] -0.0717 (<.0001) 0.0121 (<.0001) 

[kNN] – [Median] -0.0768 (<.0001) 0.0783 (<.0001) 

[Subgroup Median] – [Median] -0.0051 (<.0001) 0.0662 (<.0001) 
 

Table 4.2: Mean squared difference (for RMSD) and mean difference (for Harrell’s C) between pairs of imputation 

techniques across simulated datasets. P-values of differences given in parentheses 

 

Our results agree with those of other studies that have compared k-nearest neighbor 

imputation to other techniques and found its performance either comparable or superior 

(Troyanskaya et al., 2001; Chipman, Hastie & Tibshirani, 2003).   
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4.5   Discussion 

Note that both methods we used to randomly introduce missing values into the complete 

dataset assumed that missingness in each biomarker occurs completely at random (MCAR) 

(Rubin, 1976), i.e. the probability of missing values for each biomarker is independent of both 

observed and unobserved variables. This is a strong assumption made to simplify the comparison 

of the imputation techniques. An arguably more common missing data mechanism is referred to 

as Missingness at Random (MAR), the condition whereby the probability of missing values 

depends only on observed data. Accounting for the different missingness mechanisms is 

important in studies assessing or comparing imputation techniques. Future work will focus on 

repeating the comparisons carried out in this chapter under the assumption of Missingness at 

Random. 

In summary, we explored the use of 3 imputation techniques and the results indicate that 

regardless of the technique used, there is a significant reduction in general and predictive 

accuracy. However, comparing the imputation techniques to one another, we found the k-nearest 

neighbors technique showed significantly better performance than the other two (in both artificial 

datasets), and the subgroup median imputation technique demonstrated better performance than 

median imputation. 

In comparing measures of accuracy for imputation techniques (RMSD, Harrell’s C), 

statistical significance was demonstrated using t-tests comparing the distribution of these 

measures across 100 simulated datasets. These measures showed very little variation across the 

100 simulations (see standard deviation measures in Table 4.1). This is what accounts for the 

high statistical significance of t-tests for all comparisons we carried out in this study.  
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 All 3 imputation techniques could be described as ‘donor-based’, replacing the missing 

values of individuals with corresponding values from a large, external donor set (NHANES 

2003-2008, n=4986). However each technique differs in the set of donor individuals whose 

values are used for imputing. The median-imputation technique simply replaces each missing 

biomarker with the median value of that biomarker across all subjects in the donor set. But the 

subgroup median uses just a subset of the subjects in the donor set, specifically the subset whose 

age group and gender match those of the individual for which imputation is being carried out. 

This produces better results because this subset is expected to be more similar to the individual 

for which the imputation is being carried out. An even more targeted match is obtained using the 

k-nearest neighbors approach, which imputes using the biomarker values of a smaller but more 

similar subset of the donor set. The relative performance of these 3 imputation techniques 

illustrates the importance of matching in donor-based techniques. 

The key component of the k-nearest neighbors technique is the distance function which 

quantifies the degree of separation among ‘neighbors’. The distance function used in this study 

(given in Equation 4.1) is an ad hoc formulation designed for our specific purposes. It is a 

quadratic-form distance that attempts to produce scale-invariance in the computed distances for 

biomarkers and continuous demographic variables. Other quadratic-forms (e.g. Mahalanobis 

distance) exist which can produce scale-invariant, unit-less distances; future work will focus on 

exploring these alternative formulations. 
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4.5.1   Computational Details 

The aim in this chapter was to evaluate computationally fast and relatively accurate 

imputation methods that could be used in a potential software application (web-based or 

otherwise) for computing the HSM in the presence of missing values. We found that the k-

nearest neighbors imputation technique produced the best performance in terms of accuracy. 

This algorithm involves a nearest-neighbor search which could be computationally intensive and 

slow if implemented in a naïve fashion, e.g. by looping one by one through all observations/cases 

in the donor set and computing the distance metric for each. In our studies, we used the more 

computationally efficient approach of vectorization. We reduced the nearest-neighbor search to a 

series of simple matrix operations. These operations will now be presented in formal notation but 

before doing so we will first reproduce Equation (4.1) below for reference purposes: 
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Below we show how the distance metric d(i, j) is efficiently and rapidly computed for all cases j 

in the donor set by using matrix operations. For individual i with a set of p observed biomarkers, 

denote the vector of values for these biomarkers as xi and let Xj be the matrix of corresponding 

biomarker values in the donor set. If the total number of cases in the donor set is N, then 

Component 1 in Equation (4.1) can be computed for all donor set cases by executing the 

following matrix operations: 
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Similarly, the vector forms of Components 2 and 3 (denoted by column vectors B and C in the 

derivation below) in Equation (4.1) can be computed as follows:  

 

1

( 1)

( 1)

( 1) ( 1)( 1)

1
(1 )( ) ( )( )

1 1
( 1)

( )

(1 ) ( )

N

v

w
N wN

i j zN
vN v v vN v

v
N

N v

i jN
w N w

C J

B J z Z R

B B B J

J y Y





 

 

 

 

  
   
  

  
    

  

   

 

  I

 

number of continuous demographic variables

= row vector representing continuous demographic variables for individual 

= matrix of continuous demographic variables for subjects in the donor set

di

i

j

z

v

z i

Z

R



 agonal matrix whose elements are the observed ranges for continuous demographic variables

number of categorical demographic variables

row vector representing categorical demographic variables for ii

w

y



 ndividual 

matrix of categorical demographic variables for subjects in donor set

( ) = vector-based indicator function that operates in elementwise fashion

j

i

Y 

I

 



87 
 

Keeping in mind that the number of cases in the donor set is N, the above computations 

can be used to obtain the (N × 1) vector that represents the distances d(i, j) between individual i 

and every case j (where j = 1….N) in the donor set:  

 
(1 2)

( 1) ( 1) ( 1)( 1)
Euc

N N NN

A B C
  

  d  

In the above equation, the operation  
 1 2

 is the Hadamard square root (Reams, 1999) 

which is essentially the element-wise square root. Once this vector dEuc has been obtained for the 

entire donor set, it is sorted in ascending order and the donor cases corresponding to the first k 

elements in the sorted vector are the nearest neighbors. 
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Chapter 5 

Ensemble Methods for improving predictive accuracy of the HSM 

 

5.1   Introduction 

In Chapter 2, we demonstrated that the HSM successfully predicts mortality and other 

outcomes. In particular, the HSM’s predictive power for mortality has been assessed using two 

measures of prognostic accuracy: the Area under the ROC curve (AUC) statistic and Harrell’s C-

statistic.  

To get a sense of how the HSM’s predictive power compares to that of similar risk scores 

(i.e. risk scores for predicting all-cause mortality in the general population), we assessed the 

predictive accuracy of the Intermountain Risk Score (IMRS) (Horne et al., 2009) for individuals 

in the same NHANES III validation dataset used to test the HSM (see Chapter 2). The IMRS has 

been discussed in Chapter 1; like the HSM, it was developed as a general-purpose risk score to 

predict mortality but it uses a limited range of biomarkers and doesn’t cover as many facets of 

physiological health as the HSM does. Because the IMRS and HSM predict the same endpoint, 

we use the IMRS as a benchmark to which the HSM’s predictive accuracy is compared. Table 

5.1 summarizes the 2 measures of predictive accuracy for the HSM and the IMRS: 

Table 5.1: Predictive Accuracy of HSM compared  

with that of the Intermountain Risk Score (IMRS) 

Measure HSM IMRS 
HSM  

(with Age) 
 

Harrell's C 0.7 0.81 0.86  

AUC
5-year

 0.74 0.83 0.87  
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Focusing on the second and third columns of Table 5.1 we see that, compared to the HSM, 

the IMRS has a noticeably higher predictive accuracy (as quantified by Harrell’s C and AUC). 

The superior predictive performance of the IMRS is likely due to the explicit inclusion of age as 

part of the IMRS risk model. Age is, for obvious reasons, an exceedingly strong predictor of 

mortality and constructing a risk score that explicitly uses this variable generally produces 

enhanced predictive accuracy. The HSM on the other hand is designed to be a risk score that 

could also function as a holistic measure of physiological health status and which is comprised of 

just measurements of health biomarkers. It does not include age or any other demographic 

variables but, rather, adjusts for these in its risk model. This explains the discrepancy between 

the predictive accuracies of the two scores. In fact, if we explicitly include age in the HSM (as 

was done for the IMRS), the resulting HSM exhibits a stronger predictive accuracy than the 

IMRS. The Harrell’s C and AUC for this version of the HSM is shown in Table 5.1 under the 

heading ‘HSM (with age)’. The expressions below show how this version of the HSM was 

constructed. 
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i

HSM age w x     

However we will continue to use the original version of the HSM (without age), therefore 

the goal of the study described in this chapter is to explore various techniques to improve this 

HSM’s predictive accuracy (as quantified by the AUC and Harrell’s C). We will borrow methods 

from statistical/machine learning that have demonstrated success in improving 

prediction/generalization accuracy in a variety of supervised learning algorithms.  

HSM (with age) 



90 
 

5.1.1   HSM as a predictor 

Following Breiman (1996) and Bühlmann & Yu (2002) we will present a formal definition 

of a predictor. Let   be a training or learning set given by {(Yi, xi), i = 1….N}. Here, xi is a p-

dimensional vector of explanatory variables and Yi is a real-valued response which could be 

binary, continuous, ordinal, etc. A model (e.g. logistic regression) or learning algorithm (e.g. 

random forest) can use this learning set data to construct a predictor H(x) which predicts the 

unknown outcome/response for a new observation with explanatory variables xnew. For example, 

a classification tree constructed from training/learning data can be thought of as a predictor 

H
CT

(x) that, for a new observation xnew, returns a binary value representing the predicted 

outcome for that observation. The particular way that the information from the learning set   is 

used to construct the predictor for the targeted outcome/response is unique to each 

model/learning algorithm. Some may use a parametric, model-based approach (e.g. linear 

regression) and others use non-parametric approaches (e.g. random forests, neural networks). At 

this point, it should be noted that the term ‘predictor’ as used here (and in the rest of this chapter) 

is not to be confused with ‘predictor variable’, an alternative term for ‘explanatory variable’, 

‘independent variable’ or ‘regressor’. 

To develop the HSM, the model/learning algorithm we used was the Weighted Quantile 

Sum (WQS) technique and the learning set   consisting of data {(T
k
, δ

k
, x

k
, z

k
), k = 1,….N}, 

where T
k
, δ

k
, x

k
, and z

k
 represent the observed time, censorship indicator, biomarker variables, 

and demographic variables for an individual k in the learning set. For survival outcomes, the 

WQS may be nested within the framework of an Accelerated Failure Time model; for this 

example we use a Weibull AFT: 
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1

1

(5.1)log
p

i i

i

T w x  


      z  

 
1

where 0,1 , 1
p

i i

i

w w


   

The {w
i
} in Equation 5.1 are weight parameters estimated by a nonlinear optimization 

algorithm. The HSM is the weighted sum computed using the estimates of these weights: 

1

ˆ ,
p

i i

i

HSM w x


  

This construct produces a ‘score’ that is predictive of mortality. Therefore the HSM can be 

thought of as a predictor H(x) that takes an input x (a set of biomarker measurements) and 

produces a predictive score which is the weighted sum of the standardized biomarker 

measurements. Note that since the HSM does not directly predict survival time (the 

response/outcome in Equation 5.1), it does not adhere strictly to the definition of a predictor we 

outlined earlier in this section. However the predictive score that the HSM produces is directly 

linked with survival time (i.e. higher scores imply shorter survival times) so it will be considered 

here, in a loose sense, as a predictor. As discussed in Chapter 2, the HSM score is used to 

quantify life expectancy and to serve as a holistic measure of physiological health, it is not meant 

to be a direct estimate of survival time.  

In Carrico (2013), the WQS technique on which the HSM is based was characterized and 

applied to the problem of variable selection in environmental chemical mixtures. The author 

introduced a bootstrapping step in the construction of the WQS as a means to reduce the variance 

of the estimated weights. We adopted this technique in the construction of the HSM and results 

in earlier chapters are based on it. We take a large number (B) of bootstrap samples from the 

learning set   and for each sample b, we fit the model defined above to obtain a set of weight 
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estimates   ̂ ( )    
 

 for that particular sample (p here is the total number of biomarkers). These 

weights can be used to construct a predictor H
b
(x) that is specific to the sample b: 

( )

1

5.1ˆ( ) ( )
p

b i b i

i

aH w x


    x  

The final step involves the construction of an ‘aggregate’ HSM using the weights from all 

the bootstrap samples as shown below: 

( )

1 1

5.1
1

ˆ( ) , where ( )
p B

agg i i i i b

i b

bH w x w w
B 

      x  

Comparing Equations (5.1a) and (5.1b), we can see that the aggregate predictor H
agg

(x) is 

just the average of all the individual predictors     
( )     

  obtained from the B bootstrap 

samples: 

1

1
( ) ( )

B

agg b

b

H H
B 

 x x  

Therefore the process we use for constructing the final HSM involves aggregating a large 

number of bootstrap-generated predictors to produce an aggregate predictor H
agg

(x); in this 

particular case the aggregation method is the simple average. This process is similar in a number 

of ways to the procedure used to construct random forests (Breiman, 2001). A large number of 

‘randomized’ classification trees are grown from bootstrap samples and combined to form an 

aggregated predictor, the random forest. This process is termed bootstrap aggregation (or 

“bagging”) and was introduced in Breiman (2001) for improving prediction accuracy of decision 

trees. The ability of bagging to improve predictive accuracy has also been demonstrated for other 

learning algorithms. The key to its effectiveness is that averaging a group of predictors produces 

an aggregate predictor with variance less than or equal to that of any of the individual predictors. 
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The effect on prediction error can be seen by decomposing the mean-squared prediction error 

(MSPE) into bias and variance components and noticing that averaging preserves the bias. Thus 

this variance-reducing procedure gives an aggregate predictor with usually lower MSPE than any 

of the individual predictors (Bühlmann, 2003). The degree of reduction in MSPE is affected by a 

number of factors, key among which is the stability of the algorithm/model used to construct the 

predictor (Breiman, 1996). In the next section we define and briefly discuss stability. 

 

5.1.2   Stability in Learning Algorithms 

A stable predictor is defined heuristically as one whose predictions do not change 

significantly when the learning set   is slightly perturbed (Breiman, 1996). Perturbation in this 

context refers to changing the dataset in any number of ways, e.g. deleting/adding records. 

Studies (e.g. Breiman (1994)) have shown that several commonly-used learning algorithms 

(including subset selection in linear regression) are unstable to some degree or other. One major 

influence on the effectiveness of bagging is the instability of the learning algorithm; more 

unstable algorithms will exhibit greater improvement in prediction accuracy.  

We now examine the stability of the learning procedure we use to construct individual HSM 

predictors by studying the variation in the weights across bootstrap samples. Bootstrap sampling 

can be seen as a form of learning set ‘perturbation’ because each bootstrap sample will, in almost 

all cases, select only a subset of the original dataset and include replicates. Below is a plot of the 

variation in HSM weights across 1000 bootstrap samples: 
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Figure 5.1: Boxplot showing the distribution of biomarker weight estimates across 1000 bootstrap samples. 

 

The moderate variation in weight estimates across bootstrap samples indicates the learning 

model used to produce the weights is somewhat unstable. This makes it a good candidate for 

bagging and justifies our use of this method.  

 

5.1.3   Ensemble Learning 

While bagging is a powerful technique for model/predictor aggregation, several other 

aggregation techniques exist, many of which in fact predate the introduction of bagging. The idea 

of combining models or predictors has been explored in various contexts and statistical 

applications (Efron & Morris, 1973; Rao & Subrahmaniam, 1973; Berger & Bock, 1976; Green 

& Strawderman, 1991). In the field of machine learning, aggregation is applied primarily to 

learning algorithms to improve prediction accuracy and this concept is referred to as ensemble 
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learning. The schematic depicted in Figure 5.2 below illustrates a common type of ensemble 

learning procedure:  

            

 

Figure 5.2: Schematic illustrating a common procedure for Ensemble Learning. The bootstrapping step could be 

replaced either by a different resampling technique (e.g. jackknife) or by random partitioning of the learning set into 

disjoint subsets. 
 

The procedure begins with generating multiple datasets from the learning/training set. This could 

be done by resampling (e.g. bootstrapping) or randomly partitioning the learning/training data 

into a number of disjoint subsets. On each of these generated datasets, the model or learning 

algorithm is run to construct a predictor H(x) which is capable of producing a prediction for any 

new observation. In Fig. 5.2 the predictors obtained from the generated datasets are labeled H1 to 

HB, where B is the total number of datasets generated from the original learning set. Finally, 

Learning Set Data 

Bootstrap 
Sample 1 

Bootstrap 
Sample B 

Predictor 1 
(H1) 

Predictor B 
(HB) 

Combination Rule 

Aggregate 
Predictor 

Bootstrapping 

Model/Learning 
Algorithm 

e.g. weighted sum 
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these predictors are combined using a combination rule (e.g. averaging, weighted sum, 

generalized mean) to form an aggregate predictor. 

 

There are a wide variety of ensemble learning procedures but all of them share some common 

elements (Rokach, 2010) which we list and briefly define below: 

Learning set: This is a requisite component of any learning procedure, a dataset (henceforth 

denoted by  ) containing explanatory variables and the outcome/response that we are interested 

in constructing a predictor for. 

Learning algorithm: This is the algorithm that produces predictions. It uses data from   to 

‘learn’ the relationship(s) between the explanatory variables and the outcome/response 

variable(s). This model is then used to predict the outcome/response for future cases using just 

the values of their explanatory variables. For example, in random forests, the learning algorithm 

is the decision tree algorithm (Breiman et al., 1984; Quinlan, 1986), an algorithm that recursively 

partitions the learning set into smaller and smaller subsets of increasing homogeneity. 

Diversity generation: This is a process that allows the model/learning algorithm to thoroughly 

explore the input space of the learning set. Different realizations of the data are generated via a 

variety of techniques. The input space of a typical learning set will have 2 dimensions (i.e. n × 

p): the observations/cases and the variables. Either (or both) of the dimensions can serve as 

targets for diversity generation: 

Observation Sampling: This involves taking random realizations of the learning set 

observations. Bootstrapping of the learning set is one form of diversity generation which focuses 

on resampling of observations/cases in the learning set. This produces a new dataset that is 

distinct from the original one even though all the unique data in the new dataset comes from the 
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original. An alternative to bootstrapping is randomly partitioning the learning set into a number 

of disjoint, independent subsets and generating a predictor using each one.  

Variable Sampling: Another form of diversity generation involves targeting variables for 

random selection. In particular, the Random Subspace Method (RSM) introduced in Ho (1998) 

involves training each predictor on a randomly selected subset of the variables, i.e. if the number 

of variables is p, then m of these (m < p) are randomly selected and used to construct each 

predictor. This random selection process is repeated for each predictor and the size of the subset 

m is often fixed for all predictors. Therefore each individual predictor is constructed from some 

randomly selected m-dimensional subspace of the full variable space. The random forests 

algorithm uses this technique to generate a diverse set of trees in order to improve the ability of 

the resulting forest to ‘generalize’, i.e. to produce accurate predictions for new observations that 

bear little resemblance or correlation to those in the training set. The use of different subsets of 

variables to construct predictors decreases the likelihood of overfitting to the learning set and 

produces an aggregate predictor with higher generalization accuracy. The random subspace 

method has also been shown to be effective for other modelling/learning techniques, e.g. 

multiple linear regression (Tan, Li & Qin, 2008; Mielniczuk & Teisseyre, 2014), generalized 

linear models (Song, Langfelder & Horvath, 2013), multinomial logit models (Prinzie & den 

Poel, 2008), and Linear Discriminant Analysis (Skurichina & Duin, 2002).  

Predictor aggregation: As the term implies, this process involves combing the output of each 

predictor into a final prediction which ideally would be more accurate than those of any of the 

individual predictors. The most popular aggregation method is bagging. In the next section, we 

explore the following two additional methods of aggregating predictors, each of which may 

provide superior performance to regular bagging:  
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o Weighted bagging 

o Stacked generalization 

We will also use the random subspace method alone and in combination with weighted bagging 

and stacked generalization and examine the effects on the predictive accuracy of the HSM. 

 

 

5.2   Methods 

5.2.1   Predictor aggregation approaches: Beyond bagging 

(1) Weighted Bagging 

Regular (unweighted) bagging involves averaging a number of predictors, giving equal 

weighting to each. However it is reasonable to expect that certain predictors would have better 

accuracy than others. Therefore we propose allowing differential weighting for predictors across 

bootstrap samples. Following Opitz & Shavlik (1996), we base the weighting on prediction 

accuracy, with better predictors assigned higher weights and thus contributing more to the 

aggregate predictor. For the HSM, this weighted aggregate predictor would have a general form 

given by: 

1

( ) ( )
B

agg b b

b

H v H


x x  

Here, v
b
 is the ‘importance’ weight assigned to each predictor. In order to preserve the range 

of the HSM (0 to 9), we would normalize v
b
 so that it is constrained within [0,1] and sums to 1. 

We propose the following 2 ways of defining v
b
: 

a) Using out-of-bag data: Suppose the learning set   has a sample size of N. Bagging 

involves selecting (without replacement) a large number of bootstrap samples of size N from  . 
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In almost all cases, each bootstrap sample Db will contain only a subset of the unique datapoints 

in   and the rest of Db will be replicates of the datapoints selected from  . In machine learning 

terminology, the datapoints not selected to be in the bootstrap sample Db are collectively referred 

to as out-of-bag (OOB) data. It is straightforward to show that for uniform random sampling with 

replacement, the expected proportion of unique datapoints from   selected to be in a bootstrap 

sample of size N will be 1-e
-1

 (≈0.632) for large N. Therefore every bootstrap sample will have 

an OOB counterpart containing (on average) approximately 36.8% of the data. For each 

bootstrap sample, the accuracy of the predictor constructed on the sample can be tested using the 

OOB data which essentially functions as an independent test set for the predictor. We propose 

using the out-of-bag data to compute the prediction accuracy for each predictor H
b
(x) and using 

this to weight it relative to the other predictors. This set-up allows the better-performing 

predictors to have a greater contribution to the aggregate predictor. Therefore the aggregate 

predictor would be defined as:  

  
( )

1

( ) ( ) (5.2)
B

OOB

agg b b

b

H RC H


    x x  

                               

( )
( )

( )

1

where :
OOB

OOB b
b B

OOB

g

g

C
RC

C





 

In Equation 5.2 above, C stands for Harrell’s C-statistic. This statistic falls in the range [0, 1], 

with higher values indicating stronger predictive accuracy. Therefore 1-C is a suitable measure 

of prediction error for our particular purpose. RC (Rescaled C) is a rescaled version of C, the use 

of which guarantees that the coefficients of H
b
(·) in Equation 5.2 will to sum to 1. This is 

necessary because the HSM is a score designed to be in the range [0,9], so taking weighted sums 
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of individual HSM predictors H
b
(·) to produce an aggregate HSM requires a set of weights that 

sum to 1.  

b) Using external data: Rather than using OOB data, we propose using an external dataset 

that is entirely independent of the training set  . Our training set is the NHANES 1999-2002 and 

the external dataset we use is a randomly selected half of the NHANES III independent cohort. 

The aggregate predictor here would be given by:  

( )

1

( ) ( ) (5.3)
B

Ext

agg b b

b

H RC H


    x x  

RC
b
 is defined similarly to (a). 

 

(2) Stacked Generalization 

The concept of stacked generalization was originally introduced and characterized in 

Wolpert (1992) and its effectiveness was demonstrated on a neural network. The first 

documented use of the technique in statistical literature is in Breiman (1993) where it was 

applied to combining regression trees and ridge regression predictors. Leblanc & Tibshirani 

(1993) also confirmed the efficacy of this technique. 

The previously described techniques (bagging and weighted bagging) combine predictors by 

unweighted or weighted averaging. In weighted bagging, the weight assigned to each predictor is 

based on its predictive accuracy. This is an intuitive, simple approach. Stacked generalization is 

a more sophisticated method which uses a model or learning algorithm to determine the optimal 

weights to use when combining the predictors. This idea was proposed (albeit in a more general 

form) by Wolpert (1992). 
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Note that in this framework, there are now two levels of data and models. At the lower level 

we have the raw training data and the model(s) used to generate the predictors; these are referred 

to as tier-1 data and tier-1 model(s), respectively. For example, in our particular application, the 

tier-1 data would be biomarker data from the NHANES and tier-1 model would be the WQS 

nested in an AFT model (see Equation 5.1) which is used to estimate the weights {w
i(b)

} for each 

bootstrap predictor H
b
(·).  

Then the B predictors      ( )     
  generated by the tier-1 data and model will be treated as 

variables in a model/learning algorithm that estimates the optimal weighting parameters to use to 

combine them. This model is referred to as the tier-2 model or meta-model and the B predictors 

    ( )     
  are considered tier-2 data for this model. Figure 5.3 below illustrates this idea in 

graphic form: 

 

Figure 5.3: Schematic illustrating the stacked generalization procedure 
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The end-result of stacked generalization would typically be an aggregate predictor that is a 

simple linear combination of the individual predictors generated from a tier-1 model:  

1

( ) ( ) (5.4)
B

st b b

b

H H


    x x  

Here, the {η
b
} are unknown coefficients that are estimated by the tier-2 model; the estimates 

are the values which best relate the tier-2 variables     ( )     
  to the targeted 

outcome/response. In our particular application, our outcome is survival so we would use the 

following tier-2 survival model:  

1

log ( ) (5.5)
B

k b b k

b

T H 


      x  

Here, T
k
 is the censored/uncensored survival time for individual k, while x

k
 is the observed 

biomarker data for individual k in the learning set  . And H
b
(x

k
) is the prediction of predictor 

H
b
(·) for individual k.  Therefore the model defined in Equation (5.5) implies that predictors 

whose predictions for individuals have a strong relationship to mortality will have larger η 

estimates. Therefore they will contribute more to the aggregate predictor defined in Equation 

(5.4).  

Note that the (tier-2) data for the tier-2 model defined in Equation 5.5 is an N × B matrix 

where N is the sample size (total number of individuals) and B is the number of bootstrap 

samples and hence predictors. Stated formally, the tier-2 data is given by:  

   1
1

, ,
B

k k b k b
k N

T H


 

x  
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Here,    is the censoring indicator for individual k and     (  )     
   is the set of all predictions 

for individual k based on k’s vector of explanatory variables x
k
.  

The simple model outlined in Equation 5.5 is merely for instructive purposes and is actually a 

somewhat naïve formulation of stacked generalization. In practice, the model as defined in its 

current form will be ineffective for a number of reasons. First of all, each of the predictors H
b
(·) 

was constructed using data from the learning set  . Re-using   as a learning set for the tier-2 

model will lead to overfitting. We tackle this problem by using an independent dataset for fitting 

the tier-2 model. The next issue is that since the predictors H
b
(·) were all constructed from 

bootstrap samples obtained from  , it is reasonable to expect significant correlation among them. 

Basic regression models such as the one used in Equation (5.5) generally handle multicollinearity 

poorly. There are a number of well-known modelling techniques for handling multicollinearity 

but in our studies we will focus on two that have particularly useful features for the current 

application: 

 

a) WQS-based model: The Weighted Quantile Sum framework was developed to handle 

multicollinearity in environmental chemical mixtures and has demonstrated superior 

performance in variable selection applications (Carrico, 2013; Christensen et al., 2013; Gennings 

et al., 2013). The key feature that makes WQS attractive for our particular application is the 

nonnegativity constraint on the weight parameters. Nonnegative weights are desirable for 

combining learning-based predictors for obvious reasons (see Equation 5.4). Also, regression 

regularized with the nonnegativity constraint has been shown to handle multicollinearity very 

effectively. For example this constraint was used in Breiman (1993 & 1996a) to combine 

regression tree predictors and it was shown to demonstrate superior predictive performance to 
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ridge regression, another type of regularization. Further, Leblanc & Tibshirani (1993) 

demonstrated its superior performance over other regularization methods traditionally used to 

accommodate multicollinearity. The WQS approach also incorporates a unit-sum constraint, i.e. 

the weights are constrained to sum to 1. Below we define the WQS-based tier-2 model we will 

use for aggregating the predictors: 

1

1

1

log ( ) (5.6)

[0,1], 1

B

k b b k

b

B

b b

b

where

T H  

 





     

 
  

 





x

 

Fitting this WQS model produces estimates of the {η
b
}. Because of the nonnegativity and unit-

sum constraints the WQS model imposes on the {η
b
}, we end up with a ready-to-use set of 

combination weights that produce an aggregate HSM predictor whose range is the expected [0, 

9]: 

( )

1

1

ˆ( ) ( ) (5.7)

ˆ 1

B
WQS

st b b

b

B

b

b

with

H H







    

 
 

 





x x

 

As discussed in an earlier chapter, WQS-based models are fit using nonlinear optimization 

routines most of which cannot handle optimizations with a very large number of variables (e.g. 

on the order of several 100s or 1000s). Studies utilizing the WQS technique in the past have 

focused on small-to-moderate sized models (e.g. on the order of dozens of variables) and the 

technique has not been applied to ‘large p’ data. Recall that our tier-2 data (used in the model in 

Equation 5.6) will have dimensions N x B where B (=1000) is the number of predictors generated 

by the tier-1 model and data. Therefore the tier-2 model will be a 1000-variable model which 

would have to be fit using nonlinear optimization routines. Our initial attempts to use a particular 
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numerical nonlinear optimization algorithm (the Conjugate Gradient optimization technique) for 

this 1000-variable model were not successful. So instead, we used bootstrap aggregation in 

conjunction with the random subspace method wherein only a randomly selected subset of the 

1000 tier-2 variables (      ≈ 32) was used at each bootstrap step. An optimization problem 

with 32 variables is well within the capabilities of most of the nonlinear optimization techniques 

used for the WQS technique. Therefore we chose this method for implementing WQS-based 

stacking. 

 

b) Random Forest-based model: The Random Forests learning algorithm is a non-parametric 

technique that has found extensive use in both machine learning and statistical applications. It is 

well-known for its ability to effectively handle high-dimensional data with complex correlation 

patterns among the variables. The B variables in our tier 2 data have a high degree of 

multicollinearity so the random forests algorithm is an ideal choice for the tier-2 model. Because 

the response in this case is time-to-event data, we use Random Survival Forests introduced in 

Ishwaran et al. (2008). One useful output of most random forests implementations is a set of 

‘importance’ measures for each variable. As the name implies, these variable importance (VIMP) 

measures quantify the importance of each variable in the overall random forest. Specifically, the 

VIMP for a variable is a measure of that variable’s contribution to the predictive accuracy of the 

forest. Using Random Survival Forests as our tier-2 model, we will end up with a VIMP for each 

predictor H
b
(·) in the model. We propose using these VIMPs as combination weights for the 

aggregate predictor. Unlike the WQS weights, the VIMPs do not, by default, sum to 1 so we use 

a rescaled VIMP (denoted RVIMP below) that sums to 1 across all the predictors: 
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1

( ) ( ) (5.8)
B

RSF

st b b

b

H RVIMP H


    x x  

To our knowledge, this is the first time this particular approach has been used for stacked 

generalization. 

 

5.2.2   Random Subspace Method 

This method was discussed in an earlier section. In our studies, we will use the random 

subspace method in conjunction with the various aggregation techniques discussed above. The 

common step in each of these aggregation techniques is the first step: generating a large number 

(B) of bootstrap samples from the learning set   and creating a predictor H
b
(·) from each sample 

b. The predictor can be constructed using all the 24 biomarker variables or by using a randomly 

selected subset of the variables (i.e. the random subspace method). We will carry out both 

approaches for each aggregation technique and compare the results. In the random subspace 

method, the size of the subset of variables (i.e. the subspace dimensionality m) randomly selected 

at each bootstrap step is fixed for all steps. Choosing the right value for the parameter m is 

important since it influences the method’s efficacy, however there are no set-in-stone rules for 

doing so. In the original paper introducing the random subspace method (Ho, 1998), it was stated 

that using m ≈ p/2 yields the best results, however it was suggested in Breiman (2001) that m ≈ 

√  is the optimal setting. This particular setting is a common default for most software 

implementations of the random forests algorithm. In our studies, we tried different values of m 

between p/2 (=12) and √  (≈5).  The following values of m were used: 5, 6, 9, 12.  
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5.2.3   Datasets 

In our studies, we used 3 datasets. The bootstrap samples used to train each base predictor H
b
(·) 

were obtained from the NHANES 1999-2002 (n=3406) biomarker/survival dataset. Then the 

base predictors were combined using the 5 aggregation techniques we have discussed. The 

stacked regression techniques required a separate dataset (an external dataset) for training the 

tier-2 models for combining the set of predictors     ( )     
  generated in the first step. One of 

the ‘weighted bagging’ techniques also required an external dataset to produce estimates of the 

predictive accuracy of the predictors. The external dataset used for these techniques will be 

referred to as the tier-2 learning set and was obtained by randomly sampling half of the 

NHANES III biomarker/survival dataset. Therefore the tier-2 learning set had a sample size of 

n=5792. The other half of the NHANES III biomarker/survival dataset was used as a validation 

set (n=5801) to compare the final aggregated HSMs produced by the 5 aggregation techniques. 

In summary, the 3 datasets we used were a tier-1 learning set (n=3406), a tier-2 learning set 

(n=5792), and a validation set (n=5801). 
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5.3   Results 

We used B=1000 bootstrap samples from the tier-1 learning set to create multiple sets of B 

predictors     ( )     
  using the WQS model given in Equation (5.1). Each set of predictors was 

generated either by using all available biomarker variables (24) or by using only a subset (of 

fixed size m) of the variables (i.e. the random subspace method). We tried different subset sizes 

m: 5, 6, 9 and 12. Therefore a separate set of predictors     ( )     
  was generated for each 

value of m. For each set of predictors, each of the aggregation techniques was used to combine 

them to form an aggregate predictor. The following 5 aggregation techniques were used and the 

predictive accuracies of the resulting aggregate predictors were compared: 

 Regular (unweighted) Bagging: This is the technique used for constructing the original HSM 

whose predictive accuracy we seek to improve on. 

 Weighted bagging using: 

o Out-of-bag data 

o External data 

 Stacked generalization using: 

o WQS (Weighted Quantile Sum) Regression 

o Random Survival Forests 

The results are summarized in Table 5.2 below. As a reminder, the Harrell’s C estimates and 

AUCs for all the various aggregation techniques are computed based on the performance of their 

corresponding aggregate predictors in the validation dataset (n=5801) described in the previous 

section.  
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Table 5.2: Harrell’s C and AUC for Aggregation 
Techniques 

Aggregation 
Technique 

Variable space 
dimensionality (m) 

Harrell’s C AUC5-year 

Regular 
Bagging 

Full 0.7094          0.7565 

12 0.7085          0.7571 

9 0.7092          0.7579 

6 0.7131*  0.7619* 

5 0.7106          0.7595 

Weighted 
Bagging  (OOB) 

Full 0.7101* 0.7571* 

12 0.7115* 0.7592* 

9 0.7132* 0.7607* 

6 0.7184* 0.7656* 

5 0.7167* 0.7639* 

Weighted 
Bagging 

(External) 

Full 0.7102* 0.7571* 

12 0.7117* 0.7596* 

9 0.7135* 0.7611* 

6 0.7190* 0.7664* 

5 0.7171* 0.7645* 

Stacking  (RSF) 

Full 0.7174* 0.7629* 

12 0.7336* 0.7775* 

9 0.7348* 0.7781* 

6 0.7470* 0.7885* 

5 0.7497* 0.7906* 

Stacking (WQS) 

Full 0.7367* 0.7784* 

12 0.7496* 0.7875* 

9 0.7519* 0.7889* 

6 0.7564* 0.7911* 

5 0.7577* 0.7916* 

               Highlighted top row indicates results for original HSM 
     *Predictive measure (Harrell’s C or AUC) is statistically significantly better than that of original HSM 
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Figure 5.4: Meta-weight distributions for weighted bagging and stacked generalization 
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   Figure 5.5: Variation in Harrell’s C over different variable spaces 

 

 

Figure 5.6: Comparison of biomarker weights between original HSM and stacking-enhanced HSM 

 

Table 5.2 summarizes the performance of each aggregation technique. The first entry in the 

table (highlighted) gives the Harrell’s C and AUC for the HSM in its original form. Recall that 

this form of the HSM is computed through bagging (which in this write-up we refer to as regular 
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bagging) and using all biomarker variables (i.e. the random subspace method is not used). In 

Table 5.2, the predictive accuracy of this original version of the HSM is used as the benchmark 

to which the performance of HSMs constructed via other techniques will be compared. 

The first group of results in Table 5.2 pertain to the predictive accuracy of HSMs computed 

using regular bagging, i.e. unweighted averaging of predictions across bootstrap samples. The 

random subspace method was used, however only the m=6 case produced significantly higher 

predictive accuracy than the original HSM.  

Next, we focus on the two weighted bagging techniques. Table 5.2 indicates that both 

weighted bagging techniques give results which are uniformly superior to those obtained via 

regular bagging (the asterisks indicate statistically significant superiority). Another interesting 

thing we observe is the similarity between the Harrell’s C and AUC estimates of these 2 

weighted bagging techniques. Figure 5.5 shows the variation in Harrell’s C over decreasing 

values of m (variable space dimensionality); we see the plots for both techniques nearly overlap. 

Examining the effect of different values of m (the variable subspace dimensionality) on the 

predictive accuracy of the weighted bagging techniques, we see a nearly consistent increasing 

trend in predictive accuracy as m is decreased from 24 (the full set of biomarkers) to 5. The plot 

in Figure 5.5 also confirms this.  

Next, we go into some detail regarding the weighted bagging techniques. The top row of 

Figure 5.4 shows the distribution of weights assigned to the B predictors by the 2 weighted 

bagging techniques. To distinguish these weights from the weights assigned to each biomarker in 

the tier-1 model, we refer to them as meta-weights. The red dashed line in each histogram 

indicates the weight (1/B) assigned to each predictor by unweighted bagging (i.e. taking the 

simple average of all B predictors). Since B=1000, a value of 0.001 would be assigned to all B 
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predictors under unweighted bagging. The histograms for the two weighted bagging techniques 

show that the distribution of meta-weights around the mean 0.001 is narrow (~ ±.0002, SD=10
-4

). 

Since the meta-weight assigned to each predictor (by each weighted bagging technique) is 

proportional to its predictive accuracy in the out-of-bag or external dataset, the narrow 

distribution of meta-weights indicates that there does not exist a wide variation in the predictive 

accuracies of the predictors     ( )     
 .  

Next, we examine the performance of the stacked generalization-based techniques. Recall 

that we used RSF and the WQS regression as models to determine the optimal set of meta-

weights to use to combine the B predictors into an aggregate predictor. The results summarized 

in Table 5.2 indicate that these techniques perform better than the weighted bagging techniques 

and produce aggregate predictors whose Harrell’s C and AUC estimates are significantly higher 

than those of the original HSM. The HSM constructed by WQS-based stacking combined with 

random subspace method (with m=5) produces the best prediction as measured by AUC (AUC 

=0.792) and also the highest predictive accuracy as measured by Harrell’s C (C=0.758). 

Contrasting these numbers to the corresponding values for the original HSM in Table 5.2 (AUC 

=0.757, C=0.709), we see significant improvements. 

One clue to the superior performance of the two stacked generalization techniques can be 

found by comparing the meta-weight histograms in Figure 5.4. As discussed earlier, the meta-

weights assigned to the bootstrap-based predictors by the two weighted bagging techniques are 

fairly narrowly distributed about the mean (1/B). This results in aggregate predictors that are 

only slightly better (albeit statistically significantly so) than those obtained from unweighted 

bagging which gives an equal weight of 1/B to each predictor. However the meta-weight 

distributions for the stacking-based techniques are highly skewed with long tails, with the highest 
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meta-weights being ~10 orders of magnitude higher than the mean 1/B. For both stacking-based 

techniques, between 75% and 80% of the meta-weights fall below the mean. It is clear that both 

techniques assign disproportionately high meta-weights to a small percentage of predictors, 

while the majority are down-weighted. What is unclear is whether this is a reflection of the true 

predictive power of each predictor or a mere byproduct of the way these techniques handle the 

high correlation among the predictors. 

Examining the variation in Harrell’s C and AUC estimates over different values of m, we 

see that there is a consistent increase in prediction accuracy as the variable space dimensionality 

is decreased from 24 (all available biomarkers) to 5. This corroborates observations from studies 

in the methodology and application of random forests (which utilize the random subspace 

method) that indicate that the optimal value of m is close to √ .  Our results suggest that both 

stacking-based techniques combined with the random subspace method (with m =     ≈ 5) give 

the best improvement on the predictive accuracy of the HSM.  

We will henceforth use the HSM derived by WQS-based stacking. From Equation (5.7), the 

general expression for this aggregate predictor is given by: 

( )

1 1

ˆ ˆ( ) ( ) 1
B B

WQS

st b b b

b b

withH H 
 

 
  

 
 x x  

Let S
b
 be the particular subset of biomarker variables (5 in number) selected in bootstrap 

sample b and used to construct predictor H
b
(·). Let R

i
 be the set of bootstrap samples in which 

biomarker variable x
i
 was one of the 5 randomly selected variables. Then the following 

derivation can be carried out: 
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In the above derivation, the final expression gives the new set of biomarker weights (derived 

from WQS-based stacking with random subspace method [m=5]) corresponding to each 

biomarker x
i
. These weights have shown superior predictive accuracy to the bootstrap-averaged 

weights used in the original HSM, therefore we will adopt the former for future use. 

As an interesting exercise, we compared the new set of biomarker weights to the original 

bootstrap-averaged weights (in the old HSM) and the results are summarized in Figure 5.6 

above. We can see that in the original HSM, Phosphorus and AST (Aspartate aminotransferase) 

were assigned the highest weights but in the new/improved HSM, each of these has been down-

weighted and Creatinine and Blood pressure are now the highest-weighted biomarkers.  
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5.4   Discussion 

We have explored the effectiveness of a number of heuristic approaches for combining 

predictors. Each is based on constructing predictors with multiple realizations of the data and 

then combining them into an aggregate predictor. We started by using a simple modification of 

the standard bootstrap aggregation (also known as bagging) that involves weighting each 

predictor based on predictive accuracy in the out-of-bag or external data rather than merely 

averaging them. Using Harrell’s C as a measure of predictive accuracy, we observe that 

aggregate predictors produced by weighted bagging are significantly better than the original 

HSM on predictive accuracy as quantified by Harrell’s C and AUC. Further investigation 

showed that the predictive accuracy of each of the individual predictors (for out-of-bag or 

external data) did not vary greatly; therefore the range of meta-weights attached to each predictor 

when combining them to form an aggregate predictor was relatively narrow and almost evenly 

distributed around the mean. Also, the choice of using out-of-bag data or an external and 

independent dataset did not significantly impact the results. 

Our studies also indicate that the random subspace method generally gives better results on 

predictive accuracy than using all available biomarker variables. For the different techniques we 

used, the predictive accuracy was generally higher for lower variable space dimensionality m, 

with optimal values of m close to the square root of p (the total number of biomarker variables). 

When all available biomarker variables are used to fit the WQS model for each bootstrap sample, 

it seems that one particular biomarker (Phosphorus) dominates and is assigned a relatively large 

proportion of the total weight (see Figure 5.1). In fact, for a majority of the B bootstrap samples 

generated from the learning set, Phosphorus tends to have the highest weight in the predictor 

H
b
(·) constructed from each sample. This creates a set     ( )     

  of fairly similar predictors.   
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However, using only a small, randomly-chosen subset of the available biomarker variables 

at each bootstrap step seems to dampen the dominant effect of Phosphorus by allowing several 

predictors to be constructed that exclude Phosphorus and use ‘weaker’ variables. This creates a 

more diverse set of predictors     ( )     
 . This particular effect of the random subspace method 

is the reason it is used in random forests. It is used as a way of injecting more randomness into 

forest construction by allowing only a subset of variables to be considered when splitting each 

node. This reduces the effect of highly dominant variables that tend to exert disproportionate 

influence on the structure of the tree and it results in a more diverse set of trees that are not too 

highly correlated. The use of trees with a wide variety of structures prevents overfitting and 

improves the forest’s generalization accuracy (Breiman, 2001), which is a measure of the ability 

of a predictor to correctly predict outcomes for novel cases the kind of which are not encountered 

in the training set sample. The use of the random subspace method to generate more diverse 

ensembles is an idea that has been applied to other types of models/learning algorithms, e.g. 

multiple linear regression, generalized linear models, multinomial logit models and linear 

discriminant analysis (see Section 5.1.3 for references). These studies demonstrated the benefits 

of this technique over using the full variable space. Here we have demonstrated that randomized 

variable selection also enhances predictive accuracy for WQS regression. 

While the improvements in HSM predictive accuracy obtained from weighted bagging were 

statistically significant but small, we found that combining the ensemble of predictors using 

stacked regression produces better results. Both techniques used for stacked generalization 

(random survival forests and WQS) yielded aggregate predictors with significantly higher 

predictive accuracy (as measured by Harrell’s C and AUC) than the original HSM. But stacking 

via WQS produced (nominally) better results on Harrell’s C and AUC5-year than by using random 
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survival forests. The superior performance of stacked generalization using WQS in fact confirms 

what has been observed in some of the earliest studies on stacked regression (Leblanc & 

Tibshirani, 1993; Breiman, 1996a) which showed that stacking predictors using regression-type 

models with nonnegativity constraints on the meta-weight parameters outperforms other 

regression techniques (sometimes by a large margin). While the tier-2 models used for stacked 

generalization in Breiman (1996a) and Leblanc & Tibshirani (1993) were not identical to the 

WQS model, they share the same key feature: the nonnegativity constraints on the parameters. In 

addition, WQS imposes a unit-sum constraint however the simulation studies carried out in 

Breiman (1996a) indicate that applying the unit-sum constraint (in addition to the nonnegativity 

constraints) does not produce any further reduction in prediction error. To gain some insight into 

why nonnegativity constraints works so well, we refer the interested reader to Breiman (1996a). 
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Chapter 6 

Application of HSM to External Clinical Dataset 

 

6.1   Introduction 

The past chapters have been devoted to the description and extension of the HSM. This 

score was developed for use as a clinical tool for assessing a significant component of overall 

physiological health status. The HSM was tested, validated and extended using NHANES data 

(cohorts 1988-1994 and 1999-2008). It is of interest to test this risk score on clinical data in order 

to assess its performance and demonstrate its efficacy in practical settings.  

To this end, we obtained inpatient and outpatient longitudinal data from the Virginia 

Commonwealth University Medical Center. Patients visiting the Emergency Department (ED) 

within a specific time window (January 1 to February 28, 2011) were followed for 2 years 

subsequent to the ED visit. With this data our goal was to demonstrate a particular application of 

the HSM: as a clinical tool for predicting the long-term prognosis of patients admitted to the ED 

based on their biomarker measurements at the time. We used multiple measures of long-term 

prognosis which will be described in subsequent sections. 

Another goal of this effort was to test the feasibility of HSM computation with real-world 

data. We believe the NHANES data used in previous chapters is of higher quality than most 

health/clinical biomarker data one would encounter in practical situations. Because the NHANES 

data were collected as part of a large and comprehensive national health survey, it is extensively 

curated and as a result has a lower proportion of missing values and data errors than typical 

clinical data. The VCU Medical Center data contains a significantly higher proportion of missing 
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data than the NHANES data and in the following sections, we will discuss how this issue was 

tackled through the use of techniques developed in previous chapters. 

 

6.2   Methods 

6.2.1   Data Structure 

As discussed earlier, patients with an ED visit in Jan-Feb 2011 were followed for 2 years 

after that ED visit (which is considered the baseline). For all patients, every subsequent inpatient, 

outpatient or ED visit in that 2-year window was recorded. For every visit, the following 

information was recorded: admission/discharge dates, type of visit (e.g. ED, inpatient), discharge 

status/disposition, age at time of visit, gender, race, BMI, and measurements of the 24 

biomarkers which we use to construct the HSM. After cleaning the data, there were n=2189 

patients with a total of 26,452 records.  Each record corresponds to a database entry of one or 

more lab test results carried out for a patient during a particular visit.  

 

6.2.2   Missing values 

Calculation of the HSM requires the availability of measurements for all 24 biomarkers. 

The dataset used in this study had a high proportion of biomarkers missing for each patient at the 

baseline ED visit. To replace missing values, we used k-nearest neighbors imputation which is 

described in detail in Chapter 4. We could only carry out imputations for records missing at most 

23 (out of 24) biomarkers. The donor set used was a complete subset of the NHANES III (1988-

1994) cohort which consisted of n=10,000 complete records. Age, Gender and BMI (when 

available) were used as secondary matching variables for the k-nearest neighbors algorithm (see 

Chapter 4). 
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6.2.3   Updated HSM 

In Chapter 5, we developed and compared ensemble methods for improving the predictive 

accuracy of the HSM. We found that WQS-based stacking (see Chapter 5) provides the most 

significant improvement in the predictive accuracy of the HSM. Therefore in the present study, 

we will use the HSM constructed using WQS-based stacking as opposed to the original HSM 

used and referenced in previous chapters (Chapters 2-4). 

 

6.2.4   Analysis 

The primary goal of our analysis was to determine if the HSM of a patient at their baseline 

ED visit predicts future hospital utilization. We focused on hospital utilization in the 2 years 

following the baseline ED visit. Hospital utilization was quantified by the number and total 

duration of hospital visits occurring after the baseline ED visit. We modeled the count of number 

of subsequent visits and total duration (in days) of visits using HSM, age, gender and race as 

explanatory variables. We only included patients who had computable HSMs at their baseline 

ED visit, i.e. patients with at least 1 available biomarker measurement. 

 

6.3   Results 

All study subjects had at least one ED visit in the period of January 1 to February 28, 2011. 

The first ED visit within this period was taken as the baseline ED visit. Below is a table of the 

discharge dispositions for the 2189 patients at their baseline ED visit: 
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Table 6.1: Discharge Dispositions of patients at  

baseline Emergency Department visit 

Discharge Disposition Percent 

Against medical advice-AMA 10.6 

Correctional Facility 0.2 

Home/Prior Living Arrangement 89.1 

Redirected to L&D-Admin D/C 0.05 

Transferred within VCUHS-Admin D/C 0.05 

 

As the table above indicates, the vast majority of patients were discharged home or to a 

prior living arrangement.  

A small percentage of the n=2189 patients had no available biomarkers at the baseline ED 

visit, so imputation could not be carried out for such patients. Therefore the analytic dataset 

consisted of just 2119 patients (~97% of original dataset). As discussed earlier, the k-nearest 

neighbor imputation technique was used to replace missing biomarker values at the baseline ED 

visit for these patients. Figure 6.1 shows the distribution of computed HSM scores in the analytic 

dataset. 

Figure 6.1: Distribution of HSM (at baseline ED visit) in analytic dataset 
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There is a steep drop-off in frequency beyond HSM ≈ 1.5, indicating that only a small 

percentage of patients had relatively high HSM scores. Table 6.2 below provides summary 

statistics for the HSM scores at the baseline ED visit. Table 6.3 summarizes the distribution of 

age, gender and race in the analytic dataset. 

 

Table 6.2: Summary Statistics for HSM at baseline ED visit 

Mean Q1 Median Q3 Minimum Maximum 

1.01 0.72 1.11 1.26 0.11 3.97 

 

Table 6.3: Demographic summary for analytical dataset 

 
 

Frequency Percent 

Age 

18-35 1063 50.17 

36-49 421 19.87 

>=50 635 29.97 

Gender 
Male 902 42.57 

Female 1217 57.43 

Race 

White 545 25.79 

Black 1533 72.55 

Other 35 1.66 

 

As mentioned in Section 6.2.4 we modeled the number of post-baseline visits and total 

duration (in days) of these visits using HSM, age, gender and race as explanatory variables. We 

used Negative Binomial regression models with log link to model the counts. Figure 6.2 shows 

the distribution of the numbers of subsequent visits across patients in the analytic dataset.  

The results indicate that a patient’s HSM at baseline is strongly related (p = 0.009) to the 

number of visits subsequent to the baseline ED visit. Specifically, higher HSM at the baseline 

ED visit is associated with a higher number of subsequent hospital visits.  

We also found that HSM at baseline exhibits a strong positive association (p <.0001) with 

the total duration of time (measured in days) spent in the hospital after the baseline ED visit. 



124 
 

 

Figure 6.2: Distribution of # of visits subsequent to baseline ED visit 

 
Figure 6.2 

 

 

6.4   Conclusion 

This study demonstrates the use of the HSM in a practical setting. The data we used were 

culled from the VCU Medical Center Emergency Department. In preparing this dataset for 

analysis, we encountered challenges specific to real-world data which generally tend not to be as 

well-curated as the NHANES data we used to develop, extend and test the HSM. As an example, 

there was a high rate of missing biomarkers in the clinical dataset used in this study, and one of 

the techniques we tested to handle missing biomarker data (k-nearest neighbors) was used to 

impute the missing values.  

The results of the analysis indicate that after adjusting for age, gender and race, the HSM 

of a patient at their baseline ED visit is strongly related to subsequent hospital utilization. 

Specifically, higher measured HSM at baseline is associated with greater hospital utilization in 
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the months subsequent to the ED visit. This agrees with previous findings regarding the 

relationship between HSM and hospital utilization which are discussed in Chapter 2. From 

analyzing the NHANES 2003-2008 Questionnaire data (see Table 2.3), we found that significant 

relationships exist between an individual’s current HSM and their self-reported hospital 

utilization in the past year. Specifically, individuals with higher HSM tended to report receiving 

more healthcare and having more overnight hospital stays in the months prior to participating in 

the NHANES. Our results corroborate this finding in a prospective context. 
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Chapter 7 

Conclusions and Future Work 
 

7.1   Conclusions 

In this thesis, we have developed a new risk score predictive of all-cause mortality using the 

Weighted Quantile Sum (WQS) methodology. In the process, we have introduced a few 

modifications to the WQS methodology that extend its capabilities. In Chapter 2 we introduced a 

new technique for standardizing variables that remedies a limitation of the standard technique 

used in the WQS methodology. In Chapter 3, we proposed expanded versions of the WQS model 

that allow for the inclusion of pairwise interactions among biomarkers and between demographic 

variables and biomarkers. We discovered that inclusion of interaction effects in the HSM may 

not in fact be necessary, and that the predictive accuracy is actually reduced as a result of doing 

so. However while the study did not demonstrate any usefulness to including interactions in the 

case of the HSM, it introduced simple, useful modifications to the WQS model that extend its 

applicability. These modifications are general enough that they can be applied to other types of 

variables (e.g. nutritional values of dietary components, gene expression levels).  

In Chapter 5, we introduced a new aggregation approach for the WQS technique that 

significantly improves the prediction accuracy of the HSM. The approach incorporates the use of 

the Random Subspace Method with the WQS model in order to generate an ensemble of 

predictors that are then combined using stacked generalization. We introduced two novel 

methods for implementing stacked generalization, both of which resulted in aggregate HSM 

predictors with significantly higher predictive accuracy than originally obtained using the 

traditional form of the WQS technique. 
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Many risk scores that have been developed are made available online through web interfaces 

that can compute these scores for individuals in the general population. These web-based “risk 

score calculators” are typically simple tools that take values of the required risk score 

components and run them through a basic algorithm that computes the score. We considered the 

feasibility of implementing a similar type of web-based tool (or an offline standalone software 

application for clinicians to use) to compute the HSM for individuals or cohorts of patients. One 

major issue impacting the feasibility of implementing such a tool is the presence of missing 

values. In Chapter 4, we addressed this issue by testing and comparing a number of fast, simple 

and non-iterative imputation techniques that could be used to replace missing values in a 

software or web application for computing the HSM. The key conclusion in this study was that 

imputation had a statistically significant negative impact on the predictive accuracy of the HSM. 

However, among the 3 techniques we tested, we found that the k-nearest neighbors imputation 

technique exhibited superior performance compared to the others. This technique is relatively 

simple to implement as an algorithm, and does not involve any iterative steps.  

In Chapter 6, we applied the HSM to hospital data from the VCU Medical Center 

Emergency Department (ED). We demonstrated that the HSM could be used as a predictor of 

hospital utilization after ED encounters, therefore it could serve as a tool for stratifying ED 

patients by risk. 
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7.2   Future Work 

In Chapter 4, we considered 3 different imputation techniques: median imputation, sub-

group median imputation, and k-nearest neighbors imputation. These techniques were selected 

because of their ease of computation; a software application or web interface for computing the 

HSM could easily carry out any of these imputation techniques in real-time. Other imputation 

techniques may exist which meet the criteria for ease of computability and future work will focus 

on exploring such techniques. Their performance will be compared to the original 3 that we 

tested. These comparisons will be carried out under the less restrictive assumption of missingness 

at random (MAR), which was not done in the present work. Finally, in this chapter, even though 

we focused on the comparison of imputation techniques that could be used by a software 

application or web interface to compute the HSM in the presence of missing values, the actual 

development of such an application does not constitute a part of this thesis and is left to future 

work.  

In Chapter 5, we demonstrated the application of the random subspace method (a 

machine/statistical learning technique) to WQS regression. We found this improves the 

predictive accuracy of the HSM, and combining the random subspace method with other 

ensemble techniques such as bagging or stacking yields further improvements. However the 

random subspace method can also be of use in more general applications of WQS regression, 

particularly for modeling very high-dimensional data, i.e. datasets with thousands of variables, 

such as one would find in genomics studies, for example. As discussed earlier, the WQS 

technique in its original form is generally not designed to be applied to very high dimensional 

data due to the limitations of the nonlinear optimization routines used to fit WQS models. In fact, 

studies utilizing WQS regression have focused primarily on low-dimensional data on the order of 



129 
 

a few dozen variables (typically less than 100). The random subspace method extends the 

capability of the WQS technique to handle high-dimensional data by allowing focus to be 

restricted to subsets of the variable space. These subsets are typically small enough that they can 

be easily handled by the nonlinear optimization algorithms used to fit the WQS model. For 

example, in Chapter 5, we used WQS regression as a tier-2 model for stacked generalization and 

the dataset for this model had 1000 variables. The WQS technique would typically not be able to 

handle a dataset with this many variables, however using the random subspace method, only a 

small subset of the variables (by convention, sqrt[total # of variables]) is chosen for each 

bootstrap sample. This made the WQS technique feasible for this large dataset and the results 

showed strong improvement in HSM prediction accuracy. Future work will focus on further 

applications of this modified WQS technique (which incorporates the random subspace method) 

to high-dimensional data in different fields. Particular focus will be given to assessing the 

feasibility and performance of the technique for “large p small n” problems such as the kind 

found in genomics studies.  This will provide an opportunity to compare this technique to the 

more well-established techniques for high-dimensional data such as lasso, elastic net, and 

random forests.  In Chapter 3, we introduced an extended version of the WQS that includes 

pairwise interaction terms among the index components (e.g. biomarkers). With a large number 

of components, the number of potential interaction terms could be on the order of hundreds or 

thousands. Integrating the random subspace method into WQS regression would extend its 

capability to handle such large models. In Chapter 5, the methods explored for improving the 

predictive accuracy of the HSM were all based on bagging and stacking, two common ensemble 

techniques. Boosting is another powerful ensemble method that has demonstrated superior 

predictive performance (Schapire & Freund, 1997). It was originally developed for binary 



130 
 

outcomes and this is its default and most common application. However, recent work (Hothorn et 

al., 2006; Chen, et al., 2013; Mayr & Schmid, 2014) has focused on extending this algorithm to 

right-censored survival outcomes. Most of these approaches focus on boosting the concordance 

index, i.e. using the concordance index (or a smoothed function of it) as an optimization criterion 

for the boosting algorithm. Future work will focus on applying these implementations of 

boosting to improving the predictive accuracy of the HSM and comparing the performance to 

that of the bagging- and stacking-based approaches we used.  

The main performance criterion for WQS regression in this thesis has been predictive 

accuracy (since we are using WQS to construct a risk score). However WQS regression is also 

used for variable selection problems, especially when complex correlation patterns exist among 

variables. In such settings, the key performance criterion is variable selection accuracy, i.e. the 

ability of a model to select the variables with true association with the outcome, and to avoid 

selecting variables with negligible association. On this criterion, WQS regression has been 

shown to perform as well as or better than other regularization methods such as ridge regression, 

lasso and elastic net (Carrico, 2013; Gennings et. al., 2013). In Chapter 5, we demonstrated that 

incorporating techniques such as stacking and the random subspace method into WQS regression 

produces significant improvements in prediction accuracy. However the effect of these 

techniques on variable selection accuracy of WQS regression is currently unknown, therefore 

this could be a potentially fruitful area to explore in future studies.   

The HSM’s predictive accuracy for mortality has been evaluated extensively using 

NHANES data. However it is of interest to assess its performance and robustness in a variety of 

other datasets. A limitation of this work is that the HSM was only validated using one other data 

source besides the NHANES: the VCU Medical Center Emergency Department patient data. 
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This data source did not contain usable mortality data so we instead restricted our focus to testing 

the HSM’s feasibility as a tool for predicting hospital readmission in ED patients. Future work 

will involve testing the predictive accuracy of the HSM for mortality using other data sources.  
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Appendix II: Figures 2.4a-f: Age- and Gender-adjusted Kaplan-

Meier curves for strata defined by HSM range (NHANES III data) 

 

 
Figure 4a: Age: 18-39, Gender=Female 

 

 

 

 Figure 4b: Age: 40-64, Gender=Female 
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Figure 4c: Age ≥ 65, Gender=Female 

 

 

 

Figure 4d: Age: 18-39, Gender=Male 
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Figure 4e: Age: 40-64, Gender=Male 

 

 

 

 

Figure 4f: Age ≥ 65, Gender=Male 

 
 

 

 


	Application and Extension of Weighted Quantile Sum Regression for the Development of a Clinical Risk Prediction Tool
	Downloaded from

	tmp.1404570246.pdf.9L8Id

