5,994 research outputs found

    In-Network Outlier Detection in Wireless Sensor Networks

    Full text link
    To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on Distributed Computing Systems 200

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous

    Twitter data analysis by means of Strong Flipping Generalized Itemsets

    Get PDF
    Twitter data has recently been considered to perform a large variety of advanced analysis. Analysis ofTwitter data imposes new challenges because the data distribution is intrinsically sparse, due to a large number of messages post every day by using a wide vocabulary. Aimed at addressing this issue, generalized itemsets - sets of items at different abstraction levels - can be effectively mined and used todiscover interesting multiple-level correlations among data supplied with taxonomies. Each generalizeditemset is characterized by a correlation type (positive, negative, or null) according to the strength of thecorrelation among its items.This paper presents a novel data mining approach to supporting different and interesting targetedanalysis - topic trend analysis, context-aware service profiling - by analyzing Twitter posts. We aim atdiscovering contrasting situations by means of generalized itemsets. Specifically, we focus on comparingitemsets discovered at different abstraction levels and we select large subsets of specific (descendant)itemsets that show correlation type changes with respect to their common ancestor. To this aim, a novelkind of pattern, namely the Strong Flipping Generalized Itemset (SFGI), is extracted from Twitter mes-sages and contextual information supplied with taxonomy hierarchies. Each SFGI consists of a frequentgeneralized itemset X and the set of its descendants showing a correlation type change with respect to X. Experiments performed on both real and synthetic datasets demonstrate the effectiveness of the pro-posed approach in discovering interesting and hidden knowledge from Twitter dat

    Data Mining in Internet of Things Systems: A Literature Review

    Get PDF
    The Internet of Things (IoT) and cloud technologies have been the main focus of recent research, allowing for the accumulation of a vast amount of data generated from this diverse environment. These data include without any doubt priceless knowledge if could correctly discovered and correlated in an efficient manner. Data mining algorithms can be applied to the Internet of Things (IoT) to extract hidden information from the massive amounts of data that are generated by IoT and are thought to have high business value. In this paper, the most important data mining approaches covering classification, clustering, association analysis, time series analysis, and outlier analysis from the knowledge will be covered. Additionally, a survey of recent work in in this direction is included. Another significant challenges in the field are collecting, storing, and managing the large number of devices along with their associated features. In this paper, a deep look on the data mining for the IoT platforms will be given concentrating on real applications found in the literatur

    A rule dynamics approach to event detection in Twitter with its application to sports and politics

    Get PDF
    The increasing popularity of Twitter as social network tool for opinion expression as well as informa- tion retrieval has resulted in the need to derive computational means to detect and track relevant top- ics/events in the network. The application of topic detection and tracking methods to tweets enable users to extract newsworthy content from the vast and somehow chaotic Twitter stream. In this paper, we ap- ply our technique named Transaction-based Rule Change Mining to extract newsworthy hashtag keywords present in tweets from two different domains namely; sports (The English FA Cup 2012) and politics (US Presidential Elections 2012 and Super Tuesday 2012). Noting the peculiar nature of event dynamics in these two domains, we apply different time-windows and update rates to each of the datasets in order to study their impact on performance. The performance effectiveness results reveal that our approach is able to accurately detect and track newsworthy content. In addition, the results show that the adaptation of the time-window exhibits better performance especially on the sports dataset, which can be attributed to the usually shorter duration of football events
    corecore